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A suboptimal algorithm to fixed-interval smoothing for nonlinear Markovian switching systems is proposed. It infers a Gaussian mixture approximation to the posterior smoothing pdf by combining the statistics produced by an IMM filter into an original backward recursive process. The complexity is limited, as the number of underlying filters and smoothers is equal to the constant number of hypotheses in the posterior mixture. A comparison, conducted on realistic simulated target tracking case studies, shows that the investigated method performs significantly better than equivalent algorithms.

I. INTRODUCTION

M ANY estimation or change detection problems are stated in the context of discrete-time jump Markov systems. Such systems are described by a bank of state space models, sharing the same state vector and corresponding to admissible modes of operation, together with a finite-state Markov chain featuring the transitions between modes. At each time k, the exact posterior probability density function (pdf) of the state vector conditioned on the measurements up to time k comes as a mixture of the set of all posterior pdfs conditioned on the observations up to k and on the possible mode sequences up to k, weighted by the posterior probability of these mode sequences. The computational complexity thus grows exponentially with k, so that approximations are needed to make the problem tractable [START_REF] Bar-Shalom | Estimation and Tracking : Principles, Techniques and Software[END_REF] [START_REF] Gustafsson | Adaptive Filtering and Change Detection[END_REF].

In the filtering context, i.e. when k = k , the number of hypotheses composing the above mixture can be reduced by merging those ones which are conditioned on similar mode sub-sequences up to time kn. Generalized Pseudo-Bayesian filters of order n (GPB n ) fall into this paradigm. For a bank of M models, they involve M n filters. However, the most standard approach is undoubtedly the Interacting Multiple Model (IMM) filter [START_REF] Blom | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF], which propagates over time a M-hypotheses Gaussian mixture approximation to the posterior pdf at the complexity of GPB 1 , but with a performance similar to GPB 2 . Though initially designed for linear jump Markov systems, GPB n and IMM are widely used in the nonlinear case [START_REF] Cork | Sensor fault detection for UAVs using a nonlinear dynamic model and the IMM-UKF algorithm[END_REF] [START_REF] Toledo-Moreo | IMM-EKF based road vehicle navigation with low cost GPS/INS[END_REF]. They can rely on extended [START_REF] Sorenson | Kalman Filtering: Theory and Applications[END_REF] or unscented [START_REF] Julier | A new extension of the Kalman filter to nonlinear systems[END_REF] (mode-conditioned) Kalman filters, or can be applied to non-Gaussian state-space models with particle filters [START_REF] Boers | Interacting multiple model particle filter[END_REF]. IMM filtering is still an active research area, see for instance its recent independent extensions to heterogeneous-order models, i.e. to models which share only parts of their respective state vectors [START_REF] Yuan | A multiple IMM estimation approach with unbiased mixing for thrusting projectiles[END_REF] [START_REF] Lopez | Extending the IMM filter to heterogeneous-order state space models[END_REF].

Smoothing constitutes a fundamental problem as it helps to improve the estimation performance in comparison to filtering, though at the cost of some delay. In the field of target tracking for instance, delivering a location estimate by assimilating subsequent observations drastically reduces the associated error [START_REF] Morelande | Smoothed state estimation for nonlinear Markovian switching systems[END_REF]. In the single-model non-Gaussian case, many schemes were considered, either based on particle filters [START_REF] Kitagawa | Monte Carlo filter and smoother for non-gaussian nonlinear state space models[END_REF], [START_REF] Fong | Monte Carlo smoothing with application to audio signal enhancement[END_REF], [START_REF] Godsill | Monte Carlo smoothing for nonlinear time series[END_REF], [START_REF] Fearnhead | A sequential smoothing algorithm with linear computational cost[END_REF] or within the Random Finite Set paradigm [START_REF] Vo | Closed-form solutions to forwardbackward smoothing[END_REF]. Under Gaussian or Gaussian sum approximations with jump Markov systems, closed-form solutions to fixed-interval smoothing were proposed in [START_REF] Koch | Fixed-interval retrodiction approach to bayesian IMM-MHT for maneuvering multiple targets[END_REF], [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF], [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF].

The aim of this work is to show how the quantities produced by a forward-time IMM filter up to time k enable a closedform approximation of the smoothing posterior density at times k < k by requiring only M filters/smoothers for a bank of M models. The proposed method extends the paper [START_REF] Lopez | Exploiting Rauch-Tung-Striebel formulae for IMM-based smoothing of Markovian switching systems[END_REF] in that it enriches the original algorithm. In comparison, Ref. [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF], [START_REF] Koch | Fixed-interval retrodiction approach to bayesian IMM-MHT for maneuvering multiple targets[END_REF] run M 2 smoothers for a bank of M models. Ref. [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF] runs M smoothers but displays significantly lower performances than the investigated method.

The paper is organized as follows. Section II states a fixedinterval multiple model smoothing problem. Then, Section III reviews the theoretical foundations of the proposed strategy and positions it with respect to the literature. The main result, i.e. a constructive IMM-based fixed-interval smoothing algorithm, constitutes Section IV. After simulation examples in Section V comparing the proposed method to the equivalent existing algorithms [START_REF] Koch | Fixed-interval retrodiction approach to bayesian IMM-MHT for maneuvering multiple targets[END_REF], [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF], [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF], the paper ends with a conclusion and prospects.

II. PROBLEM STATEMENT

Notations are standard. (.) T denotes the transpose operator. P(.), p(.) and E[.] respectively term a probability, a probability density function (pdf), and an expectation. N ( x, X) stands for the (real) Gaussian distribution with mean x and covariance X and N (x; x, X) is the associated pdf on x. The weighted squared norm a 2 R = a T Ra is also referred to throughout the text.

The considered nonlinear jump Markov system admits M modes, which constitute the set M . At each time k, m k = j or m j k denotes the event that mode j ∈ M is in effect during the sampling period (t k-1 ,t k ]. The sequence of modes follows an homogeneous finite-state Markov chain. Under the event m j k , the dynamics of the base (continuous) state x k and its relationship with the measurement z k are described by the stochastic nonlinear state space model

x k = f j k-1 (x k-1 ) + q j k-1 , z k = h j k (x k ) + r j k , (1) 
where f j k-1 (.), h j k (.) are given and q j k-1 , r j k account for dynamics and measurement noises. The global (hybrid) state vector at time k will henceforth be termed ξ j k = (x k , m j k ). The (given) initial and transition probabilities of modes are

P(m j 0 ) = µ j 0 ; P(m i k+1 |m j k ) = π ji . (2) 
Similarly, conditioned on mode j, the base state vector at initial time k = 0 and the noises are assumed jointly Gaussian and of (given) statistics, with δ k,k the Kronecker symbol,

∀k, k , E   x 0 |m j 0 q j k r j k   =   x j 0|0 0 0   ; (3) E      x 0 |m j 0 -x j 0|0 q j k r j k     x 0 |m j 0 -x j 0|0 q j k r j k   T    =   P j 0|0 0 0 0 Q j k δ k,k 0 0 0 R j k δ k,k   . (4) 
As a result, the pdf of the base state x 0 at initial time is a Gaussian mixture. The transition and observation densities associated to [START_REF] Bar-Shalom | Estimation and Tracking : Principles, Techniques and Software[END_REF] and conditioned on the active mode m j k active in the sampling interval (t k-1 ,t k ] write as

p(x k |x k-1 , m j k ) = N (x k ; f j k-1 (x k-1 ), Q j k-1 ), (5) 
p(z k |x k , m j k ) = N (z k ; h j k (x k ), R j k ). (6) 
As aforementioned, a mixture with an exponentially increasing number of hypotheses (densities) would be required in the filtering pdf at further time k, in that p(x k |z 1:k ) = ∑ j 0:k ∈M k+1 p(x k |m 0:k = j 0:k , z 1:k )P(m 0:k = j 0:k |z 1:k ), where v a:b is a shortcut for the values of v from time a to b. A similar exponential complexity in the number of modes occurs in the exact form of the smoothing density, be it fixed-interval (i.e. p(x k |z 1:T ), with T ≥ k ≥ 1 the fixed interval length), fixed lag (i.e. p(x k |z 1:k+n ), with n ≥ 1 the fixed lag length) or fixed-point (i.e. p(x j |z 1:k ), with j fixed and k ≥ j).

As in the single-model case [START_REF] Gustafsson | Adaptive Filtering and Change Detection[END_REF], two views can be adopted for fixed-interval smoothing. Ref. [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF] consists in fusing the estimates and covariances produced by a forward conventional IMM filter and a modified backward IMM filter. Some difficulties lie in the need to set an inverse dynamics model, especially if (1) is nonlinear, and initialize the backward filter with a flat prior so as to prevent the assimilation of common data into both filters. More recently [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF] proposed a second smoothing scheme based on a GPB 2 running M 2 forward filters whose estimates are recombined through a Rauch-Tung-Striebel backward-time recursion with M 2 smoothers. In comparison to the above two-filter strategy, this approach allows the use of non-invertible dynamics models. Moreover the backward-time pass is simply initialized with the filtered estimate at the end of the fixed interval. This paper rather follows this alternative viewpoint of IMM-based smoothing through Rauch-Tung-Striebel backward-time recursions.

III. THEORETICAL FOUNDATIONS

This section thoroughly reviews the theoretical foundations of the Interacting Multiple Model filtering and of the possible fixed-interval smoothing backward-time recursions.

A. The Interacting Multiple Model filter

The recursion cycle of the celebrated IMM filter was first outlined in [START_REF] Blom | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF]:

1) ∀i ∈ M , {P(m j k |z 1:k )} j∈M Prediction -----→ P(m i k+1 |z 1:k ) 2) ∀i ∈ M , {p(x k |m j k , z 1:k )} j∈M Interaction ------→ p(x k |m i k+1 , z 1:k ) 3) ∀i ∈ M , p(x k |m i k+1 , z 1:k ) Prediction -----→ p(x k+1 |m i k+1 , z 1:k ) 4) ∀i ∈ M , p(x k+1 |m i k+1 , z 1:k ) Update ----→ p(x k+1 |m i k+1 , z 1:k+1 ) 5) ∀i ∈ M , P(m i k+1 |z 1:k ) Update ----→ P(m i k+1 |z 1:k+1 )
The first step of the cycle should be read as "Compute the predicted mode probability P(m i k+1 |z 1:k ) ∀i ∈ M at time k + 1 from the set of posterior mode probabilities {P(m j k |z 1:k )} j∈M at time k", and so forth. The IMM filter enables the propagation over time of approximations to the modes probabilities {µ j k|k ≈ P(m j k |z 1:k )} j∈M and of Gaussian approximations to the mode-conditioned filtering pdfs {p(x k |m j k , z 1:k ) ≈ N (x k ; x j k|k , P j k|k )} j∈M , so that p(x k |z 1:k ) ≈ ∑ j∈M µ j k|k N (x k ; x j k|k , P j k|k ). Its reasonable complexity comes from its internal computation of the mixing probabilities {µ j|i k|k ≈ P(m j k |m i k+1 , z 1:k )} (i, j)∈M ×M , from which Gaussian approximations to the mode-conditioned prior pdfs {p(x

k |m i k+1 , z 1:k ) ≈ N (x k ; xi k|k , Pi k|k )} i∈M are deduced.
Starting from these last pdfs, only M independent filters (matched to the modes {m k+1 = i} i∈M ) need to be run between times k and k+1 in order to get {p(x

k+1 |m i k+1 , z 1:k ) ≈ N (x k+1 ; xi k+1|k , P i k+1|k )} i∈M , {p(x k+1 |m i k+1 , z 1:k+1 ) ≈ N (x k+1 ; xi k+1|k+1 , P i k+1|k+1 )} i∈M and update {µ i k+1|k+1 = P(m i k+1 |z 1:k+1 )} i∈M , leading to p(x k+1 |z 1:k+1 ).

B. Smoothing using backward-time recursions

The posterior state densities {p(x T |m i T , z 1:T )} i∈M and mode probabilities {P(m i T |z 1:T )} i∈M at time T are the starting point. Given {p(x k+1 |m i k+1 , z 1:T )} i∈M and {P(m i k+1 |z 1:T )} i∈M , the smoothing steps of the backward recursion can be conducted in three ways. The first two are drawn from the existing literature while the last one is the new approach investigated in this paper.

Backward smoothing recursion -SR1

: 1) ∀(i, j) ∈ M 2 , p(x k+1 |m i k+1 , z 1:T ) Smoothing ------→ p(x k |m i k+1 , m j k , z 1:T ) 2) ∀ j ∈ M , {p(x k |m i k+1 , m j k , z 1:T )} i∈M Interaction ------→ p(x k |m j k , z 1:T ) 3) ∀ j ∈ M , {P(m i k+1 |z 1:T )} i∈M

Smoothing

------→ P(m j k |z 1:T ) This recursion cycle was proposed in [START_REF] Koch | Fixed-interval retrodiction approach to bayesian IMM-MHT for maneuvering multiple targets[END_REF] and [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF]. It uses a total of M 2 smoothers for M admissible modes. More specifically, step 1 writes as:

∀(i, j) ∈ M 2 , p(x k |m i k+1 , m j k , z 1:T ) = p(x k |m j k , z 1:k ) x k+1 p(x k+1 |x k , m i k+1 )p(x k+1 |m i k+1 , m j k , z 1:T ) p(x k+1 |m i k+1 , m j k , z 1:k ) dx k+1 .
where p(x k+1 |x k , m i k+1 ) is the transition density between k and k + 1 associated to (1) and conditioned on the active mode m i k+1 at time k + 1. The densities p(x k |m j k , z 1:k ) and p(x k+1 |m i k+1 , m j k , z 1:k ) are computed by a forward GPB 2 filter. Finally, the smoothed density p(x k+1 |m i k+1 , m j k , z 1:T ) is approximated by p(x k+1 |m i k+1 , z 1:T ) so as to start the recursion cycle.

Backward smoothing recursion -SR2:

1) ∀ j ∈ M , {p(x k+1 |m i k+1 , z 1:T )} i∈M Interaction ------→ p(x k+1 |m j k , z 1:T ) 2) ∀ j ∈ M , p(x k+1 |m j k , z 1:T ) Smoothing ------→ p(x k |m j k , z 1:T ) 3) ∀ j ∈ M , {P(m i k+1 |z 1:T )} i∈M Smoothing ------→ P(m j k |z 1:T )
The major advantage over the previous scheme lies in a lower computational load as M smoothers are used for M modes in the smoothing step 2. This reduced complexity is exploited in [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF] but at the cost of strong approximations in the development of the algorithm. Step 1 is indeed rewritten as

p(x k+1 |m j k , z 1:T ) = ∑ i∈M p(x k+1 |m i k+1 , m j k , z 1:T )P(m i k+1 |m j k , z 1:T ).
The authors claim that in the first term of the sum "the condition on m j k [...] can be ignored due to Markov property" so that p(x k+1 |m i k+1 , m j k , z 1:T ) = p(x k+1 |m i k+1 , z 1:T ) [19, Eq. 12]. Incidentally, this equality precludes the exponentially growing complexity of the problem. It should be rather considered as an approximation like in [START_REF] Koch | Fixed-interval retrodiction approach to bayesian IMM-MHT for maneuvering multiple targets[END_REF] and [START_REF] Barber | Bayesian Reasoning and Machine Learning[END_REF]. The development of step 2 is then conducted using the equality [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF]Eq. 11]:

∀ j ∈ M , p(x k |m j k , z 1:T ) = p(x k |m j k , z 1:k ) x k+1 p(x k+1 |x k , m j k )p(x k+1 |m j k , z 1:T ) p(x k+1 |m j k , z 1:k ) dx k+1 .
The authors further claim that "the term p(x k+1 |x k , m j k ) [...] corresponds to the state transition density of model m j k ". However, this contradicts the hypothesis of [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF]Eq. 1] in that m j k terms the active mode that governs the state transition between k -1 and k. This hypothesis is used in the present paper (see [START_REF] Bar-Shalom | Estimation and Tracking : Principles, Techniques and Software[END_REF] and ( 5)) and in the cited references too.

Backward smoothing recursion -SR3:

The present paper investigates an alternative method with a linear number of smoothers.

1

) ∀i ∈ M , p(x k+1 |m i k+1 , z 1:T ) Smoothing ------→ p(x k |m i k+1 , z 1:T ) 2) ∀ j ∈ M , {p(x k |m i k+1 , z 1:T )} i∈M Interaction ------→ p(x k |m j k , z 1:T ) 3) ∀ j ∈ M , {P(m i k+1 |z 1:T )} i∈M Smoothing ------→ P(m j k |z 1:T )
The smoothing equation of the first step is now given by

∀i ∈ M , p(x k |m i k+1 , z 1:T ) = p(x k |m i k+1 , z 1:k ) x k+1 p(x k+1 |x k , m i k+1 )p(x k+1 |m i k+1 , z 1:T ) p(x k+1 |m i k+1 , z 1:k ) dx k+1
where p(x k |m i k+1 , z 1:k ) and p(x k+1 |m i k+1 , z 1:k ) are computed by an IMM filter. The pdf p(x k+1 |m i k+1 , z 1:T ) is known from the previous recursion and p(x k+1 |x k , m i k+1 ) is the genuine transition density between k and k + 1 as m i k+1 is active over the sampling interval (t k ,t k+1 ]. The equations of this algorithm are detailed in the following section.

IV. FIXED-LAG SMOOTHER FOR JUMP MARKOV SYSTEMS

As aforementioned, the aim is to approximate the smoothing pdf of the jump Markov system (1)-( 2)-( 3)-( 4) as a M-hypotheses Gaussian mixture according to

p(x k |z 1:T ) = ∑ j∈M P(m j k |z 1:T )p(x k |m j k , z 1:T ) ≈ ∑ j∈M P(m j k |z 1:T )N (x k ; x j k|T , P j k|T ). (7) 
For jump Markov systems, the global (hybrid) state vector ξ k is independent of z k+1:T when conditioned on ξ k+1 so that p(ξ k |ξ k+1 , z

1:T ) = p(x k , m k |x k+1 , m k+1 , z 1:T ) is equal to p(ξ k |ξ k+1 , z 1:k ) = p(x k , m k |x k+1 , m k+1 , z 1:k ).
By marginalizing over m k , one gets the equality

p(x k |x k+1 , m k+1 , z 1:T ) = p(x k |x k+1 , m k+1 , z 1:k ) (8) 
which is conditioned only on the active mode over the sampling period ending at t k+1 . All distributions are henceforth approximated by Gaussians. From the statistics { x j k|k , P j k|k , µ j k|k } j∈M and { xi k|k , Pi k|k } i∈M produced by an IMM filter at times k = 0, . . . , T , together with { xi k+1|k , P i k+1|k } i∈M produced at times k +1 = 1, . . . , T , the proposed algorithm recursively determines the smoothing modeconditioned densities {p(x k |m j k , z 1:T ) ≈ N (x k ; x j k|T , P j k|T )} j∈M and the smoothed mode probabilities {µ 

G i k = C i k,k+1 P i k+1|k -1 (9) 
xi k|T = xi k|k + G i k xi k+1|T -xi k+1|k (10) 
Pi k|T = Pi k|k + G i k P i k+1|T -P i k+1|k G i k T ( 11 
)
where C i k,k+1 = x k -xi k|k f i k (x k )-xi k+1|k T N (x k ; xi k|k , Pi k|k )dx k . ( 12 
)
Proof. The equations ( 9)-( 12) can be demonstrated by following exactly the proof of [22, Sec. II.A] with all densities conditioned on m i k+1 , and by using the property [START_REF] Boers | Interacting multiple model particle filter[END_REF].

In contrast to the single-model smoother, equations ( 9), ( 10), [START_REF] Morelande | Smoothed state estimation for nonlinear Markovian switching systems[END_REF] do not end the recursion cycle because the smoothing density of x k is conditioned on m i k+1 instead of m j k . The following interaction stage bridges the gap between the Gaussian approximations to the mode-conditioned smoothing densities N (x k ; xi k|T , Pi k|T ) ≈ p(x k |m i k+1 , z 1:T ) and N (x k ; x j k|T , P j k|T ) ≈ p(x k |m j k , z 1:T ). Two options are hereafter investigated.

B.

Step 2 of SR3: a mode interaction with M 2 combinations

Using the total probability theorem, the targeted mode-conditioned smoothing density p(x k |m j k , z 1:T ) ≈ N (x k ; x j k|T , P j k|T ) can be expressed as a mixture of densities conditioned on the sequence of modes over two consecutive sampling periods, namely

p(x k |m j k , z 1:T ) = ∑ i∈M p(x k |m j k , m i k+1 , z 1:T )P(m i k+1 |m j k , z 1:T ). ( 13 
)
The two forthcoming theorems enable its computation.

Theorem 2. The first two moments of p(x k |m j k , m i k+1 , z 1:T ) ≈ N (x k ; x ji k|T , P ji k|T ) are obtained by forward-time IMM filtering and backward-time Rauch-Tung-Striebel recursions as follows:

x ji k|T = P ji k|T Pi k|T -1 xi k|T -Pi k|k -1 xi k|k + P j k|k -1 x j k|k , ( 14 
) with P ji k|T = Pi k|T -1 -Pi k|k -1 + P j k|k -1 -1 . (15) 
Proof. Following [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF], the Bayes formula and the Markov property of the mode sequence lead to

p(x k |m j k , m i k+1 , z 1:T ) ∝ p(z k+1:T |x k , m i k+1 )p(x k |m j k , z 1:k ). (16 
) Similarly, the following holds

p(x k |m i k+1 , z 1:T ) ∝ p(z k+1:T |x k , m i k+1 )p(x k |m i k+1 , z 1:k ) ⇔ p(z k+1:T |x k , m i k+1 ) ∝ p(x k |m i k+1 , z 1:T ) p(x k |m i k+1 , z 1:k ) , (17) 
which yields the final equality

p(x k |m j k , m i k+1 , z 1:T ) ∝ p(x k |m i k+1 , z 1:T ) p(x k |m i k+1 , z 1:k ) p(x k |m j k , z 1:k ). ( 18 
)
All the involved densities are approximated by Gaussians. So, the logarithm of p(x k |m j k , m i k+1 , z 1:T ) writes as C -1 2 J(x k ), with C a constant and

J(x k ) = x k -xi k|T 2 Pi k|T -1 -x k -xi k|k 2 Pi k|k -1 + x k -x j k|k 2 P j k|k -1 . ( 19 
)
The mean x ji k|T of p(x k |m j k , m i k+1 , z 1:T ) is also its mode and comes as the minimum of J(x k ), which leads to ( 14)- [START_REF] Fearnhead | A sequential smoothing algorithm with linear computational cost[END_REF]. Interestingly, Eq. ( 13) of the interaction step is common with [21, Eq. 73] albeit [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF] evaluates the smoothed estimate x ji k|T by combining the estimates produced by a conventional IMM filter and a backward-time IMM filter restricted to linear systems with invertible state transition matrix. Moreover, this backward-time IMM filter requires to be initialized at final time T with no prior information. Note that the maximum likelihood estimate arg max x k p(z k+1:T |x k , m i k+1 ) writes as

xb,i k|k+1 = P b,i k|k+1 Pi k|T -1 xi k|T -Pi k|k -1 xi k|k (20) with P b,i k|k+1 = Pi k|T -1 -Pi k|k -1 -1 , (21) 
and is nothing else but the "one-step backward-time predicted estimate and error covariance" computed by the backwardtime IMM filter of [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF].

Theorem 3. The smoothed mixing probabilities { μi| j k+1|T =P(m i k+1 |m j k , z 1:T )} (i, j)∈M 2 involved in (13) are expressed as

μi| j k+1|T = P(m i k+1 |m j k )p(z k+1:T |m j k , m i k+1 , z 1:k ) p(z k+1:T |m j k , z 1:k ) = π ji Λ ji d j , (22) 
where the likelihood

Λ ji = p(z k+1:T |m j k , m i k+1 , z 1:k ) (23) 
can be approximated by

Λ ji ≈ N (∆ ji k ; 0, D ji k ), (24) 
∆ ji k = xb,i k|k+1x j k|k , D ji k = P b,i k|k+1 + P j k|k , and

d j = p(z k+1:T |m j k , z 1:k ) = ∑ i∈M π ji Λ ji (25) 
stands for the normalizing constant.

Proof. Eq. ( 22) is straightforward. The approximation [START_REF] Mesot | A simple alternative derivation of the expectation correction algorithm[END_REF] has been proposed in [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF].

The posterior mean x j k|T and covariance P j k|T of the modeconditioned smoothing density [START_REF] Fong | Monte Carlo smoothing with application to audio signal enhancement[END_REF] are eventually computed via their moment-matched approximations

x j k|T = ∑ i∈M μi| j k+1|T x ji k|T (26) P j k|T = ∑ i∈M μi| j k+1|T P ji k|T + ( x ji k|T -x j k|T )( x ji k|T -x j k|T ) T . ( 27 
)
These last equations end the smoothing recursion.

C. Step 2 of SR3: an alternative mode interaction with M combinations

Instead of combining the M 2 filtering densities p(x k |m j k , z 1:k ) and p(x k |m i k+1 , z k+1:T ), another option to build p(x k |m j k , z 1:T ) is to directly fuse the M filtering densities p(x k |m j k , z 1:k ) and p(x k |m j k , z k+1:T ). This alternative option was pointed out in the conclusion of [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF], and can be solved by the following theorem. Proof. Eq. ( 28) and its moment matched approximations ( 29)-(30) were introduced in [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF] as the mixing step of a backward IMM filter. The equality p(m i k+1 |m j k , z 1:T ) = p(m i k+1 |m j k , z k+1:T ) simply comes from the Markov properties of the mode sequence.

Note that the mean xb, j k|k+1 and the covariance Pb, j k|k+1 can be obtained using ( 20)- [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF]. Eventually, the recursion is closed with the combination of p(x k |m j k , z 1:k ) and p(x k |m j k , z k+1:T ), as follows.

Theorem 5. The mean and the covariance of the smoothed density p(x k |m j k , z 1:T ) ≈ N (x k ; x j k|T , P j k|T ) are

x j k|T = P j k|T P j k|k

-1 x j k|k + Pb, j k|k+1 -1 xb, j k|k+1 (31) 
P j k|T = P j k|k -1 + Pb, j k|k+1 -1 -1 . ( 32 
)
Proof. By Bayes formula, the density p(x k |m j k , z 1:T ) can be rewritten as

p(x k |m j k , z 1:T ) ∝ p(x k |m j k , z 1:k )p(z k+1:T |x k , m j k )
. Following a reasoning similar to the proof of theorem 2 and using the fact that the model-conditioned likelihood p(z k+1:T |x k , m j k ) is equal to N (x k ; xb, j k|k+1 , Pb, j k|k+1 ), Eq. ( 31) and (32) hold.

D. Step 3 of SR3, smoother output and algorithm implementation

The posterior smoothed mode probability µ j k|T = P(m j k |z 1:T ) of mode j at time k is given by

µ j k|T = p(z k+1:T |m j k , z 1:k )P(m j k |z 1:k ) ∑ j∈M p(z k+1:T |m j k , z 1:k )P(m j k |z 1:k ) = d j µ j k|k ∑ j∈M d j µ j k|k . ( 33 
)
For output purposes, the overall smoothing density p(x k |z 1:T ) in ( 7) can then be approximated to its moment-matched Gaussian pdf N (x k ; xk|T , P k|T ), where

xk|T = ∑ j∈M µ j k|T x j k|T ( 34 
)
P k|T = ∑ j∈M µ j k|T P j k|T + ( x j k|T -xk|T )( x j k|T -xk|T ) T . ( 35 
)
For detection issues, the MAP mode estimate ĵk at time t k writes as ĵk = arg max j=1,...,M µ j k|T .

(36)

Importantly, the covariance P b,i k|k+1 may not be defined during the first steps of the backward recursion because P b,i k|k+1 -1 = Pi k|T -1 -Pi k|k -1 may not be invertible. This situation occurs when the size of the measurement vector z k is smaller than that of the state vector x k and/or when the assimilated measurements do not carry enough information to provide an estimate xb,i k|k+1 and to endow P b,i k|k+1 with finite eigenvalues. In this case, the density N (.; 0, D ji k ) can be viewed as a flat prior. Therefore, the smoothed mixing probabilities and the posterior mode probabilities are approximated to μi| j k+1|T ≈ P(m i k+1 |m j k , z 1:k ) = π ji for all indexes i, j, and to µ j k|T ≈ µ j k|k for all j until P b,i k|k+1 -1 becomes nonsingular.

The complete mode-conditioned smoothing and interaction steps expressed in Theorems 1 to 5 are summarized in Algorithm 1. For clarity, the details of the interaction step are presented separately in Algorithm 2 for M 2 combinations (Interaction 1) and in Algorithm 3 for M combinations (Interaction 2). Interestingly, Interaction 2 is computationally cheaper. While the first option uses O(M 2 ) matrix inversions, Interaction 2 requires only O(M) of them to build p(x k |m j k , z 1:T ). Nevertheless, Interaction 2 absolutely requires that xb,i k|k+1 and P b,i k|k+1 of ( 20)-( 21) are explicitly defined. Thus, whatever the selected interaction type, the first recursion steps of the complete algorithm have always to be performed with Interaction 1 until P b,i k|k+1 -1 becomes invertible.

V. SIMULATION EXAMPLE

A simulated 2D target tracking example is presented to examine the estimation errors and the posterior mode probabilities produced by the proposed IMM Rauch-Tung-Striebel (RTS) smoother. In order to compare the algorithm with [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF], an invertible state dynamics is considered.

The system state is defined as x = x, y, ẋ, ẏ T where (x, y) term the Cartesian coordinates of the target and (ẋ = dx dt , ẏ = dy dt ) stand for its velocities. The mode set contains two discrete-time correlated random walks: a first one with a high diffusion parameter D 1 = 5 2 m 2 .s -3 (maneuvering mode 1) and a second one with a lower diffusion parameter D 2 = 0.5 2 m 2 .s -3 (nearly Constant Velocity or CV mode 2). The state space equations write as

x k = 1 0 ∆t k 0 0 1 0 ∆t k 0 0 1 0 0 0 0 1 x k-1 + q j k-1 (37) 
and

Q j k-1 = 0 0 0 0 0 0 0 0 0 0 2D j ∆t k 0 0 0 0 2D j ∆t k for j = 1, 2 (38) 
with ∆t k = t k -t k-1 . The vector z k gathers the noisy measured position of the target in Cartesian coordinates at time t k and is sampled for k = 1, . . . , T with period ∆t k = 5s. Thus, the output equation common to all modes is

z k = 1 0 0 0 0 1 0 0 x k + r k with R k = 150 2 I 2 m 2 . ( 39 
)
The probability transition matrix is set to

π 11 π 12 π 21 π 22 = 0.97 0.03 0.03 0.97 . ( 40 
) Algorithm 1 ONE STEP OF THE FIXED-INTERVAL SMOOTHER FOR JUMP MARKOV SYSTEMS { x j k|T , P j k|T , µ j k|T } j∈M = FIXED-INTERVAL-IMM-SMOOTHER { xi k+1|T , P i k+1|T , µ i k+1|T } i∈M , { x j k|k , P j k|k , µ j k|k } j∈M , { xi k|k , Pi k|k } i∈M , { xi k+1|k , P i k+1|k } i∈M 1: FOR i ∈ M DO {1. Mode-matched smoothing} 2: Smoother gain: G i k = C i k,k+1 P i k+1|k -1 where C i k,k+1 = x k -xi k|k f i k (x k )-xi k+1|k T N (x k ; xi k|k , Pi k|k )dx k . 3: Smoothed mixing mean: xi k|T = xi k|k + G i k xi k+1|T -xi k+1|k . 4: Smoothed mixing covariance: Pi k|T = Pi k|k + G i k P i k+1|T -P i k+1|k G i k T .
5: END FOR 6: FOR i ∈ M DO {2. Mode interaction} 7:

One-step backward predicted information matrix: P b,i k|k+1

-1 = Pi k|T -1 -Pi k|k -1 .

8:

One-step backward predicted information vector: P b,i k|k+1

-1 xb,i k|k+1 = Pi k|T -1 xi k|T -Pi k|k -1 xi k|k . 9:
FOR j ∈ M DO 10:

Two-mode conditioned likelihood: The target is tracked for 90 steps (or 450 s) on a randomly generated trajectory. It evolves first according the maneuvering mode 1, then the nearly CV mode 2 and finally the maneuvering mode 1 again. The switching times between modes occur at the deterministic values of k = 30 and k = 60. At the initial time k = 0, the prior mode probabilities are assumed equal to each other and the initial position and velocity estimates of the base state x 0 are arbitrarily set to 0 with covariance P 0|0 = diag([1, 1, 100, 100]) for all modes. The algorithm was evaluated over 50 Monte Carlo runs. An example of trajectory is displayed in Fig. 1. Our IMM smoother is compared to the IMM/GPB 2 filtering solutions [START_REF] Blom | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF], [START_REF] Li | Survey of maneuvering target tracking. Part V: Multiple-model methods[END_REF], the GPB 2 -RTS smoothing solution [START_REF] Mesot | A simple alternative derivation of the expectation correction algorithm[END_REF], the IMM-RTS smoothing solution [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF] and the IMM two-filter smoothing solution [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF]. The latter requires a backward-time IMM filter initialized with no prior information. As proposed by [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF] T is set to 0 with the arbitrary large associated covariance matrix 10 6 I 2 m 2 s -2 ; the modes are assumed equiprobable at the terminal time. In Table I, the time-averaged empirical root-mean-square errors (RMSE) for the position and the velocity are shown, as well as the the observed time-averaged wrong detection probability (i.e. the average probability of selecting the wrong mode with the MAP of (36)). These quantities are also k , m i k+1 , z 1:k )p(x k+1 |m i k+1 , z 1:T )dx k+1 and is approximated by evaluating p(x k+1 |m j k , m i k+1 , z 1:k )-whose Gaussian estimate is provided by the GPB 2 filter-at the mean of p(x k+1 |m i k+1 , z 1:T ). In other words, p(x k+1 |m i k+1 , z 1:T ) is assimilated to a Dirac delta function. The IMM-RTS smoother of [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF] shows RMSE and wrong detection probabilities larger than the investigated solution too. As presented in section III, the method is indeed based on strong approximations which influence the associated algorithm. They occur in the interaction and smoothing steps: the equality p(x k+1 |m i k+1 , m j k , z 1:T ) = p(x k+1 |m i k+1 , z 1:T ) is used and p(x k+1 |x k , m k ) is assumed to be the transition density between k and k + 1 instead of p(x k+1 |x k , m k+1 ).

Λ ji ≈ N (∆ ji k ; 0, D ji k ) with ∆ ji k = xb,i k|k+1 - x j

VI. CONCLUSION AND PROSPECTS

This paper investigated a suboptimal fixed-interval smoothing algorithm based on a forward-time IMM filtering and a backward-time recursive process. Each recursion consists of a smoothing step and involves Rauch-Tung-Striebel equations adapted to jump Markov systems together with a specific interaction step to allow mode cooperation. The first smoothing stage runs only M Rauch-Tung-Striebel smoothers in parallel, each one being conditioned on one of the M possibly active modes within the sampling period (t k ,t k+1 ]. The results of the smoothing step are then combined with interactions related to the M 2 admissible pairs of models over the successive sampling periods (t k-1 ,t k ] and (t k ,t k+1 ]. Two complementary combination types are investigated, the second one being computationally cheaper. An example of tracking of a maneuvering target shows that the proposed smoother performs significantly better than the IMM filter [START_REF] Blom | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF] , the GPB 2 -RTS smoother [START_REF] Mesot | A simple alternative derivation of the expectation correction algorithm[END_REF], the IMM-RTS smoother [START_REF] Nadarajah | IMM forward filtering and backward smoothing for maneuvering target tracking[END_REF] and equally well as the two-filter based scheme [START_REF] Helmick | Fixed-interval smoothing for Markovian switching systems[END_REF]. Unlike the latter, the proposed algorithm is suited to nonlinear dynamics and measurement equations.

Future work will concentrate on adapting the proposed approach to a bank of heterogeneous-order models, i.e. to models which share only parts of their respective state vectors [START_REF] Lopez | Extending the IMM filter to heterogeneous-order state space models[END_REF].
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 22 Fig. 2. Comparison of the IMM filter and the smoothers (from top to bottom): (a) RMSE in Position, (b) RMSE in Velocity and (c) Mode error probability.