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This paper takes place within the field of binaural localization in robotics. The aim is to design "active" schemes, which combine the signals sensed by a binaural head with its motor commands so as to overcome limitations occuring in a static context: front-back confusion, non-observability of hidden variables, etc. A three-stage strategy is proposed, which entails: the short-term detection and localization of sources from the short-term analysis of the binaural stream; the assimilation of these data over time and the fusion with the motor commands of the binaural sensor; the improvement of this fusion through the feedback control of the binaural sensor. For each stage, the theoretical bases, some achievements and open problems are outlined.

INTRODUCTION

Since its emergence in the 2000s, robot audition has raised an increasing interest within and from outside robotics. Indeed, the combination of audition with other modalities -embedded or deployed in the environment-as well as the mobility offered by an auditory robot open unexpected problems and rich perspectives [START_REF] Nakadai | Active audition for humanoid[END_REF] [START_REF] Cooke | Active hearing, active speaking[END_REF]. The challenges in terms of devices and algorithms (embeddability, real-time performance, ego-noise. . . ), source and environment features (human voice, noise, reverberation. . . ), tasks (acoustic effects due to motion, barge-in situations. . . ) enriches the field [START_REF] Argentieri | Binaural systems in robotics[END_REF].

Within the renewed interest for "active" binaural functions, which combine the binaural perception with the motor commands of the sensor, active binaural localization offers the perspective of overcoming limitations in a static context such as front-back confusion, range non-observability, etc. A sensorimotor view of this last problem, which entails no decisional/cognitive process, is proposed in this paper. The way how binaural sensing and sensor motion can be interwoven is described along a three-stage framework, conceptualized on Figure 1. Stage A and Stage B carry out the analysis of the sensorimotor flow. Stage A ("Short-term detection") implements the estimation of the spatial arrangement of active sources-possibly with the detection of their number-from the analysis of the binaural stream over small time snippets. Stage B ("Audio-motor binaural localization") performs the assimilation of these data over time and their combination with the motor commands of the sensor, so as to get a first level of active localization. On this basis, Stage C ("Information-based feedback control") implements a feedback control of the sensor motion so as to improve the fusion performed in Stage B.

The following two main sections present Stage A and Stage B along a common organization: first, modeling issues are briefly sketched; then, the current state of the solutions for a binaural head are outlined; last, evaluations are shown.

A conclusion discusses open problems for all three stages.

SHORT-TERM DETECTION

Modeling

The two microphones placed on the binaural head are named R 1 and R 2 . They lie in the same horizontal plane as Q pointwise farfield sound sources E 1 , . . . , E Q . The aim is to estimate the source azimuths θ 1 , . . . , θ Q -e.g., with respect to boresight-from the analysis of the binaural stream. To conduct this analysis, the left and right signals z R1 , z R2 are assumed to be finite-time samples of the random processes

zR 1 (t)= Q q=1 sq(t)+n1(t), zR 2 (t)= Q q=1 (sq(t) * h θq (t))+n2(t). (1)
In [START_REF] Nakadai | Active audition for humanoid[END_REF], the noises n 1 , n 2 and the contributions s 1 , . . . , s Q of the emitters E 1 , . . . , E Q at microphone R 1 are assumed real, zero-mean band-limited, jointly Gaussian. The noise vector

T time inverval = Ng groups of N f (possibly overlapped) L-sample frames R1, R2 • E1, . . . , E Q left and right microphones • Q sources s1(t), . . . , s Q (t) contributions of E1, . . . , E Q at R1 z R = [z R 1 , z R 2 ] • n = [n1, n2] signals and noises vectors at R1, R2 H θ (f ) • V θ (f ) = [1, H θ (f )] interaural transf. funct. • steering vector Z R (ng ,n f ) [k] Fourier transform of pre-windowed z R on frame n f of group ng for f = k L Cn g [k] PSD of z R on group ng for f = k L Fig. 2. Notations [n 1 , n 2 ]
-with the transpose operator-is assumed independent of each s q . The interaural response h θ (t) accounts for scattering, and depends on the source azimuth θ. Its Fourier transform is the interaural transfer function H θ (f ), and

V θ (f ) = [1, H θ (f )]
is the so-called steering vector.

The input data to Stage A is the channel-time-frequency decomposition of z R [z R1 , z R2 ] on a given finite time interval T . Each time signal z R1 , z R2 is divided into-possibly overlapping-frames of L samples each. N f consecutive frames constitute a group of frames, and T corresponds to N g groups. Each frame is modulated by a window function, then Discrete Fourier transformed. Let X (ng,n f ) [k] stand for the value at f = k L of the transform X (ng,n f ) (f ) of the n th f frame in the n th g group of a pre-windowed signal x(t). The channel-time(group of frames)-frequency decomposition Z of the binaural stream over T is then the stacking of the complex vectors Z R (ng,n f ) [k b ] for n f = 1, . . . , N f , n g = 1, . . . , N g , and b = 1, . . . , B, where the last subscripts define a "useful" frequency range. The variations of the means, autocorrelations and cross-correlations of the signals involved in (1) are assumed negligible over each group of frames. So, relative motion between the sensor and the emitters should be negligible as well.

The single-source case (Q = 1)

In view of the above, though the source signal s s 1 is not wide sense stationary (WSS) over the whole interval T , a power spectral density (PSD) S ng [k] corresponding to each n th g group of frames can be defined. Also suppose that: a Hann (resp. rectangular) window function with less than 50% frame overlap (resp. with no overlap) is used; the source and noise spectra are roughly constant over any 1 L -width frequency range; the autocorrelation time of h θ (t) is much lower than L. Then the Fourier coefficients of the pre-windowed binaural signal vector z R = [z R1 , z R2 ] can be shown to be mutually independent at distinct frequencies or frames, and to satisfy

E{Z R (ng,n f ) [k]Z R (ng,n f ) [k] † } = C ng [k], with † the Hermi- tian transpose and C ng [k] the PSD matrix of the random process z R corresponding to group n g evaluated at f = k L . Let Cng [k] 1 N f N f n f =1 Z R (ng,n f ) [k]Z R (ng,n f ) [k] †
be the sample covariance matrix over the time(group of frames)frequency bin (n g , k). Then, the maximum likelihood estimate (MLE) of the source azimuth θ is given by the following theorem, assuming n

= [n 1 , n 2 ] is i.i.d. with PSD C n [k] = σ 2 [k]I 2 (extension to unknown {σ 2 [k b ]} b is easy). Theorem 1 If { Cng [k b ]} ng,b
are full-rank, then the MLE θML comes as the arg max w.r.t. θ of the pseudo log-likelihood

L(θ) = ng=1..Ng ; b=1..B J ng [k b ](θ), with (2) 
J ng [k b ](θ) = -N f ln P θ [k b ] Cng [k b ]P θ [k b ]+σ 2 [k b ]P ⊥ θ [k b ] + 1 σ 2 [k b ] tr(P ⊥ θ [k b ] Cng [k b ]) , P θ [k] V θ [k](V θ [k] † V θ [k]) -1 V θ [k] † and P ⊥ θ [k] I 2 -P θ [k].
Proof This is an adaptation of [START_REF] Jaffer | Maximum likelihood direction finding of stochastic sources: a separable solution[END_REF] to the broadband case, considering a single source and two sensors related by H θ instead of a freefield array, and allowing source autocorrelation changes along groups of frames. First,

{C ng [k b ]} ng,b
is written as a function of C n [k] and the unknowns vector 

Θ = [θ, {S ng [k b ]} ng,b ] , which entails V θ [k].
θ ln p Z|θ, { Ŝng [k b ](θ)} ng,b = constant+L(θ)
hence the result and the "pseudo likelihood" terminology. Moreover, the source activity can be checked through AIC or BIC information-theoretic criteria [START_REF] Williams | Detection: Detecting the number of sources[END_REF].

The multiple-source case

Turning back to [START_REF] Nakadai | Active audition for humanoid[END_REF], where each signal s q is WSS over each n th g group of frames and has "local" autocorrelation R (q) ng (τ ) and PSD S (q) ng (f ), the vector of unknowns

Θ = [Θ 1 , . . . , Θ Q ] is constituted of Q (1 + N g B)-element subvectors Θ q = [θ q , {S (q) ng [k b ]} ng,b
] similar to the single-source case. The maximum likelihood estimation is no longer separable. To make it tractable, W-Disjoint Orthogonality is assumed, i.e., within any time(groups of frames)-frequency bin (n g , k), at most one source is dominant. Assuming that the prior probability of source dominance is evenly distributed on each bin, p(Z|Θ) now takes the form of a mixture-over the source indexes-of circular complex Gaussian pdfs.

The extraction of the MLE θML = [ θ1 , . . . , θQ ] of the azimuths vector θ = [θ 1 , . . . , θ Q ] can be run iteratively through the Expectation-Maximization algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], by introducing the vector of latent random variables Y 

[{Y ng [k b ]} ng,b ] such that Y ng [k b ] = q iff the q th source is dominant on bin (n g , k b )-i.e.,
= 1, . . . , Q do γ(q) ng [k b ] = exp Jn g [k b ](θ * q ) end 3 γ (q) ng [k b ] = γ(q) ng [k b ] Q =1 γ( ) ng [k b ] 4 end M-step ("Source localization") 5 for q = 1, . . . , Q do 6 θq = arg max ϑ ng =1..Ng ; b=1..B γ (q) ng [k b ] Jn g [k b ](ϑ) 7 end
Log-Likelihood computation and Stop condition

8 L( θ) = ng =1..Ng ; b=1..B ln q 1 Q Jn g [k b ]( θq)
The algorithm stops when ∆L =

L( θ)-L(θ * ) L(θ * )
< η, for given η.

likely azimuth of each source comes from a separate mization, and no initial guess is needed for the sources PSDs.

Proof The proof is omitted for space reasons, see [START_REF] Portello | Localization of multiple sources from a binaural head in a known noisy environment[END_REF]. Compared with Theorem 1, the auxiliary function maximized in the M-step involves the weights {γ

(q) ng [k b ]} ng,b computed in the E-step. Each one equals P{Y ng [k b ]= q|z ng [k b ], θ * , S ng [k b ] * },
the probability that the q th source is dominant in the bin (n g , k b ), conditioned on the data and the "naive" hypothesis that the azimuth vector is θ * -from which the most likely corresponding source PSDs {S (q) ng [k b ]} * q,ng,b are determined thanks to a "local" separability. So, no initial guess is required for the source PSDs. Besides, the global computational cost is linear with the number of sources.

Evaluations

Theorem 2 was extensively evaluated in simulation. Binaural signals were synthesized from the TUB anechoic KEMAR HRIR database [START_REF] Wierstorf | A free database of head related impulse response measurements in the horizontal plane with multiple distances[END_REF] with 1 • resolution. The emitted signals were 15 male and female speakers utterance records from french radio, sampled at 44.1 kHz. Some stationary fan noise at predefined azimuth was added to the ear signals by convolving it with the left and rights HRIRs.

FFTs were performed on Hanning windowed frames of L = 1024 samples, with a L/2-overlap. Sample covariance matrices { Cng [k b ]} ng,b were computed from groups of N f = 4 successive frames (≈ 60 ms). N g was set to 50, so T ≈ 3 s. B was defined so that the useful frequency range is 7 kHz. To reduce the risk of convergence to local minima of the log-likelihood, 20 instances of Algorithm 1, with different initializations, were running in parallel at each localization step, and the most likely estimate was then kept. About 90% of the azimuths were estimated with errors less than 3 • for Q ≤ 3 active sources. Performances were degraded in reverberant environments, yet good results could be recovered by replacing anechoic HRIRs/HRTFs by BRIRs.

AUDIO-MOTOR BINAURAL LOCALIZATION

This section adresses active/audio-motor binaural localization in the single-source case. It is shown how an azimuth likelihood defined from above can be combined with the motor commands of the head so as to infer its relative situation to a static source. A Gaussian mixture square-root unscented Kalman filter (GM-srUKF) is advocated. Contrarily to several particle filters, it ensures self-initialisation as well as posterior covariance consistency. Handling of false measurements and source intermittency are reported in [START_REF] Portello | Active binaural localization of intermittent moving sources in the presence of false measurements[END_REF].

Modeling

From now on, the scalar k indexes the localization time, e.g., the timestamp of a group of frames, and T s terms the localization period. The measurement is still the channeltime-frequency decomposition but is now denoted by Z k . As the spatial information carried by Z k is purely directional, the 2-dimensional state vector r k to be estimated is the relative head-to-source translation, expressed in polar coordinates. The 3-dimensional control input u k of the sensor is the stacking of its translation and rotation velocities. An exact discrete-time nonlinear state space equation with Gaussian dynamic noise can be obtained, considering that u is zero-order-held at T s . However, no closed-form measurement equation is available. Instead a likelihood p(Z|θ) can be built from Section 2, where θ stands for the head-to-source azimuth in r k . An approximation of p(Z|θ) is assumed to be determined in an ad hoc way, in the form of the following unnormalized mixture with parameters {γ j , m j , φ j } j=1,...,J :

p(Z|θ) ≈ J j=1 γ j e -1 2 ( θ-m j ) 2 φ j . (3) 

A Gaussian mixture unscented Kalman filter

In view of the nonlinearity of the prior state dynamics and the frequent multimodality of the likelihood-e.g., due to front-back ambiguity-a bank of unscented Kalman filters (UKFs) is used, implemented in their numerically robust square-root form [START_REF] Van Der Merwe | The squareroot unscented Kalman filter for state and parameterestimation[END_REF]. After assimilating Z k , this bank contains I k filters, each i th one handling a Gaussian distribution N (r k ; ri k|k , P i k|k ). The filters run in a non-interactive manner, but their posterior probabilities {w i k } are recursively updated in view of their likelihoods w.r.t. the measurements-i.e., of their ability to predict the available data. By developing classical computations [START_REF] Anderson | Optimal filtering, Englewood Cliffs[END_REF] [START_REF] Bar-Shalom | Estimation and Tracking : Principles, Techniques, and Software[END_REF], one gets the following theorem.

Theorem 3 The posterior pdf of r k is approximated by Its initalization-i.e., the prior p(x 0 )-satisfies w 0 k = 1 I 0 k and is such that the union of the 99%-probability confidence ellipsoids corresponding to {N (r i 0|0 , P i 0|0 )} i=1,...,I0 covers the admissible initial head-to-source situations. The parameters {w i k , ri k|k , P i k|k } are updated according to Algorithm 2. Algorithm 2: Overview of audio-motor localization

p(r k |Z 1:k = Z 1:k ) = I k i=1 w i k N (r k ; ri k|k , P i k|k ). (4) 
Inputs: Parameters {γ j k , m j k , φ j k } J k 1 of p(Z k |θ k ) Parameters {w i k-1 ,r i k-1|k-1 ,P i k-1|k-1 } i=1..I k-1 of p(r k |Z 1:k-1 ) Control vector u k-1 Outputs: Parameters {w i k , ri k|k , P i k|k } i=1..I k of p(r k |Z 1:k )
Time update 1 for i = 1, . . . , I k-1 do 2 Compute the moments ri k|k-1 , P i k-1|k-1 of the i th hypothesis of p(r k |Z 1:k-1 ) from ri k-1|k-1 , P i k-1|k-1 , the polar state space equation, and u k-1 , with a UKF time update (see [START_REF] Van Der Merwe | The squareroot unscented Kalman filter for state and parameterestimation[END_REF]). From classical results on products of Gaussians, this yields N (r k ; ri,j k|k , P i,j k|k ) (see [START_REF] Portello | Active localization of an intermittent sound source from a moving binaural sensor[END_REF]). Weights update (and possible pruning)

9 Compute the weights {w i,j k } i,j of the Gaussian mixture p(r k |Z 1:k ) from those of p(r k-1 |Z 1:k-1 ), p(Z k |r k ) (see [START_REF] Portello | Active localization of an intermittent sound source from a moving binaural sensor[END_REF]). The posterior finally writes as p(r k |Z 1:k ) = i,j w i,j k N (r k ; ri,j k|k , P i,j k|k ). Prune hypotheses whose weights w i,j k fall below a given threshold.

Evaluations and Open problems

Experiments were conducted in an anechoic room with a binaural sphere. Figure 3 shows in the world frame at four times (from left to right and top to bottom) how the head motion enables front-back disambiguation. The pentagon depicts the loudspeaker. The 99%-probability confidence ellipses are associated to each hypothesis of the posterior state pdf.

OPEN PROBLEMS

Concerning Stage A, a thorough evaluation is in progress. The algorithm will be compared, under reverberant conditions, to suboptimal but computationally faster aproaches such as the GCC-PHAT together with a time integration method (GCC averaging, histogram), or bio-inspired approaches [START_REF] May | Binaural localization and detection of speakers in complex acoustic scenes[END_REF]. The learning of the environment noise statistics will be studied. Multi-conditional training as per [START_REF] May | Binaural localization and detection of speakers in complex acoustic scenes[END_REF] will be evaluated to "desensitize" H θ to reverberations. Influence of the algorithm's parameters L, N f , N g , . . . will also be investigated. The detection of the number of multiple sources will be adressed.

Stage B will be extended to the multiple-source case. To address data association, filtering in the Random Finite Sets paradigm will be studied [START_REF] Masnadi-Shirazi | An ICA-SCT-PHD filter approach for tracking and separation of unknown time-varying number of sources[END_REF] [START_REF] Ma | Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach[END_REF].

Ongoing developments concern Stage C. To simplify, consider the case when the posterior pdf (4) at time k -1 reduces to a single Gaussian, and a control input u k-1 is sought so as to maximize the information at time k while respecting constraints on u k-1 , x k , etc. The problem then boils down to maximizing the "size" of the information matrix I k|k = P -1 k|k , through the maximization of its log-determinant or trace for instance [START_REF] Bar-Shalom | Estimation and Tracking : Principles, Techniques, and Software[END_REF] [START_REF] Grocholsky | Information-Theoretic Control of Multiple Sensor Platforms[END_REF]. When using the Unscented Kalman Filter with a closed-form measurement equation z k = h(r k ) + v k , an information update equation can be set up in the form I k|k = I k|k-1 + H T k R -1 H k where both I k|k-1 and H k depends on the decision variable u k-1 and on the function h(.), but not on the measurement z k [START_REF] Lee | Nonlinear estimation and multiple sensor fusion using unscented information filtering[END_REF]. Current work consists in selecting a function h(.) to guide the exploration, and in rephrasing the control problem as a convex optimization problem consisting in the maximization of the log-determinant of I k|k subject to linear matrix inequalities constraints on u k-1 [START_REF] Vandenberghe | Determinant maximization with linear matrix inequality constraints[END_REF]. To reach this aim, the fact that the prior dynamics is a rigid motion is used together with changes of variables and embedding of nonlinearities into uncertainties. The challenge is to check if the induced conservativeness does not prevent the applicability of this MAXDET solution to our genuine real problem.
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 2 is at the origin of Z ng [k b ]-and by assuming mutual independence of {Y ng [k b ]} ng,b and {X ng [k b ]} ng,b . Given a number Q of active sources, the MLE θML of the azimuths vector θ can be obtained from an initial guess θ (init) by iterating [E-step,M-step] sequences shown in Algorithm 1 until Stop condition holds. Importantly, the most Algorithm 1: Multiple-source azimuth estimation (one iteration of the EM algorithm) Inputs: Initial guess θ * issued from the previous iteration Outputs: Most likely θ generated by the current iteration E-step ("Source separation") 1 for ng = 1, . . . , Ng, b = 1, . . . , B do 2 For q
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  i = 1, . . . , I k-1 do 5 for j = 1, . . . , J k do 6 Fuse N (r k ; ri k|k-1 , P i k|k-1 ) with the j th hypothesis of p(Z k |r k ) = p(Z k |θ k ) in (3) through the Bayes rule.
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