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Localization of Multiple Sources from a Binaural Head
in a Known Noisy Environment

Alban Portello1,2, Gabriel Bustamante1,2, Patrick Danès1,2 and Alexis Mifsud1

Abstract— This paper presents a strategy to the localization
of multiple sound sources from a static binaural head. The
sources are supposed W-Disjoint Orthogonal and their number
is assumed known. Their most likely azimuths are computed by
means of the Expectation-Maximization algorithm. Application
of the method on simulated data is reported, as well as some
evaluations of its HARK implementation on experimental data.
Two important properties are observed: scattering effects can
be coped with, thanks to the required prior knowledge of
the (room-independent) head interaural transfer function; the
environment noise statistics are handled separately.

I. INTRODUCTION

Sound source localization is a fundamental function in
Robot Audition [1]. Fast and accurate solutions relying
on microphone arrays have been proposed, e.g., broadband
beamspace MUSIC and its mixed hardware/software imple-
mentation [2]. Binaural solutions are more difficult, and their
performances drop when facing multiple sources in realistic
environments (reverberation, interfering noise, etc.) [3][4].

Source localization is often turned into a maximization
problem. If no prior knowledge on the source is available, it
entails a multivariate function, which has no analytic expres-
sion and whose brute numerical optimization is prohibitive.
So, simplifying assumptions are made and iterative maxi-
mization from an initial guess is targeted. For instance, [5]
estimates Time Differences Of Arrival (TDOA) of multiple
competing sources in a reverberant environment from a pair
of microphones, on the basis of a diffuse noise covariance
matrix capturing reverberation. The method is based on the
Expectation-Maximization (EM) algorithm, and assumes that
within a given “bin” of a time-frequency decomposition
of the signals, only one source is dominant, what is often
called “W-Disjointness Orthogonality” (WDO). In [6], K-
means clustering is proposed rather than EM, though based
on WDO. Methods based on the Degenerate Unmixing
Estimation Technique (DUET) can be found in [7]. Ref [8]
compares [6] and [5], and proposes an EM algorithm relaxing
WDO. All these methods address TDOA estimation, and do
not account for scatterers.

In [9], up to three sources are localized from an anthro-
pomorphic binaural head, on the basis of EM and assuming
WDO. Input data are Interaural Phase Differences (IPDs)
and Interaural Level Differences (ILDs) over time-frequency
bins. The Interaural Transfer Function is learnt beforehand
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along source directions and frequencies, but includes room
reverberation and environment noise.

This paper estimates the spatial parameters of multiple
sound sources by means of an EM algorithm under a
parsimony assumption. Contrarily to [5][6], head induced
scattering is learned beforehand and accounted for. A random
source model is considered. Contrarily to [9], the interaural
transfer function (without noise) and the statistics of the noise
at the microphones are independently learned. In our opinion,
this can contribute to limit the localization drop-off induced
by noise correlation [4]. To our knowledge, to date no EM
algorithm can cope independently with these two aspects.

In the following, Section II introduces modeling aspects as
well as the Maximum Lihelihood estimation of the azimuth
of a single source under known noise statistics. Section III
extends this result to the multiple source case through the
EM algorithm under WDO. Some theoretical aspects often
overlooked in the literature are explicited. Sections IV and V
report the application of the approach on synthetic data
under MATLABr, and on real data through the open-source
library HARK [10]. A conclusion ends the paper.

II. BASICS

Consider two microphones R1, R2 laid on a head, and de-
note z1, z2 the real-valued continuous-time signals perceived
at R1, R2. Define z , [z1, z2]′, with ′ the transpose operator.
This section recalls the way how the Maximum Likelihood
(ML) estimate of the azimuth of a single source emitting
into noise can be computed from finite time records of z, on
the basis of the head interaural transfer function (computed
analytically or measured in an anechoic environment) and
the noise statistics (given or learned beforehand). It builds
on theoretical results from [11] and references [12][13].

The way how the data vector is generated from records
of z is explained in §II-A. The hypothesized mathematical
model and hypotheses underlying the prior statistics of z,
as well as the ML estimation of the problem unknowns
(including the source azimuth), are then presented in §II-B
for this single source case. Definitions and results introduced
in this section serve as the basis for theoretical developments
of §III in the context of multiple sources.

A. Construction of the Data Vector from the Raw Signals

The signals z1, z2 are observed over a finite-length time
interval, divided into P (possibly overlapping) segments of
length L. The restrictions of z to these segments are called
frames, and sets of Nf consecutive frames are termed groups
of frames. The total number Ng of groups of frames is



such that NgNf = P . A subscript pair (ng, nf ) henceforth
refers to the nth

f frame of the nth
g group. Each frame indexed

by (ng, nf ) is first windowed and Fourier transformed ac-
cording to

Z(ng,nf )(f) =
1√
L

∫ ∞
−∞

z(t)w(t− τ(ng,nf ))e
−2iπftdt. (1)

Therein, w terms any window function symmetric over its
L-width support, and τ(ng,nf ) is defined after (ng, nf ).
Define Z(ng,nf )[k] , Z(ng,nf )(

k
L ) and Zng [k] =

[Z(ng,1)[k]′, . . . , Z(ng,Nf )[k]′]′. The 2NfNgB-dimensional
complex data vector Z, defined as the stacking of Short-
Time Fourier Transforms (STFTs), is called channel-time-
frequency decomposition of z, and comes as

Z=[Z1[k1]′,..., ZNg [k1]′, . . . , Z1[kB ]′,...,ZNg [kB ]′]′, (2)

with k1, . . . , kB the B frequency indexes within the band-
width of interest. Hereafter, Zng [k] is termed data in the
time-frequency bin1 indexed by (ng, k).

B. Interaural Transfer Function Based Localization of a
Single Source into Known Noise

1) Model definition: For the sake of simplicity, we restrict
the problem to localization in the azimuthal plane, but this
induces no loss of generality. It is assumed that the perceived
signals have the form

z1(t) = s(t) + n1(t)
z2(t) = (s ∗ hθ)(t) + n2(t),

(3)

where the contribution s of the emitter at R1 and the addi-
tive noises n1, n2 are real, zero-mean, band-limited, jointly
Gaussian random processes, and * stands for convolution.
The impulse response hθ between R1 and R2 naturally
depends on the source direction of arrival θ and captures
head scattering. The source is assumed far enough from the
head so that hθ does not depend on its distance. Though the
source signal is not assumed Wide Sense Stationary (WSS),
its autocorrelation Rss(t, t− τ) , E{s(t)s(t− τ)} over a
group of time frames indexed by ng is assumed not to vary
significantly along t so that it and its Fourier transform
(the power spectral density of s) can be denoted by Rng (τ)
and Sng (f). Under some conditions, the probability density
function (pdf) of the data vector Z is shown to be faithfully
approximated by

pZ(z;C1[k1],...,C1[kB ], . . . , CNg [k1],...,CNg [kB ]) =∏
ng=1..Ng ; b=1..B

CN
(
zng [kb]; 0,blkdiag(Cng [kb], ..., Cng [kb]︸ ︷︷ ︸

Nf times

)
)
, (4)

with Cng [k] the covariance matrix of Zng [k]—or, equiva-
lently, the power spectral density evaluated at kL of the signal
z windowed onto the nth

g group of frames—and CN (.;m,P )
the multivariate circular complex Gaussian distribution of
mean m and covariance matrix P , and z (resp. zng [k]) a
sample of Z (resp. Zng [k]).

1In “time-frequency”, “time” thus stands for “group of frames”.

Define the steering vector Vθ[k] , [1, Hθ[k]]′, where the
interaural transfer function Hθ(f) stands for the Fourier
transform of hθ(t). When n1, n2 are independently and
jointly WSS, independent identically distributed (iid), and
independent of s, Cng [k] becomes

Cng [k] , Vθ[k]Sng [k]Vθ[k]† + σ2[k]I2 (5)

with † the Hermitian transpose operator and I2 the 2 × 2
identity matrix. Hθ[k] is assumed known for at least a
discrete set of frequencies k = k1, . . . , kB and azimuths θ,
e.g., through identification, analytical computation or con-
tinuous expansion. The variances σ2[k1], . . . , σ2[kB ] of the
noise are supposed learned beforehand as well.

2) The vector of unknowns parameters and its Maximum
Likelihood Estimate (MLE): In the considered problem, θ is
not the single unknown. Since no prior information about the
source is given, the parameter vector to estimate boils down
to

Θ, [θ, S1[k1],...,S1[kB ], . . . ,SNg [k1],...,SNg [kB ]]′. (6)

Its MLE Θ̂ML is the argmax of the logarithm of (4), i.e.,

J(Z; Θ) = c−Nf
∑

ng=1..Ng ; b=1..B

(
ln |Cng [k]|+tr(Cng [k]−1C̄ng [k])

)
,(7)

with c a constant, |.| and tr(.) the determinant and trace
operators, and

C̄ng [k] , 1
Nf

∑Nf
nf=1 z(ng,nf )[k]z(ng,nf )[k]† (8)

the sample covariance matrix of the data in the time-
frequency bin (ng, k). A closed-form expression of the
MLE Θ̂ML cannot be obtained. However, in the considered
single-source case, a separable form can be exhibited, which
enables the determination of the most likely source azimuth
θ̂ML through the maximization of a function of θ only. This
is summarized in the following theorem:

Theorem 1: If, for each nth
g group of frames constituting

the considered time interval, the sample covariance matrices
{C̄ng [kb]}b=1,...,B are all full-rank, then the MLE θ̂ML of the
source azimuth θ is given by

θ̂ML = arg max
θ
L(θ) (9)

where the pseudo log-likelihood

L(θ)=−Nf
∑

ng=1..Ng ; b=1..B

(
ln
∣∣Pθ[kb]C̄ng [kb]Pθ[kb]+σ

2[kb]P
⊥
θ [kb]

∣∣
+

1

σ2[kb]
tr(P⊥θ [kb]C̄ng [kb])

)
(10)

is defined from the orthogonal projector
Pθ[k],Vθ[k](Vθ[k]†Vθ[k])−1Vθ[k]† on the subspace
spanned by Vθ[k] and from its orthogonal complement
P⊥θ [k] , I2 − Pθ[k].

Proof: [Sketch] The proof is an adaptation of the results
of [11] to the broadband case, considering a single source
and two sensors related by Hθ, instead of an array in the
free field. Another important difference is that while s, n1, n2

are considered as snippets of jointly WSS signals over each



group of frames, the source autocorrelation is allowed to vary
from one group of frames to another.

The idea is to express the first-order stationarity conditions
which must be fulfilled by the MLEs {Ŝng [kb]}ng,b of
the spectral parameters of the signal s so that they can
maximize (7). These necessary conditions are also sufficient
here. Reporting them into (5) as functions {Ŝng [kb](θ)}ng,b
of the azimuth θ, then reporting the result into (7), leads to
J(Z; θ, {Ŝng [kb](θ)}ng,b) = c+ L(θ), hence the result and
the “pseudo likelihood” terminology.

The more general case when the noises n1, n2 are sta-
tionary but not iid can still be handled if the covariance
matrices {Cn[kb]}b=1,...,B of n = [n1, n2]′ on the considered
frequency bins can be learned. For instance, if ∀b ∈ 1, . . . , B,
Cn[kb] ≈ C̃n[kb] = Q̃n[kb]Q̃n[kb]

†, where {C̃n[kb]}b=1,...,B

and their Cholesky roots are given (e.g., computed from
sample covariance matrices), then the covariance matrix
C̃ng [k] of X̃ng [k] = (Q̃n[k])−1Xng [k] gets a structure
similar to (5). Indeed,

C̃ng [k] , Ṽθ[k]Sng [k]Ṽθ[k]† + I2, (11)

holds, with Ṽθ[k]=(Q̃n[k])−1Vθ[k], and Theorem 1 applies.

III. AN EXPECTATION-MAXIMIZATION APPROACH TO
MULTIPLE SOURCE LOCALIZATION

When several sources emit simultaneously, the problem
of maximizing (7) over the complete parameter vector Θ is
no longer separable, so that a closed form of the MLEs of
the source azimuths is out of reach. To tackle such cases
without resorting to brute force, a general approach consists
in adding simplifying assumptions which enable an iterative
solution towards the optimum. The most recurrent hypothesis
made in the literature certainly consists in postulating the
W-Disjointness Orthogonality (WDO) of the sources, viz. at
most one source is dominant in each “bin” of a time-
frequency representation of the signals. Schematically, the
algorithms founded on this assumption consist in iterating
the two following steps:

• (separation or masking): gather the time-frequency bins
onto which each source is supposed to be dominant, on
the basis of the estimates of the spatial parameters of
all the sources obtained at the preceding iteration;

• (localization): for each source, re-estimate its associated
spatial parameters from the time-frequency bins onto
which this source is assumed dominant.

This section constitutes the main theoretical contribution
of the paper and is organized as follows. The Expectation-
Maximization (EM) algorithm, which is the cornerstone of
the approach, is briefly recalled in §III-A. Then, the likeli-
hood defined in §II-B for the unknown parameters related
to a single source is extended to the multiple source case
in §III-B. Finally, §III-C shows how the EM algorithm can
lead to the MLEs of the azimuths of several sources, and
summarizes the whole localization strategy.

A. EM at a Glance

The Expectation-Maximization (EM) algorithm [14] is an
iterative method to the Maximum Likelihood estimation of a
parameter vector Θ from samples z of a random variable Z
when facing incomplete data. A random vector X (continu-
ous, discrete or hybrid) of complete data is introduced, such
that

p(z|x,Θ) = p(z|x), (12)

i.e., such that Z is independent of Θ given X , and such that
given a sample x of X the computation of arg maxΘ p(x|Θ)
can easily be done. The selection of X is not unique, and is
a key point of the method efficiency. Quite often, one sets
X = [Z ′, Y ′]′, with Y the random vector of latent variables.

Let Θ and Θ∗ be two candidate values for the sought
MLE. Defining L(Θ) as the log-likelihood ln p(z|Θ) to be
maximized, it can be shown that

L(Θ)− L(Θ∗) ≥ Q(Θ,Θ∗)−Q(Θ∗,Θ∗), (13)

where the bivariate auxiliary function Q(., .) is defined by

Q(Θ,Θ∗) = E
{

ln p(X|Θ)
∣∣Z=z,Θ∗

}
(14)

=

∫
ln p(x|Θ)p(x|z,Θ∗)dx. (15)

So, given an initial guess Θ∗, if a value Θ can be found
such that Q(Θ,Θ∗) > Q(Θ∗,Θ∗), then, in view of (13),
Θ is more likely (or at least no less likely) than Θ∗ with
respect to z. If, by a judicious choice of X , Q(.,Θ∗) can
be made easy to maximize, then the following algorithm
ensures to converge efficiently to a local maximum of the
log-likelihood L:

1) Initialize Θ∗;
2) E-step: Compute Q(.,Θ∗) defined in (15);
3) M-step: Compute Θ as the argmax of Q(.,Θ∗);
4) If L(Θ) − L(Θ∗) is greater than a predefined thresh-

old η, then set Θ∗ = Θ and go back to step 2;
otherwise output Θ as the sought MLE.

Note that in the case when X = [Z ′, Y ′]′ the auxiliary
function becomes Q(Θ,Θ∗) = E

{
ln p(z, y|Θ)

∣∣Z = z,Θ∗
}

=
∫

ln p(z, y|Θ)p(y|z,Θ∗)dy.

B. Log-likelihood for the Multiple WDO Sources Model

All the data and hypotheses similar to §II are in effect
in this multiple sources case, except that the signal s is
traded for the contributions s1, . . . , sQ due to the emitters
q = 1, . . . , Q at the microphone R1. As before, each qth such
signal, though non necessarily WSS, is assumed “locally”
WSS over each nth

g group of frames, with R
(q)
ng (τ) and

S
(q)
ng (f) its “local” autocorrelation and power spectral den-

sity. The W-Disjointness Orthogonality (WDO) assumption
is mathematically turned into the fact that within the time-
frequency bin indexed by (ng, k), at most one source, say
the qth one, is dominant. The covariance matrix (5) of the
data vector in the considered bin (ng, k) then becomes

C(q)
ng [k] , Vθq [k]S(q)

ng [k]Vθq [k]† + σ2[k]I2. (16)



Let Q be the (a priori known) number of active sources.
The vector Θ of the parameters to be estimated is defined as
(in the vein of the single-source case (6))

Θ , [θ′, S1[k1]′,...,S1[kB ]′, . . . ,SNg [k1]′,...,SNg [kB ]′]′

with θ , [θ1, . . . , θQ]′,

and,∀(ng, b), Sng [kb] , [S(1)
ng [kb], . . . , S

(Q)
ng [kb]]

′. (17)

With the above assumptions and notations in mind, the
log-likelihood of Θ with respect to the data can be written

ln p(z|Θ) =
∑

ng=1..Ng ; b=1..B

ln p
(
zng [kb]

∣∣θ, Sng [kb]
)
. (18)

The prior probability of dominance in any time-frequency bin
indexed by (ng, k) is assumed to be evenly distributed (i.e.,
equal to 1

Q ) among the Q sources. So, the conditional pdf of
Zng [k] comes as the mixture of Q equiprobable hypotheses

p
(
zng [k]

∣∣θ, Sng [k]
)

=
∑

q=1..Q

1

Q
p
(
zng [k]

∣∣θq, S(q)
ng [k]

)
, (19)

each one being a circular complex Gaussian

p
(
zng [k]

∣∣θq, S(q)
ng [k]

)
=

CN
(
zng [k]; 0,blkdiag(C

(q)
ng [k], ..., C

(q)
ng [k])

)
(20)

along (4), where the covariance matrix C
(q)
ng [k] defined

in (16) is parameterized by the power spectral density S(q)
ng [k]

in the time-frequency bin (ng, k) and by the azimuth θq , both
associated to the qth source.

C. Latent Variables and Main Theorem

To extract the argmax of (18), with (19)–(20) therein, by
means of the EM algorithm, the latent discrete random vector

Y , [Y1[k1], ..., Y1[kB ], . . . , YNg [k1], ..., YNg [kB ]]′ (21)

is introduced, each entry Yng [kb] of which accounts for the
origin of Zng [kb], i.e., accounts for which qth source is
dominant in the corresponding time-frequency bin:

{Yng [k] = q}
⇒ zng [k] ∼ CN

(
.; 0,blkdiag(C(q)

ng [k], ..., C(q)
ng [k])

)
. (22)

This selection of latent variables random vector is quite
natural since if its value was known, then it would
be sufficient to partition the set of time-frequency bins
along their associated dominant sources, and, for each
source, to compute the related azimuth through a single-
source Maximum Likelihood estimation. The random vectors
{[Yng [kb], Xng [kb]]

′}ng=1..Ng ; b=1..B are assumed mutually
independent, and the complete data random vector can be
written as X = [Z ′, Y ′]′. The following theorem holds.

Theorem 2: Under all the assumptions made so far, in-
cluding the prior knowledge of the number Q of the active
sources, the MLE θ̂ML = [θ̂1, . . . , θ̂Q]′ of the vector θ =
[θ1, . . . , θQ]′ of their azimuths can be obtained from an initial
guess θ(init) by means of the EM Algorithm 2. Beforehand,
the data and steering vectors have been normalized taking

Algorithm 1: Data Conditioning

Inputs: {{Zng [kb]}ng=1,..,Ng , Qn[kb], {Vθ[kb]}θ=θ1,..,θNθ }b=1,..,B

Outputs: {Jng [kb](θ)}ng=1,..,Ng,b=1,..,B,θ=θ1,..,Nθ

1 for b = 1, . . . , B do
2 for ng = 1, . . . , Ng do

Transformation making noises normed and

iid applied on data vector

3 Z̃temp = (Qn[kb])
−1 Zng [kb]

Sample covariance matrix at bin (ng , kb)

4 C̄ng [kb] = 1
Nf

[
Z̃temp

] [
Z̃temp

]†
5 end
6 for θ = θ1, . . . , θNθ do

Transformation making noises normed and

iid applied on steering vector

7 Ṽθ[kb] = (Qn[kb])
−1 Vθ[kb]

Projector onto the space spanned by Ṽθ[kb]

8 Pθ[kb] = Ṽθ[kb](Ṽθ[kb]
†Ṽθ[kb])

−1Ṽθ[kb]
†

Orthogonal complement of Pθ[kb]

9 P⊥θ [k] = I2 − Pθ[k]

10 for ng = 1, . . . , Ng do
elements necessary to the computation

of auxiliary functions (step 8 of

Algorithm 2)

11 Jng [kb](θ) =

12 −Nf
(

ln|Pθ[kb]C̄Ng [kb]Pθ[kb] + P⊥θ [kb]|

13 +tr(P⊥θ [kb]C̄Ng [kb])
)

14 end
15 end
16 end

into account the characteristics of the noise through Algo-
rithm 1. Importantly, the most likely azimuth of each source
comes from an independent maximization process, and no
initial guess is needed for the spectral parameters of the
sources.

Proof: In the following, point-mass functions (pmf)
are equally used to term probabilities of discrete random
variables, and mixed probability density and mass functions
(mixed pdf-pmf’s) are handled. By definition, the auxiliary
function can be written as

Q(Θ,Θ∗) =
∑

y∈{1,...,Q}NgB
ln p(z, y|Θ)p(y|z,Θ∗). (23)

As p(zng [k]|yng[k], θ, Sng[k])=p(zng [k]|θyng [k], S
(yng [k])
ng [k]),

one gets:

ln p(z, y|Θ) =
∑

ng=1..Ng ; b=1..B

ln p
(
zng [kb], yng [kb]

∣∣ θ, Sng [kb]
)

=
∑
ng,b

ln 1
Qp
(
zng [kb]

∣∣ θyng [kb], S
(yng [kb])
ng [kb]

)
(24)

=
∑
ng,b

ln CN
(
zng [kb];0,blkdiag(C

(yng [kb])

ng [kb],...,C
(yng [kb])

ng [kb])
)
...

−NgB lnQ

= c(Q)−Nf
∑

ng=1..Ng ; b=1..B

(
ln |C(yng )

ng [kb]|+tr(C
(yng )
ng [kb]

−1C̄ng [kb])
)



with C̄ng [k] the sample covariance matrix defined in (8) and
c(Q) a constant depending on Q. Besides, the likelihood
of Θ∗ with respect to the latent variables given the data
can be written as (where a pmf p(y|.) terms the probability
P(Y = y|.))

p
(
y|z,Θ∗

)
=
∏
ng,b

p
(
yng [k]

∣∣ zng [k], θ∗, Sng [k]
∗)

=
∏
ng,b


1
Qp
(
zng [k]|θ∗yng [k], S

(yng [k])
ng [k]

∗)
∑
q

1
Qp
(
zng [k]|θ∗q , S(q)

ng [k]
∗)

 (25)

=
∏
ng,b

 CN

(
zng [kb];0,blkdiag

(
C

(yng [k])∗
ng [kb],...,C

(yng [kb])∗
ng [kb]

))
∑
q

CN
(
zng [kb];0,blkdiag

(
C(q)∗
ng

[kb],...,C
(q)∗
ng

[kb]
))

 .

By using the relationships∑
ng,b

ln p
(
zng [kb]

∣∣ θyng [kb], S
(yng [kb])
ng [kb]

)
=∑

ng,b

∑Q
q=1 δq,yng [kb] ln p

(
zng [kb]

∣∣ θq, S(q)
ng [kb]

)
, (26)

and∑Q
yng [k]=1 δq,yng [k]p(yng [k]|zng [k], θ∗, Sng [k]∗) =

p(q|zng [k], θ∗, Sng [k]∗), (27)

where δ (resp. the pmfs p(y|.) and p(q|.)) stands for the Kro-
necker symbol (resp. P{Yng [k] = y|.} and P{Yng [k] = q|.}),
the auxiliary function Q(Θ,Θ∗) can be written as

Q(Θ,Θ∗) =
∑

q=1..Q

Q(q)(Θq,Θ
∗) (28)

where the spatial and spectral parameters
associated to the qth source are gathered into
Θq, [θq, S

(q)
1 [k1],...,S

(q)
1 [kB ], . . . ,S

(q)
Ng

[kB ],...,S
(q)
Ng

[kB ]]′.
After some algebraic manipulations, one gets

Q(q)(Θq,Θ
∗) =

∑
ng=1..Ng ; b=1..B

γ(q)
ng [kb] ln p

(
zng [kb]

∣∣ θq, S(q)
ng [kb]

)
, (29)

γ(q)
ng [k] = P{Yng [k] = q|zng [k], θ∗, Sng [k]∗}. (30)

It is then sufficient to maximize each function
Q(q)(Θq,Θ

∗) with respect to its associated decision
vector Θq in order to get the argmax of Q(Θ,Θ∗)
along Θ. Similarly to (7) in the single-source case,
ln p(zng [k]|θq, S(q)

ng [k]), already expressed in (20), has the
form c(Q)−Nf

∑
ng,b

(
ln |C(q)

ng [k]|+ tr(C
(q)
ng [k]−1C̄ng [k])

)
.

In view of earlier developments in §II-B leading to Theo-
rem 1, the MLE of each azimuth θq is obtained through
step 8 of Algorithm 2 with J defined in steps 11–12 of
Algorithm 1. The difference with Theorem 1 is that step 8
involves the weighting factors γ(q)

ng [k] in the sum over the
considered time-frequency bins. Each such weight accounts
for the probability that the qth source is dominant in the bin
indexed by (ng, k), on the basis of the data and making the
“naive” hypothesis that the parameter vector is Θ∗.

Algorithm 2: Localization

Inputs: θ(init), {Jng [kb](θ)}ng=1,..,Ng,b=1,..,B,θ=θ1,..,Nθ

Outputs: θ̂
Parameters: η,maxit

1 count = 0,∆L =∞
2 while ∆L ≥ η | count < maxit do
3 count = count + 1

Maximization step

4 for q = 1, . . . , Q do
5 if count = 1 then
6 θ̂q = θ

(init)
q

7 else
8 θ̂q = arg max

θ

∑
ng=1..Ng ; b=1..B

γ
(q)
ng [kb] Jng [kb](θ)

9 end
10 end

Log-Likelihood computation

11 L(θ̂) =
∑

ng=1..Ng ; b=1..B

ln
(∑
q

1

Q
Jng [kb](θ̂q)

)
12 if count > 1 then

13 ∆L =
L(θ̂)−L(θ∗)

L(θ∗)

14 end
15 θ∗ = θ̂

Expectation step

16 for ng = 1, . . . , Ng , b = 1, . . . , B do
17 for q = 1, . . . , Q do
18 γ̄

(q)
ng [k] = exp

(
Jng [k](θ∗q )

)
19 end

20 γ
(q)
ng [k] =

γ̄
(q)
ng [k]∑Q

`=1
γ̄
(`)
ng [k]

21 end
22 end

The second part of Algorithm 2 (steps 16–20) is a sep-
aration stage, for it consists in computing the allocation of
the sources in the various time-frequency bins. Note that the
logarithm of γ̄(q)

ng [k] is the log-likelihood of θ∗q , S
(q)
ng [k]∗ with

respect to zng [k], where θ∗q , S
(q)
ng [k]∗ contributed to maximize

the auxiliary function at the precedent iteration. Because of
the “local” separability property enabling to express the most
likely spectral parameters of the sources as functions of their
azimuths, no initial guess is required for these parameters.
This fact and the linearity of the global computational cost
with the number of sources are commendable properties.

IV. MATLAB EXPERIMENTS ON SYNTHETIC DATA

A. Scenario

To assess the validity of the approach, results obtained
from signals synthesized on MATLABr are shown. From
a database of French male and female 15 s speech records,
the perceived binaural signals have been artificially generated
by using the KEMAR dummy-head head-related impulse re-
sponse (HRIR) measurements made available by MIT Media
Lab2. HRIRs symmetrical w.r.t. the median plane, derived
from the large pinna responses, have been used. Sources

2http://sound.media.mit.edu/resources/KEMAR.html



have been placed in the azimutal plane (0◦ elevation), with
random azimuths uniformly distributed within the set S =
{−90◦,−85◦, . . . , 90◦}. Some non-iid noises, obtained by
convolving a recorded fan noise with the 85◦ HRIRs, have
been added to the left and right channels. The noise statistics
have been learnt from a 2 s initial noise-only sequence. The
signal-to-noise ratio (SNR) at the reference left microphone
is about 33 ± 3 dB, and the power ratio between the most
and least powerful sources ranges within [0 dB; 5 dB].

As for the algorithm, FFTs are performed on Hanning
windowed frames of 1024 samples at Fs=44.1 kHz, with a
512-sample length overlap between frames. Sample covari-
ance matrices are computed from Nf =4 successive frames,
and Ng = 50 groups of frames are used. Hence, the signal
processed by the algorithm to produce each localization is ap-
proximately 2.3 s long. The frequencies bandwidth exploited
for localization ranges from 0 to about 8 kHz. Though the
algorithm works on 2.3 s signal sequences, a localization
result is output at every available new group of Nf frames,
i.e., 46 ms. The EM iterations are stopped and a result is
produced when the log-likelihood increase between two EM
steps falls below 2 %.

B. Evaluation criteria

The evaluation must take into account that the entries
of the produced MLE θ̂ML = [θ̂1, . . . , θ̂Q]′ of the vector
θ = [θ1, . . . , θQ]′ of the genuine source azimuths appear
in random order. So, all the possible entry permutations σ
are first applied to θ̂ML, and for each of them the Euclidean
norm ‖εσ‖ of the corresponding estimation error vector
εσ , (σ(θ̂ML)− θ) is computed. The permutation σ∗ leading
to ε∗ = arg minσ ‖εσ‖ is kept.

Three criteria have been defined. c1 and c2 are the averages
of the minimum and maximum values, respectively, of the
entries of ε∗ over all the experiments and localization outputs
(i.e., group of Nf frames). c3 is defined as the percentage of
the total number of entries of ε∗ falling within [−5◦; 0◦] or
[0◦; +5◦] over all the experiments and results. This criterion,
similar to the “Recall” measure of [8], turns to be the ratio
of the number of conveniently localized sources.

C. Results

Simulations have been performed with Q = 2 and Q = 3
sources. At each localization step, the algorithm is initialized
with θ(init) uniformly drawn on SQ, with Q the true (known)
number of sources. The results are as follows.

Q c1 c2 c3

2 sources 1.7◦ 23.8◦ 76%
3 sources 3.0◦ 38.2◦ 58%

As expected, the higher the number of sources, the worse
the quality of the results.

The next table sketches the incidence of the initial guess
on the results for an experiment involving Q = 3 sources.
The above random initialization scheme is compared to
the initialization of the EM algorithm at each time (i.e.,
group of frames) with the localization estimated at the

precedent localization time. The impact of initialization on
performances is depicted below.

θ(init) at time #ng c1 c2 c3

Random 1.8◦ 19.8◦ 64%

θ̂ML output at time #(ng−1) 0.0◦ 1.0◦ 97%

Additional sound files and videos of the
simulated behavior throughout time are available on
http://homepages.laas.fr/danes/IROS2014.

V. HARK EXPERIMENTS ON REAL DATA

HARK, an english word for “listen”, also stands for
“HRI-JP Audition for Robots with Kyoto University”. This
is a comprehensive open source robot audition suite which
provides several online implementations of canonical au-
ditory functions such as localization, separation, or recog-
nition [10]. An important feature of HARK is that it is
oriented towards the transparent use of many devices. Sound
files can be processed as well as if they were streamed
signals. The overall design eases robotic audition prototyping
and deployment.

A. HARK implementation

HARK relies on a the open-source middleware
Flowdesigner which design complex functions, described on
the basis of elementary blocks, whose interconnections
depict the dataflow circulating between them
(http://sourceforge.net/apps/mediawiki/flowdesigner).
Since recent releases, HARKsupports the graphical user
interface HARKdesigner.

After being prototyped under MATLABr, the aforemen-
tioned algorithms were coded into C++ so as to be encap-
sulated into HARK, which enables online data processing.
A new node called Multi loc was created, see Figure 1-top.
The input to this node is a stereo signal which can either
be stored into an audio file, or streamed from microphones.
The output port THETA delivers the localization result in
the format defined by the Source class dedicated to the
HARKDisplayLocalization viewer. The port VALUE outputs the
same data so that it can be stored in a text file, by the
node Save. The STREAM input to this node specifies the path
to the file.

The MAIN sheet of the HARK diagram reads the audio file
and streams it into the LOOP sheet which handles a frame of
the audio file. The online data processing is performed by
the HARK node AudioStreamFromWave, which can be replaced
by AudioStreamFromMic if microphones are used.

At each step of LOOP, the Multi loc node performs the FFT
of the new snapshot on the basis of the C fftw library so as
to improve performance. The algorithm is configured so that
the frames and groups of frames durations are 40 ms and 2 s,
respectively.

B. Scenario and results

The HARK live experimentation of the algorithm, has
been performed from audio files, recorded in an acoustically
prepared (nearly anechoic) room at ISIR, Paris. Natural



1. Overview of the HARK
implementation of the multiple
source binaural localization into the
node Multi loc. HARK visualization,
through the DisplayLocalization node,
of the localization of three
simultaneously uttering speakers
at -45/0/45 degrees w.r.t. boresight.

sounds have been recorded by two microphones laid on a
176mm-diameter spheric head, by means of a NI 9234 ac-
quisition module tuned at the 52100 Hz sampling frequency.

Three speakers equally distant to the head, are simul-
taneously uttering from {−45◦; 0◦; 45◦} with respect to
boresight. As the problem is restricted to azimuthal plane,
the speakers and microphones heights are similar to each
other. Figure 1-bottom visualizes the result of the localiza-
tion. As the utterances are not rigorously continuous, the
localization may deviate a bit from the genuine location
of the speakers. The means and standard deviations of the
estimated source locations over 30 s of speech processing are
{−40.4◦;−0.8◦; 47.1◦} and {7.6◦; 5.3◦; 7.3◦}.

VI. CONCLUSION AND PROSPECTIVE WORK

An EM algorithm for the localization of multiple sound
sources from a binaural head has been presented. It is
based on the sources WDO assumption, and relies on prior
independent learnings of the interaural transfer function and
the environment noise statistics. The algorithm has been
prototyped and evaluated from synthetic data on MATLABr,
implemented on the open source HARK library and tested
on some real data recorded in an anechoic room.

Ongoing works concern larger scale experiments from real
data with ground-truth positions for a better global evaluation
of the method against various conditions: reverberation,
dynamic noise, etc. Fine tuning of the algorithm (selection
of L,Nf , Ng, B, ...) has also been investigated. As an ex-
tension, source number detection will be included through
statistical identification. The algorithm will be implemented
on the EAR architecture. Longer term prospectives include
integration of this azimuth detector into a stochastic filtering
strategy, fusing a moving robot motor commands with audio
perception to infer ”active” multiple sound sources localiza-
tion.
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