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Improving Argos Doppler location using 
multiple-model smoothing
Rémy Lopez1*, Jean-Pierre Malardé1, Patrick Danès2,3 and Philippe Gaspar1

Abstract 
Background: Argos is a dedicated system for geo-localization and data collection of platform terminal transmitters 
(PTTs). The system exploits a constellation of polar-orbiting satellites recording the messages transmitted by the PTTs. 
The localization processing takes advantage of the Doppler effect on the carrier frequency of messages received 
by the satellites to estimate platform locations. It was recently demonstrated that the use of an Interacting Multiple 
Model (IMM) filter significantly increases the Argos location accuracy compared to the simple Least Square adjust-
ment technique that had been used from the beginning of the Argos localization service in 1978. The accuracy gain 
is especially large in cases when the localization is performed from a small number of messages (n ≤ 3). The present 
paper shows how it is possible to further improve the Argos location accuracy if a processing delay is accepted. The 
improvement is obtained using a fixed-interval multiple-model smoothing technique.

Results: The location accuracy of the smoother is evaluated with a data set including over 200 platforms equipped 
with an Argos transmitter and a GPS receiver, providing the ground truth. The use of the smoother reduces the plat-
forms’ location error. On average, compared with the IMM filter, the smoother achieves an error reduction of about 
one-third for locations based on two or three messages. For one-message locations, the error is typically divided by 
two.

Conclusion: The smoother proves to reduce the platforms’ location error compared to the IMM filter. The error 
reduction is all the more significant as the number of messages involved in the location is small. This new processing 
technique targets Argos applications with a limited emitting power or operating in difficult environmental conditions, 
such as wildlife tracking, for which obtaining more accurate locations is more important than obtaining locations in 
real-time.

Keywords: Argos system, Doppler location, Multiple-model smoothing, Rauch–Tung–Striebel formulae,  
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Background
The Argos system has been used since 1978 for geo-
localization and data collection of platform terminal 
transmitters (PTTs) in the fields of wildlife tracking, 
oceanography and maritime safety. The system is based 
on a constellation of low-altitude polar-orbiting satel-
lites, which record messages transmitted by the PTTs 
in a dedicated bandwidth around the 401.650-MHz fre-
quency. The Argos localization exploits the Doppler 

shift on the carrier frequency of the messages, induced 
by the relative motion of the satellite and the platform. 
When a message is received by a satellite, the shifted car-
rier frequency is measured before being transmitted to 
the Argos processing centers via a network of ground 
stations. All frequency measurements acquired during 
a satellite pass over a platform are used to estimate the 
platform’s position.

Between 1978 and 2011, a classical non-linear Least 
Squares (LS) estimation technique was used to compute 
Argos positions. In March 2011, an Interacting Multi-
ple Model (IMM) filter was implemented in the Argos 
operational processing center [1] and is now the nomi-
nal algorithm used by Argos for platforms’ localization 
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in real-time. This new method reduces the Argos posi-
tioning error compared to the LS estimates. The error 
reduction is especially large when less than four messages 
are received during a satellite pass, a situation mostly 
encountered with small, low output power transmitters 
used in difficult environmental conditions (dense forests, 
rough seas…). Such transmitters are mostly used for ani-
mal tracking. The IMM filter also systematically provides 
a characterization of the positioning error (which was not 
the case with the LS positioning algorithm) and increases 
the amount of locations delivered to Argos users [1].

The IMM filter computes locations recursively by com-
bining the frequency measurements of a satellite pass with 
a set of M realistic prior dynamics and observation models 
[2]. In practice, the IMM handles a bank of M unscented 
Kalman filters (KF) [3, 4] to adapt the dynamics model to 
the active platform behavior or mode (a random walk or 
a directed movement for Argos). Filtering assimilates past 
and present frequency measurements to estimate posi-
tions. This is an adequate approach when information is 
needed in real-time, such as in fishing vessel monitoring 
systems. However, many Argos applications, such as wild-
life tracking, do not usually require information provision 
in real-time. In that case, a Kalman smoother can be used 
instead of a filter [5]. Filters are indeed devised to make 
use of measurements acquired before and at the estima-
tion time while smoothers also use subsequent observa-
tions. This means that each location can be inferred with a 
greater amount of information, and thus a better accuracy 
can be achieved, at the cost of a delayed estimation.

This paper is the direct sequel of [1] in which the LS 
estimation technique previously used for Argos position-
ing was compared to the IMM filter. The comparison was 
performed on a large data set obtained from over 200 
mobiles carrying both an Argos transmitter and a GPS 
receiver used as ground truth. After a brief reminder of 
the Argos Doppler positioning problem and its solution 
based on an IMM filter, the new smoothing method is 
presented and its performances are evaluated using the 
same data set as [1].

Methods
Notations are standard: P(·), p(·) and E[·] represent a 
probability, a probability density function (pdf) and an 
expectation, respectively. N (.; x̄,P) stands for the real 
Gaussian distribution function with mean x̄ and covari-
ance P. The transpose operator is denoted by ·T.

Multiple-model filtering
Each Argos localization is computed from the set of nk 
frequency measurements recorded during the satellite 
pass k = 0, 1, . . . (the time index) over a platform. The 
processing estimates the longitude λk, the latitude ϕk and 

the transmitting frequency ft,k of the platform at the aver-
age date tk of the measurements. These unknowns are 
assumed invariant during the satellite pass, which lasts 
at most 15 min. For the lth measurement of the satellite 
pass k, the received frequency fr,(k ,l) is linked to these 
unknowns by the Doppler observation function H(k ,l):

where c is the speed of light and v(k,l) is a zero-mean 
Gaussian noise modeling measurement uncertainties. The 
quantity ṙ(k ,l) is the relative radial velocity between the 
platform and the satellite at the reception time of the asso-
ciated message. In the following, the vector 

(

!k ,ϕk , ft,k
)T 

is denoted by xk and the vector 
[

fr,(k ,1), . . . , fr,(k ,nk )
]T of 

measurements by zk.
The vector xk is then considered as the state vector of 

a stochastic dynamical system described by M possible 
prior dynamic models and one observation model. This 
multiple-model framework is also called a “jump Markov 
system” or “Markovian switching system” [6]. The dis-
crete index mk ∈ M represents the active mode or 
model (i.e., the platform behavior) during the sampling 
period 

(

tk−1, tk ]. The sequence of modes m0,m1, . . . is a 
homogeneous finite-state Markov chain whose transi-
tion probabilities P

(

mk = i|mk−1 = j
)

= πji are known 
for all j, i. The event mk = i will henceforth be noted mi

k
. 

At initial time, the prior state pdf writes as the Gaussian 
mixture

where the pdfs p
(

x0
∣

∣mi
0

)

= N
(

x0; x̂i0|0 ,P
i
0|0

)

 and the 
probabilities P

(

mi
0

)

 are given for all modes i. The state 
dynamics between k − 1 and k conditionally on the active 
mode i over (tk  −  1, tk] is described by the state space 
equation

where the dynamics noise wi
k−1 is white and independ-

ent of x0 and where the sequence 
{

gi. , w̄
i
. ,Q

i
.

}

i∈M is given. 
Under the same assumption that mode i is active, the 
measurement zk is related to the state vector by the out-
put equation

where the observation noise vk
i  is white and independent of x0 

and 
{

wi
l

}

l∈{1,...,k−1}, and where the sequence 
{

hi. , v̄
i
. ,R

i
.

}

i∈M 
is given. For Argos localization [1], the transitions between 

(1)

fr,(k ,l) = H(k ,l)

(

!k ,ϕk , ft,k
)

= ft,k

(

1 −
ṙ(k ,l)(!k ,ϕk)

c

)

+ v(k ,l),

(2)p(x0) =
∑

i∈M
p
(

x0

∣

∣

∣
mi

0

)

P
(

mi
0

)

,

(3)xk = gik−1

(

xk−1

)

+ wi
k−1, wi

k−1 ∼ N
(

wi
k−1; w̄

i
k−1,Q

i
k−1

)

,

(4)zk = hik(xk)+ vik , vik ∼ N
(

vik; v̄
i
k ,R

i
k

)

,
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modes are assumed equiprobable. The admissible prior 
dynamics of the platform are a random walk and a biased 
random walk, and the output equations boil down to 
hik(xk) = hk(xk) =

[

H(k,1)(xk), . . . ,H(k,nk)(xk)
]T

∀i ∈ M.
For a given platform, filtering aims at determining 

recursively for k = 0, 1, . . . the posterior pdf p(xk |z1:k) of 
the state vector xk conditioned on the past and present 
measurements z1:k = (z1, . . . , zk). The exact posterior pdf 
p(xk|z1:k) in the considered multiple-model context writes 
as a Gaussian mixture with a number of terms growing 
geometrically with the time index k [7]:

The IMM filter recursively approximates this pdf by 
maintaining a fixed number of terms in the mixture so 
that

where p̃
(

xk
∣

∣mi
k , z1:k

)

= N
(

xk; x̂ik|k ,P
i
k|k

)

. For output 
purposes, the posterior p(xk|z1:k) can then be approximated 
by the moment-matched Gaussian pdf N

(

xk ; x̂k|k ,Pk|k
)

 
with mean x̂k|k = E[xk |z1:k ] (the location estimate) and 
covariance Pk|k = E

[

(

xk − x̂k|k
)(

xk − x̂k|k
)T

|z1:k
]

 (the 
location error covariance).

Multiple-model smoothing
We are interested in obtaining the smoothed Argos locations 
within a fixed interval 0 ≤ k ≤ T of satellite passes. The inte-
ger T is the terminal time index of the interval or, equivalently, 
the last satellite pass of the emitting period of the PTT. The 
aim is to compute the first two moments x̂k|T = E[xk |z1:T ] 
and Pk|T = E

[

(

xk − x̂k|T
)(

xk − x̂k|T
)T |z1:T

]

 of the 
smoothed state density p(xk |z1:T ) of the satellite pass k con-
ditioned on all the frequency measurements z1:T over the 
fixed interval ending at T.

In the single-model case, two approaches are generally 
considered to build the smoothed mean and covariance. 
The first solution, called the “two-filter smoother”, com-
bines the posterior mean and covariance computed from 
a classical forward-time Kalman filter with the predicted 
mean and covariance produced by a backward-time fil-
ter initialized at time T with no information [8]. Another 
mathematically equivalent solution is the Rauch–Tung–
Striebel smoother that runs a conventional forward-time 
Kalman filter until time T, then smartly recombines 

(5)

p(xk |z1:k ) =
∑

i0:k∈Mk+1

p(xk |m0:k = i0:k , z1:k )

× P(m0:k = i0:k |z1:k )

(6)p(xk |z1:k ) ≈
∑

i∈M
p̃
(

xk

∣

∣

∣
mi

k , z1:k

)

P
(

mi
k |z1:k

)

,

the forward-time moments into the smoothed esti-
mates inside a backward recursion [9]. This recursion 
is straightforwardly initialized with the forward-time 
moments at time T.

The multiple-model smoothing problem can be solved 
with similar schemes although the smoothed state den-
sity still writes as an exponentially growing mixture:

The method proposed in [10] fuses the estimates of 
two IMM filters, propagating forward and backward in 
time, respectively. Again, the backward filter must be 
initialized without prior information and, for Argos, this 
amount to perform a LS adjustment with a minimum of 
four measurements [1]. In some configurations (PTTs 
with low battery levels or damaged antenna at the end of 
the emitting period), this event may hardly occur as most 
of satellite passes contains very few messages. A forward 
filtering pass followed by a backward smoothing pass 
(without initialization) is then more suitable to handle 
such tricky cases. References [11–13] presented a back-
ward pass using the statistics computed by a Generalized 
Pseudo-Bayesian of order 2 (GPB2) filter. The GPB2 filter 
[14] is a multiple-model filter displaying a similar accu-
racy to the IMM strategy but at the higher cost of run-
ning M2 Kalman filters in parallel. Similarly, Ref. [15] 
exploits the statistics of a custom multiple-model filter 
(with M2 Kalman filter predictions and M Kalman filter 
updates). References [16, 17] proposed more recently a 
backward scheme exploiting only the statistics computed 
from a genuine IMM. This solution has been eventually 
chosen for the Argos localization processing to retain the 
good performances and the low computational cost of 
the IMM filter. With this method, the smoothed density 
writes as a mixture of M Gaussian pdfs

where p̃
(

xk
∣

∣mi
k , z1:T

)

= N
(

xk ; x̂ik|T ,Pi
k|T

)

. Again, a  
moment-matched approximation can lead to the 
smoothed location estimate x̂k|T and the associated 
smoothed location error covariance Pk|T.

Test data set
The multiple-model smoother was tested as in [1] on a 
set of 228 Argos PTTs carrying an Argos transmitter and 
a GPS receiver. The data set includes 60 birds (marabou 
storks and geese), 23 terrestrial animals (blue wildebeests 
and bighorns), 78 marine animals (flatback turtles, green 

(7)

p(xk |z1:T ) =
∑

i0:k∈Mk+1

p(xk |m0:k = i0:k , z1:T )

× P(m0:k = i0:k |z1:T ).

(8)p(xk |z1:T ) ≈
∑

i∈M
p̃
(

xk |mi
k , z1:T

)

P
(

mi
k

∣

∣

∣
z1:T

)

,
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turtles, Galapagos sea lions and elephant seals), 44 drift-
ing buoys and 23 ships. A total of 162,503 Argos locations 
were computed and 430,370 GPS positions were col-
lected via the Argos uplink (see details in Table  1). The 
GPS locations are considered as the ground truth in this 
study as their worst case error is around 100 m.

Results and discussion
As the number of messages collected during a satellite 
pass influences the location accuracy, the distribution of 
locations w.r.t. the number of recorded messages within 
the satellite pass is shown in Fig.  1. Interestingly, mara-
bou, bighorn and wildebeest display very few satellite 
passes with less than four messages. These platforms are 
generally located in clear areas with a low ambient noise. 
Moreover, they transmit every 3 or 5 days during a few 
hours with a short repetition period between consecutive 
messages, thereby increasing the average number of mes-
sages received per pass. Geese platforms are also cycled 
but they migrate in Asia where the noise floor is higher 
[1], sometimes reducing the message reception rate. 
Drifters and ships emit at high power without interrup-
tion and in generally favorable transmission conditions 
(unobstructed horizon). More than three messages per 

satellite pass are thus usually available to compute their 
positions. Locations with three messages or less only 
occur for (short) satellite passes at low elevation angles. 
On the opposite, marine animals generally carry small, 
low-power transmitters operating in difficult conditions 
near the possibly rough sea surface. In addition the sur-
face time is often limited so that these animals must most 
of the time be located from 1, 2 or 3 messages only.

Figure  2a displays the means and standard deviations 
of the location error for the smoother and the IMM fil-
ter when more than three messages per pass are available 
to estimate a position. These mean errors and standard 
deviations are computed relative to reference GPS ground 
truth as described in [1]. For such locations obtained with a 
large number of messages, smoothing yields mean location 
errors that are 3–20 % smaller than those obtained with the 
IMM filter. The largest mean error reductions are obtained 
for the elephant seals (20 %), the flatback turtles (15 %) and 
the drifters (14 %). The reduction of the standard deviation 
ranges from 7 % (marabou, goose, blue wildebeest and ship) 
to 25  % (elephant seal). For two- or three-message loca-
tions, the situation is even better (Fig. 2b): the mean error 
associated with the smoothed position estimates is, on 
average, reduced by 33 % compared to the filtered case. The 

Table 1 List and characteristics of the PTTs included in the dataset

Type of mobile Number of plat-
forms

Number of locations Data owner and references

Argos GPS

Marabou stork (Leptoptilos 
crumeniferus)

5 3759 8250 Neil and Liz Baker (Tanzania Bird Atlas, P.O. Box 1605, Iringa, Tanzania)

Goose (Anser indicus) 55 21,220 80,980 Lucy Hawkes (University of Exeter, Penryn Campus, Cornwall, TR10 9EZ, 
UK), Charles Bishop (Bangor University, Bangor, Gwynedd, LL57 2DG, 
UK) and Pat Butler (University of Birmingham, Birmingham, B15 2TT, UK) 
[18]

Blue wildebeest (Conno-
chaetes taurinus)

10 2180 4144 Moses Selebatso (Western Kgalagadi Conservation Corridor Project)

Bighorn (Ovis canadensis) 13 2159 1704 Norv Dallin (Nevada Department of Wildlife, Eastern Region, 60 Youth 
Center Drive, 89801 Elko, NV, USA)

Flatback turtle (Natator 
depressus)

19 24,205 21,809 Kellie Pendoley (Pendoley Environmental Pty Ltd, 2/1 Aldous Place, 
Booragoon, WA 6154)

Green turtle (Chelonia 
mydas)

24 15,959 13,340 Simon Benhamou (Centre d’Ecologie Fonctionnelle et Evolutive, U.M.R. 
5175 Montpellier, France) [19]

Galapagos sea lion (Zalo-
phus wollebaeki)

9 1680 3027 Daniel Costa (Department of Ecology and Evolutionary Biology Institute 
of Marine Sciences, Long Marine Lab University of California, Santa Cruz 
Santa Cruz, California, USA) [20]

Elephant seal (Mirounga 
angustirostris, Mirounga 
leonina)

26 13,120 62,664 Daniel Costa [21]
Christophe Guinet (Centre d’Etudes Biologiques de Chizé, 79360 Villiers-

en-Bois, France) [22, 23]

Ship 23 23,404 36,425 Various

Drifter 44 54,817 175,633 Luca Centurioni (Scripps Institution of Oceanography, Physical Oceanog-
raphy Research Division, 9500 Gilman Drive, Mail Code 0213, La Jolla, 
CA, 92093 USA)

Total 228 162,503 430,370



Page 5 of 9Lopez et al. Anim Biotelemetry  (2015) 3:32 

decrease in the standard deviation is between 31 % (goose 
and gnu) and 68 % (bighorn). The gain obtained with the 
smoother is the most important with one-message loca-
tions (Fig. 2c): the mean error for the smoothed positions 
is about half of that for the filtered positions, and the stand-
ard deviations are reduced from 32 % (marabou and goose) 
to 77 % (bighorn). The mean error is as small as 550 m for 
drifters and remains below 7 km in the worst case (goose).

Broadly speaking, the location accuracy is largely influ-
enced by the observation geometry of the satellite pass. 
The most favorable observation geometry—or equiva-
lently the best location accuracy—is obtained when

C1: the platform is located from 5° to 15° left or right of 
the sub-satellite track (using the Earth centered angular 
distance),
C2: messages are numerous and uniformly distributed 
within the satellite pass (the platform is observed under 
multiple angles by the satellite).

Both conditions are actually randomly fulfilled as the 
latter depends on the emitting environment (radio masks, 
industrial noise…) and the former on the relative position 
between the platform and the satellite. The smoother has 
a positive impact on the location accuracy when C1 is not 
satisfied. Figure  3 displays for the drifters the average 
location error versus the Earth-centered distance to the 
sub-satellite track (all locations are retained). The LS 
adjustment, the IMM filter and the smoother are com-
pared and the minimum location error is obtained around 
7° of distance for all algorithms. With the LS adjustment 
and the filter, the error diverges when the platform is on 
the sub-satellite track (0°) or at the limit of the visibility 

circle (25°). This behavior is largely less marked with the 
smoother as the error varies less with the sub-satellite 
track distance, especially when the platform is located 
outside the distance interval [5°, 15°]. The information 
brought by future Doppler frequency measurements com-
plements the observation geometry in such unfavorable 
configurations. The results of the previous section also 
show that the smoother is more efficient if the number of 
received messages is low1 (C2 is not met). The prior 
dynamics, which brings additional information from the 
previous satellite pass through the predicted location, 
improves the pass geometry. This was also observed when 
comparing the IMM filter to the LS adjustment in [1].

As an example, the trajectory of a migrating elephant 
seal (Mirounga leonina) is shown in Fig.  4. The ani-
mal performed a round trip of nearly 5000 km between 
November 2010 and February 2011 from its rookery 
located on the Kerguelen Islands. Its migration is esti-
mated with on average two messages per pass and 12 
passes per day. This example already benefited from the 
IMM filter [1]. It can be seen that the smoother further 
increases the congruence between the GPS track and the 
Argos locations. The filter trajectory displays abnormal 
peaks associated with one-message locations which are 
notably improved by the smoother. The improvements 
apply both when the animal follows a directed motion 
(Fig. 4b) and when the movement is closer to a random 
walk before turning back (Fig. 4c).

1 Note that, for a given repetition period of the platform, a lower number 
of received messages means also they are likely to be unevenly distributed 
within the satellite pass.

Fig. 1 Distribution of locations w.r.t. the number of recorded messages within the satellite passes
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Fig. 2 Mean and standard deviation of the errors; a with at least four messages, b with two or three messages and c with one message. Note that, 
in each figure, the platform types are ordered (from left to right) by increasing IMM filter average errors. The scale of the y axis is changed accord-
ingly (always wider on the right panel)
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A moderated “lag” effect was observed on the trajec-
tories produced by the IMM filter, affecting mainly one-
message locations [1]. Table  2 presents for the IMM 
filter and the smoother the signed average error projected 
along the trajectory divided by the average error modulus 
(see [1] for a complete description of the computation). A 
negative value may indicate a systematic lag with respect 
to the true location along the trajectory, and a positive 
value may indicate an advance. For the filter, the ratios 
are generally negatively signed especially for one-message 
locations. This is not the case with the smoother as the 
ratios decrease and are no more systematically negatively 
signed. Outliers are still observed for blue wildebeests 
and marabou (−36  % and +71  %, respectively) but the 
amount of one-message locations is too small to compute 
reliable statistics for both data sets. To better understand 
why this phenomenon disappears with the smoother, it 
is worth remembering that the smoothed locations are 
equivalently produced by fusing the estimates of two fil-
ters propagating forward and backward in time. Both fil-
ters would be affected by opposite lag effects so that the 
effect of the forward filter would be compensated by that 
of the backward filter after the fusion. The cancellation of 
the lag effect also contributes to the decrease of the loca-
tion error with one-message passes.

To close the location error analysis, the consistency of 
the smoother was evaluated by considering as in [1] the 
1σ, 

√
2σ and 3σ estimated confidence ellipses. These must 

theoretically contain 39.3, 63.2 and 98.9  % of the com-
puted locations, respectively. For the LS and IMM algo-
rithms, the percentages of locations falling within the 
errors ellipses were lower than their theoretical values. 
Table  3 displays this quantity for the smoother and for 
the IMM filter. While the smoother still underestimates 

the actual positioning error, the percentages are on aver-
age greater with this new method. In other words, the 
smoother offers a better characterization of the estimated 
error than the IMM filter.

Fig. 3 Mean location error w.r.t. the distance of the platform to the 
subsatellite track

Fig. 4 Comparison of elephant seal tracks between GPS, IMM filter 
and multiple-model smoother; a overall trajectory. b and c Extracts of 
the middle and the end of the trajectory, respectively
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Conclusion
Smoothing is a deferred-time processing that assimi-
lates all frequency measurements within the platform 
emitting period to estimate each point of the associated 
trajectory. The multiple-model smoother proved to be 
a new step forward in enhancing the overall quality of 
the Argos tracks. Compared to the IMM filter, average 
location errors are indeed reduced by one-third with 
two or three messages and by half with a single mes-
sage. The standard deviations of the error also decrease 
similarly. The smoother displays more uniform perfor-
mances regardless of the observation geometry asso-
ciated to the satellite pass, particularly when the PTT 
is close to the sub-satellite track or at the edge of the 
satellite visibility circle. Moreover, the smoother elimi-
nates the bias effect along the track observed with the 
filter on one-message locations due to the use of a ran-
dom walk dynamics in the model set. The users can take 
advantage of this new approach through a dedicated 

reprocessing service made available on the official 
Argos website (www.argos-system.org). This service is 
able to deliver upon request and independently of the 
real-time processing the smoothed estimates for a list 
of platforms and their associated tracking periods since 
January 1st 2008.

Platform terminal transmitters with a limited emitting 
power or operating in difficult environmental condi-
tions, like wildlife tracking applications, markedly benefit 
of this new approach. The Argos community has always 
been extremely prolific and ingenious to develop tools 
detecting abnormal locations or correcting tracks of this 
kind of PTTs (see for example [24–29] among many oth-
ers). These methods are particularly efficient for locations 
computed with very few messages where the accuracy 
is limited. The aim of this new processing is not only to 
improve the overall location accuracy but also to simplify 
the posterior analysis conducted by the Argos users and 
to limit the use of multiple post-processing tools.

Table 2 Ratio of the signed tangential error on the error modulus

Type of mobile 4 mess. or more 2 and 3 mess. 1 mess.

Filter (%) Smoother (%) Filter (%) Smoother (%) Filter (%) Smoother (%)

Marabou 1 1 10 10 37 71

Goose 4 4 −1 −2 −8 −1

Blue wildebeest 3 2 −16 −11 −25 −36

Bighorn −2 −1 7 12 −19 9

Flatback turtle −13 −5 −9 10 −14 11

Green turtle 5 16 −15 15 −22 9

Galapagos sea lion 15 17 −4 18 −2 6

Elephant seal −2 13 −8 17 −18 13

Ship −1 1 −18 0 −24 −6

Drifter −14 1 −38 8 −59 9

Table 3 Probabilities that  computed locations fall within  the error confidence ellipses (headers contain the theoretical 
values)

Type of mobile 1σ (39.3 %)
√

2 σ (63.2 %) 3σ (98.9 %)

Filter (%) Smoother (%) Filter (%) Smoother (%) Filter (%) Smoother (%)

Marabou 15 14 22 23 51 51

Goose 20 20 27 28 49 50

Blue wildebeest 21 21 34 34 70 70

Bighorn 33 34 45 47 70 72

Flatback turtle 25 28 37 40 65 68

Green turtle 28 32 41 45 67 71

Galapagos sea lion 22 24 34 35 60 61

Elephant seal 18 20 26 29 50 54

Ship 21 22 31 33 59 61

Drifter 30 34 45 50 80 84

http://www.argos-system.org
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