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LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France – Email: firstname.name@laas.fr

Abstract—Fundamental limitations of binaural localization,
such as front-back ambiguity or distance non-observability, can
be overcome by combining the sensed audio signals with the
sensor motor commands into “active” schemes. Such strategies
can rely on stochastic filtering. In this context, this paper
addresses the determination of an admissible motion of a binaural
head leading, on average, to the one-step-ahead most informative
localization. To this aim, a constrained optimization problem
is set up, which consists in maximizing the entropy of the
next predicted measurement probability density function over
a cylindric admissible set. The proposed optimum policy is
validated on real-life robotic experiments.

I. INTRODUCTION

The advent of auditory robots has led to the emergence of
audio-motor binaural localization schemes that, by combining
binaural perception and motion, can disambiguate front from
back and recover source range [1][2]. Given such an audio-
motor localization strategy (e.g., [3]), the question remains
how to drive the robot so as to gather as much spatial
information on a source as possible.

In Robotics, Simultaneous Localization and Mapping
(SLAM) techniques have been extended to cope with the
neighboring “exploration problem”, i.e., to design robot mo-
tions improving their knowledge about the environment [4].
Control policies could be found by maximizing information
criteria related to the robot situation, e.g., by determining the
direction of maximum local information improvement. Shan-
non entropy or mutual information have often been used [5],
as well as the Fisher information matrix (FIM) [6]. It has been
shown that a mapping robot guided by a mutual information
based controller can be attracted towards unexplored areas [7].
Similar strategies have been used to coordinate multiple sensor
platforms [8]. Information-theoretic controllers can address
different objectives such as the control of a robot-mounted
camera to optimize depth estimation [9], or the sensor pa-
rameters selection (e.g. zoom or attitude) for scene analysis
[10], [11]. In the bearings-only tracking problem, optimum
receiver maneuvers could be determined by maximizing a cost
functional involving FIM determinants [12].

In robot audition, auditory scene exploration has also been
investigated [13]. A mobile robot equipped with a microphone
array localizes sound sources and estimates its own position in
a known geometric map [14]. Motion planning based on audio
situation has been proposed to improve speech recognition by
a monaural robot [15]. In other studies, sound source localiza-
tion was improved by optimizing the position of microphones
deployed in the environment [16]. In [17], a robot equipped

with a microphone array was controlled to locate a sound
source by minimizing a criterion based on the entropy of an
occupancy grid used to represent the source position belief.

Considering a prior knowledge on the relative position
of a static sound source with respect to a binaural head
(e.g., spherical or anthropomorphic), the determination of an
admissible finite motion of the sensor is studied, which leads
to the minimum uncertainty in the one-step-ahead localization.
This paper therefore complements [18], which was inherently
limited to infinitesimal displacements, and could not address
optimality among all admissible motions.

II. PROBLEM STATEMENT AND ORGANIZATION
OF THE PAPER

A frame F = (O, ~xR, ~yR, ~zR) is attached to a binaural sen-
sor, where: O stands for the midpoint of the two microphones
R1, R2; ~zR points to boresight; ~yR supports the interaural axis;
~xR is vertical and points downwards. Between two consecutive

times k and k + 1, the frame Fk = (Ok, ~xRk, ~yRk, ~zRk) is
turned into Fk+1 = (Ok+1, ~xRk+1, ~yRk+1, ~zRk+1) by means
of the translation T = Ty ~yRk+Tz ~zRk followed by the rotation
of angle φ , ( ̂~zRk, ~zRk+1) around ~xRk. The pointwise source
E and R1, R2 are supposed to stay on the same horizontal
plane. So, the vector x = (ex, ey, ez)

T depicting the Cartesian
coordinates of the source in the (moving) sensor frame obeys
the state equation

xk+1 = RT (φ)xk −RT (φ)T + wk, (1)

with wk the dynamic noise and R(φ) the rotation matrix
corresponding to φ.

A belief on the sensor-to-source position xk = (ey, ez)
T

at time k is given in terms of the 2D Gaussian pdf
N (xk; x̂k|k, Pk|k), with x̂k|k its estimate and Pk|k the associ-
ated error covariance. x̂k|k and Pk|k can be the posterior mean
and covariance obtained by fusing into a stochastic filtering
scheme the short-term spatial information extracted from the
binaural stream with the motion of the sensor, along [3]. The
problem dealt with in this paper consists in determining the
motion of the sensor which best improves, on average, the next
localization of the sound source. First, a metrics is described,
uniting the belief on the state at time k and the rigid motion
applied over [k; k + 1], to the expected information obtained
after a measurement update at time k+1. To make the problem



tractable, this measurement update guiding the exploration
relies on a closed form equation such as

zk = l(xk) + vk = l̄(θk) + vk, zk ∈ R, vk ∼ N (0, Rk), (2)

with vk the measurement noise and θk = −atan2(ey, ez) the
relative azimuth of the source (0 along ~zR and increasing
clockwise). Considering a farfield source, l̄(.) can express the
genuine time delay of arrival between a pair of microphones
in free field, or the Woodworth-Schlosberg ITD approximation
between antipodal microphones over a spherical head [19], etc.

A constrained optimization problem is first defined, whose
solution leads to the next best sensor position. Then, useful
insights into the geometry of the problem are provided. Ex-
periments conclude the paper.

III. INFORMATION FEEDBACK CONTROL

A. An information-theoretic constrained optimization problem

Let x, y be continuous random variables with joint and
marginal pdfs p(x, y) and p(x), p(y). The differential entropy
h(x) embodies the uncertainty in x, and the mutual informa-
tion I(x, y) ≥ 0 measures the amount of information that p(x)
contains about p(y). They are defined by [20]

h(x) = −
∫
p(x) log p(x)dx; (3)

I(x, y) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (4)

When conditioned on the event that a random variable z
takes a given value, they are henceforth denoted by h(x|z),
h(y|z) and I(x, y|z). The conventional Bayes rule underlying
the measurement update stage relates the next filtered state
pdf p(xk+1|z1:k+1), the next predicted state pdf p(xk+1|z1:k),
the observation model p(zk+1|xk+1) and the next predicted
measurement pdf p(zk+1|z1:k). Consequently, entropies and
mutual information of these distributions can be connected
with an entropy update rule [21]. The expectation∫∫
− log p(xk+1|z1:k+1) p(xk+1; zk+1|z1:k) dxk+1dzk+1, (5)

of − log p(xk+1|z1:k+1) conditioned on z1:k, which is also
equal to Ezk+1

{
h(xk+1|z1:k+1)

}
, satisfies [18]

Ezk+1

{
h(xk+1|z1:k+1)

}
= h(xk+1|z1:k)−I(xk+1; zk+1|z1:k)

Exk+1

{
h(zk+1|xk+1)

}
= h(zk+1|z1:k)−I(xk+1; zk+1|z1:k),

with I(xk+1; zk+1|z1:k) the conditional mutual information of
the next state and measurement. As I(xk+1; zk+1|z1:k) ≥ 0,
Ezk+1

{
h(xk+1|z1:k+1)

}
≤ h(xk+1|z1:k) holds, which stresses

the information gain brought by the measurement update.
Let |.| term the determinant of a matrix. If wk is negligible

in (1), then h(xk+1|z1:k) = 1
2 log

[
(2πe)n|Pk+1|k|

]
is also

equal to 1
2 log

[
(2πe)n|Pk|k|

]
in view of the fact that the sensor

undergoes a rigid motion (the vector RT (φ)T is constant in
(1), so Pk+1|k = RT (φ)Pk|kR(φ) with |R(φ)| = 1). In addi-
tion, h(zk+1|xk+1) = 1

2 log [(2πe)n|Rk+1|] is also indepen-
dent of the control variables T, φ. Besides, the (nonlinear)

Kalman measurement update equations at time k + 1 show
that both h(xk+1|z1:k+1) = 1

2 log
[
(2πe)n|Pk+1|k+1|

]
and

h(zk+1|z1:k) = 1
2 log

[
(2πe)n|Sk+1|k|

]
do not depend on the

measurement zk+1. Consequently, the following rule holds.
Theorem 1: Finding the next best sensor position, induced

by the rigid body motion (T ∗, φ∗), which minimizes the en-
tropy h(xk+1|z1:k+1) of the next filtered state pdf is equivalent
to maximizing the mutual information I(xk+1; zk+1|z1:k) of
the next predicted state and measurement, or to maximizing
the entropy h(zk+1|z1:k) of the next predicted measurement
pdf. In other words, (T ∗, φ∗) is the solution of

(P)



(T ∗, φ∗) = arg min
(T,φ)∈T ×R

h(xk+1|z1:k+1)

= arg max
(T,φ)∈T ×R

I(xk+1; zk+1|z1:k)

= arg max
(T,φ)∈T ×R

h(zk+1|z1:k).

where T and R respectively term the sets of admissible
translations and rotations.

B. Interpretation
From (2), the loci of the sensor-to-source positions x

corresponding to iso-values of the measurement z are radial
lines rigidly linked to the frame F and passing through O.
For TDOA/ITD measurements, these loci are not uniformly
distributed along the azimuths. They are more concentrated
along the direction of ~zR which defines the auditive fovea,
while they are sparser along the interaural axis ~yR.

Given a belief N (xk; x̂k|k, Pk|k) on the head-to-
source position at time k, Figure 1 sketches the 2D
Gaussian approximation of the next filtered state pdf
N (xk+1; x̂k+1|k+1, Pk+1|k+1) after applying various rigid
motions (T, φ) to the sensor. All the involved normal
distributions are depicted by related 99%-probability
confidence ellipses. Importantly, if the dynamic noise
is neglected in (1), then the next predicted state pdf
N (xk+1; x̂k+1|k, Pk+1|k) is basically described by the same
ellipse as for the initial belief, but “viewed” from the sensor
once it has completed its motion. Equation (2) implies that
the spatial information brought by the measurement zk+1 can
be described by a 99%-probability confidence cone tapering
to the apex Ok+1. For a given variance R of the measurement
noise, the extent of this cone on either side of the line
corresponding to the genuine azimuth of the source is all the
more important as the iso-z loci are sparse.

From the initial configuration on Figure 1a, the head first
undergoes a pure rotational motion so that the auditive fovea
(supported by ~zRk+1) becomes oriented towards the wide axis
of the confidence ellipse associated to the next predicted state
pdf (Figure 1b). On Figure 1c, translation and rotation are
applied so as to drive Ok+1 on the line supported by the small
axis of that ellipse, and a subsequent rotation makes ~yRk+1

point towards its center. Last, in Figure 1d, the auditive fovea
~zRk+1 is driven towards the small axis of that ellipse.

The variance Sk+1|k of the predicted measurement pdf is
heuristically related to the number of iso-z loci intersecting the
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Fig. 1: (a): Frame Fk attached to the binaural head (blue);
sound source genuine position (yellow square); confidence
ellipse associated to the belief at time k (grey); iso-zk loci
depicting the measurement space (grey radial lines). (b)-(c)-
(d): Frame Fk+1 (blue); confidence ellipse associated to the
next predicted state pdf at time k + 1 (blue); iso-zk+1 loci
(grey); confidence cone associated to the measurement (green);
confidence ellipse associated to the next filtered state pdf (i.e.,
the next belief at k+ 1), after the incorporation of zk+1 (red).

confidence ellipse associated to the predicted state pdf. The
more iso-z loci intersect that ellipse, the higher is Sk+1|k.

As aforementioned, the confidence cone describing the
spatial uncertainty due to the measurement noise is wide if the
source lies along the interaural axis (Figure 1c). In this case,
a small number of iso-z loci intersect the confidence ellipse
associated to the predicted state pdf, so that the measurement
update cannot significantly improve the information in the
filtered state pdf. When the auditive fovea is oriented towards
the confidence ellipse, the measurement uncertainty is nar-
rower, the variance Sk+1|k is important and the measurement
update is more efficient (Figures 1b-1d). It is even better when
the fovea points to the small axis of the ellipse (Figure 1d).
Importantly, the spatial uncertainty due to the measurement
noise shrinks as the head gets closer to the source, what leads
to an increase in the predicted measurement variance.

C. Numerical solution via the projected gradient algorithm

In view of the above, starting from the head-to-source posi-
tion belief N (xk; x̂k|k, Pk|k) at time k, the adequate optimum
finite translations (T ∗y , T

∗
z ) and rotations φ∗ maximize the

log-determinant (here, simply the value) of the (co)variance
Sk+1|k = Fk(Ty, Tz, φ) of the next predicted measurement

pdf, with Fk : R3 → R. Then, the optimization problem (P)
can be formulated as

(P)



(T ∗y , T
∗
z , φ

∗) = arg max
Ty,Tz,φ

Fk(Ty, Tz, φ)

subject to f1 : φ− φmax ≤ 0

f2 : −φ− φmax ≤ 0

f3 : Ty
2 + Tz

2 − rmax ≤ 0

(6)

with rmax and φmax the maximum admissible translation
and rotation. The admissible values of the decisions variables
thus constitute a cylinder volume. Due to the geometry of
the problem depicted in the previous section, the optimum
solution(s) can be shown to lie on the external surface of this
admissible set. So, the last inequality constraint is turned into
its limiting counterpart f3 = 0.

Let the position on the cylinder surface be defined by two
parameters (α, φ) with

g : R2 → R3( α
φ

)
7→

(
g1(α,φ)
g2(α,φ)
g3(α,φ)

)
=

(
r sin(α)
r cos(α)

φ

)
. (7)

Then the solution of (P) with f3 = 0 is equivalent to solve

(P ′) : (α?, φ?) = max
α,φ

F̃k(α, φ) s.t.
{
f̃1 : φ− φmax ≤ 0

f̃2 : −φ− φmax ≤ 0
(8)

with F̃k(., .) = [Fk ◦g](., .) and f̃1, f̃2 the expression of f1, f2
in terms of the new set of decision variables.

The projected gradient algorithm is used to solve the prob-
lem numerically. Though Fk has no closed form, an analytic
approximation of its gradient around D = (Ty, Tz, φ)T can
be derived by using chained first order Taylor expansions and
the unscented transform. This leads to

Fk (D + du) = Fk (D) +∇Fk (D)
T
du, (9)

with du = (dTy, dTz, dφ)T the infinitesimal motion vector
applied around D and dk = ∇Fk(D) the gradient of Fk at D.
Then the gradient d̃k = ∇F̃k(α, φ) can be expressed as

∇F̃k(α, φ) = ∇Fk(g(α, φ)) ∂g(α,φ)
∂
(
α
φ

)T (10)

and used in the projected gradient algorithm.

IV. GEOMETRIC CUES

In this section, l̄(.) in (2) consists in the Woodworth-
Schlosberg formula for ITD approximation over a
spherical head [19], i.e., l̄(θ) = a

c (θ + sin(θ)) for
|θ| ∈ [0, π2 ], l̄(θ) = a

c (π − θ + sin(θ)) for θ ∈ [π2 , π] and
l̄(θ) = a

c (−π − θ + sin(θ)) for θ ∈ [−π,−π2 ]. Its iso-zk
loci are similar to those depicted in Figure 1. The belief
N (xk; x̂k|k, Pk|k) on the sensor-to-source position at time
k is such that x̂k|k = (1, 1.5)T . The uncertainty on
the source location, depicted by Pk|k, is associated to a
confidence region which is either ellipsoidal or circular.
The function Sk+1|k = Fk(., ., φ) has been evaluated w.r.t.
T = Ty ~yRk + Tz ~zRk for three different subsequent rotations



φ of the head. The iso-values of Fk(., ., φ) have been
displayed in the plane defined by the current local frame Fk.
The set of admissible translations has been represented as
well as the constrained local maximum. When there is no
rotation (Figure 2a), the contour lines become distorted for
T = (1, .)T and T = (., 1.5)T . These distortions are the
consequences of the geometric considerations evoked in
§III-B. For T = (1, .)T (resp. T = (., 1.5)T ), Ok+1 would be
aligned with the major axis of the ellipse (resp. the interaural
axis would become aligned to the small axis of the ellipse).
The given rotations of the head (+45◦ (Figure 2b) and −45◦

(Figure 2c)) lead to the rotation of the contour lines and
change the local maximum. Hence, it is more attractive in
this situation to apply a rotation of −45◦ than +45◦. It is
worth noting that the distortion for T = (1, .)T vanishes
when the confidence region is circular (Figure 2d).

Then the function F̃k(., .) has been evaluated for the
same prior belief. It appears that the maximum is located
on φ = −48◦. It corresponds to the maximum value of the
function Fk(., ., .), on the edge of the cylinder.

V. REAL EXPERIMENTS

Live experiments have been conducted in a moderately re-
verberant open-space environment. A mobile robot supports a
KEMAR binaural head and torso form G.R.A.S.r, whose neck
is endowed with a controllable dof. The position of the source
and of the robot are measured in real time by an OptitrackTM

motion capture system, with ±0.1mm accuracy. The robot
software architecture is based on the ROS middleware and the
GenoM3 components generator [22]. The task which manages
the program, plots and saves the results, is performed by a
MATLABr client.

The localization process is divided into three steps. First,
a likelihood function of the source azimuth is determined
from the binaural stream. A white noise filtered with a 1kHz-
bandwidth 1kHz-central-frequency bandpass filter is selected
as the source signal, so as to get a smooth likelihood. Then,
this short-term directional cue is combined with the motor
commands of the robot to compute a Gaussian mixture ap-
proximation of the posterior pdf [23]. This posterior pdf is
reduced to a single Gaussian N (xk; x̂k|k, Pk|k) by keeping
its most probable hypothesis, and the likelihood function is
traded for the Woodworth-Schlosberg measurement equation
to compute the exploratory control inputs of the robot. The
whole process is repeated every Ts = 1s.

The results of the localization as well as the gen-
uine position of the source are displayed in real-time
(Figures 3a–3c&3e–3g). A comparison with open-loop motion
strategies, namely a rotation of the head and a translation
along its interaural axis, is reported on Figure 3d. Videos are
available at http://homepages.laas.fr/danes/EUSIPCO2016.

VI. CONCLUSION

This paper has presented a method to actively improve the
binaural localization of a sound source. It has been assessed on
an embedded auditory platform and compared to other motion

(a) (b)

(c) (d)

(e)
Fig. 2: Iso-values of the function Fk(., ., φ) (a-b-c-d) and
F̃k(., .) (e) - The sensor frame Fk = (O, ~xR, ~yR, ~zR) is
plotted in red and the blue ellipses/circle represent the 99%
confidence region of the sound source location extracted from
the beliefN (xk; x̂k|k, Pk|k). Axes are in meters. The red circle
delimits the admissible translation T ∈ T . The contours are
warm (resp. cold) when Sk+1 is important (resp. low). The
red axes on (e) represent the ±90◦-limits of the head rotation.

strategies. Future work will consist in investigating N -step-
ahead information-based control. One difficulty of the problem
may lie in defining an additive criterion which expresses the
average information measure to be optimized at the end of a
N -element sliding temporal window.
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