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Abstract

This paper considers the linear output regulation problem for uncertain over-actuated plants. The general form of input
redundancy considered in this work implies the existence of multiple control inputs and state trajectories compatible with a
prescribed reference for the output. On-line selection, according to certain performance criteria, of the most suitable of these
inputs-state trajectories leads to a linear output regulation problem with dynamic redundancy allocation. We present a solution
that augments the well known internal model control scheme with two additional dynamical systems. The first one, named
annihilator, parametrizes the inputs and the corresponding state trajectories that are invisible from the output. The second
one, named redundancy allocator, dynamically selects the best solution according to a predefined performance criterion. We
derive explicit solutions for the performance criterion equal to relaxed 1, 2, and ∞- norms of the plant input. This set-up is a
particular case of the dynamic redundancy allocation problem named dynamic input allocation. The proposed solutions can be
implemented in an error feedback form and are especially suitable for optimizing sparsity, power and amplitude of the control
input. Finally, structural stability, robustness and existence of a unique steady-state are proven.

Key words: Linear output regulation; dynamic input allocation; optimization; uncertain systems.

1 Introduction

Intuitively speaking a system is over-actuated when the
number of control inputs is larger than the number of
regulated outputs. Over-actuation naturally arises ev-
ery time there are multiple actuators performing the
same action and this is often the case in many engineer-
ing applications. The presence of more actuators than
strictly necessary could be desirable for many reasons,
e.g., safety, fault-tolerant policies, performance or con-
sumption optimization. Popular and well studied exam-
ples of over-actuated systems are high performance air-
craft [2] and ships and underwater vehicles [14]. However
many other application fields are increasing in number,
see for instance [22]. A large number of actuators intro-
duces a certain degree of redundancy, meaning that there
exists an entire family of input functions and possibly of
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state trajectories that are compatible with a prescribed
reference for the output [21,17,7,12], or more precisely
the system does not have a unique right inverse. This re-
dundancy is exploited to design a dynamic redundancy
allocator whose primary objective is to dynamically se-
lect, among all the feasible inputs, the best one accord-
ing to a certain cost function.

The setup considered in this work differs from previous
studies, notably, [17] and [12], in several aspects. First,
we explicitly take into consideration parametric uncer-
tainties in the plant showing that the problem is struc-
turally well posed. Second, we derive a closed form so-
lution for cost functions involving different norms of the
input, solving the so called dynamic input optimization
problem for three significant cases that involve sparsity,
power and amplitude of the plant control signal. The
derived strategies only require the tracking error as in-
put. Third, we precisely formulate the dynamic alloca-
tion problem within the framework of robust linear out-
put regulation and we show that, in all cases, a dynamic
allocator can be designed that provides global exponen-
tial stability of the closed-loop system (when the exoge-
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nous signals are disconnected), uniform boundedness of
all trajectories, and exponential convergence to a unique
steady-state by way of a global contractivity property.

A preliminary version of this work have been presented
in [5], but here we largely extend the ideas and we present
results and proofs in a more general and clear setting.
The improvements are essentially threefold. First, we ex-
tend the allocation strategy for generic strongly convex
objective functions. Second, we provide explicit closed
form solutions for three different cost functions of prac-
tical interest, i.e., relaxations of the 1, 2 and∞ norm of
the plant input, whereas in [5] only the 2 and ∞ norms
were considered. Third, we remove the need for an addi-
tional tuning gain required in the solution presented in
[5] and we extend the results from semiglobal to global.
These latter properties, in turn, have been achieved via
the introduction of mild regularity assumptions on the
cost function, not required in [5].

The paper is organized as follows: in Section 2 we present
the set-up and we formally define the dynamic allocation
problem. In Section 3 we solve the problem in a fairly
general setting. In Section 4 we specialize the findings of
Section 3 into the dynamic input allocation set up and
we provide explicit design for three specific choices of
the cost function that are of practical interest, namely
relaxed 1, 2, and ∞-norm of the control input. In 5 we
present some simulations to show the effectiveness of
the proposed techniques. Conclusions are offered in Sec-
tion 6.

Notation: Let Rn denote the set of real vectors of di-
mension n; given a constant c ∈ R we write R≥c to
denote the subset [c,∞) ⊂ R. Calligraphic symbols
such as M denote sets, while the formal script font is
used to denote real vector spaces locally isomorphic to
Euclidean spaces, e.g., X . For a vector x ∈ Rn, xi de-
notes the i-th entry, |x|1 , |x|2 , |x|∞ are respectively the
1, 2,∞ norms of x, and diag (x) ∈ Rn×n is the diagonal
matrix whose i-th diagonal element is xi. Given two vec-
tors x ∈ Rn, y ∈ Rm, col (x, y) := [x>, y>]> ∈ Rn+m.
For a matrix M ∈ Rn×m, M> denotes its transpose.
For square invertible matrices M ∈ Rn×n, M−1 de-
notes the inverse of M and M−> its inverse transpose,
M > 0 (M ≥ 0) denotes positive definiteness (semi-
definiteness) of M , spec(M) = {λ1, λ2, . . . , λn} denotes
the spectrum, i.e., the set of the eigenvalues of ma-
trix M , finally He (M) := (M + M>) is the Hermitian
component of matrix M . If matrix M ∈ Rn×n is sym-
metric the eigenvalues are real and can be always ar-
ranged in algebraically non decreasing order as follows
λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). Given M ∈ Rn×m,
Mij denotes the ij component of M with i = 1, . . . , n
and j = 1, . . . ,m, while M>ij denotes the ij component

of M> with i = 1, . . . ,m and j = 1, . . . , n. The operator
diag(M1,M2) ∈ Rn×n denotes the block-wise concate-
nation of matrices M1 ∈ Rn1×n1 and M2 ∈ Rn2×n2

where n := n1 +n2. Matrix In ∈ Rn×n denotes the iden-
tity matrix of order n but often we will drop the subscript
n if the dimension is clear from the context. Given a func-
tion f(x, y), f : Rn×Rm → R we use the following nota-

tion: ∇xf(x, y) := col
(
∂f
∂x1

(x, y), . . . , ∂f∂xn (x, y)
)
∈ Rn,

∇yf(x, y) := col
(
∂f
∂y1

(x, y), . . . , ∂f
∂ym

(x, y)
)
∈ Rm,

∇2
yxf(x, y) :=

(
∂∇xf
∂y1

(x, y), . . . , ∂∇xf∂ym
(x, y)

)
∈ Rn×m,

and ∇2
xf(x, y) ∈ Rn×n represents the Hessian ma-

trix with respect x. Finally the symbols L∞, C k,
(k = 0, 1, . . . ) denote respectively the set of essentially
bounded and k-times differentiable functions.

2 Problem statement

We consider a modified version of the linear robust output
regulation set up. We start by considering an uncertain
plant model of the form,

ẋp = Ap(µ)xp +Bp(µ)u+ Pp(µ)w, (1a)

e = Cp(µ)xp +Qp(µ)w, (1b)

with state xp ∈ Xp
∼= Rnp , control input u ∈ U ∼= Rm

and tracking error e ∈ E ∼= Rp. The plant matrices
Ap(µ) ∈ Rnp×np , Bp(µ) ∈ Rnp×m, Pp(µ) ∈ Rnp×s,
Cp(µ) ∈ Rp×np , Qp(µ) ∈ Rp×s depend continuously on
a vector µ ∈M, whose values are assumed to range over
a known compact set M ⊂ Rnµ containing the origin.
Without loss of generality we assume that µ = 0 corre-
sponds to the nominal model. We assume that the plant
(1) is driven by an exogenous signal w ∈ W ∼= Rs gen-
erated by a known exosystem of the form,

ẇ = Sw, (2)

where the matrix S is assumed to be semi-simple and
such that spec(S) ⊂ C0. This implies that for any ini-
tial condition w(0) the arising solution w(·) to (2) is uni-
formly bounded. Depending on the context, the signal
w may represent references and/or disturbances. Stabil-
ity and regulation for (1) are ensured by a given error
feedback controller of the form

ẋc = Acxc +Bce (3a)

ureg = Ccxc, (3b)

with state xc ∈ Xc
∼= Rnc and output ureg ∈ U . The

classical formulation of the robust linear output regula-
tion problem is reported in the following Problem 1.

Problem 1 (Linear output regulation problem)
Given the plant model (1) with exosystem (2) find, if
possible, a controller of the form (3) such that:
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(1) The closed-loop matrix[
Ap(µ) Bp(µ)Cc

BcCp(µ) Ac

]
(4)

obtained through the interconnection u = ureg is
Hurwitz for all µ ∈M.

(2) Solutions of (1)–(3)–(2) originating from any ini-
tial condition (xp(0), xc(0), w(0)) ∈ Xp ×Xc ×W
satisfy limt→+∞ e(t) = 0, for all µ ∈M.

The solution of Problem 1 relies on the well known “In-
ternal Model Principle”, see [11], and the following as-
sumptions are necessary for its solvability.

Assumption 1 (Output regulation assumptions)
(1) the pairs

[
Ap(µ), Bp(µ)

]
and

[
Cp(µ), Ap(µ)

]
are re-

spectively stabilizable and detectable for all µ ∈M,
(2) the non resonance condition

rank

[
Ap(µ)− λI Bp(µ)

Cp(µ) 0

]
= np+p, ∀λ ∈ spec(S)

holds for all µ ∈M.

Assumption 1 is required for the existence of a stabiliz-
ing error-feedback controller of the form (3) that satis-
fies the internal model property and solves Problem (1).
Moreover since we are interested in over-actuated sys-
tems, in addition to Assumption 1, following [21,17] we
make the following characterizing assumptions on the
class of systems under investigation:

Assumption 2 (Over-actuation) System (1) is over-
actuated, that is, m > p and rank Bp(µ) ≥ p, for all µ ∈
M. For simplicity, we also assume that rank Cp(µ) = p,
for all µ ∈M.

Assumption 3 (Nominal right-invertibility) The
triplet [Cp(0), Ap(0), Bp(0)] is right-invertible.

As proved in [17], Assumptions 2, 3 imply the existence
of a family of inputs and state trajectories that satis-
fies a zero tracking error condition, i.e., e(t) = 0 for
all t ∈ R≥0. These inputs and state trajectories can be
parametrized using an annihilator, i.e., a dynamical sys-
tem of the following form:

ẋa = Aaxa +Bav (5a)

urd = Caxa +Dav (5b)

xrd = Eaxa (5c)

where xa ∈ Xa
∼= Rna is the state, v ∈ V ∼= Rq the in-

put and (xrd, urd) ∈ Xp ×U are the outputs. Roughly
speaking, an annihilator is a dynamical system whose

outputs parametrize all the possible inputs urd and state
trajectories xrd for (1) that are invisible from the out-
put e. A more rigorous definition of annihilator is the
following:

Definition 1 ([17,7] Nominal annihilator) An in-
ternally stable system of the form (5) is said to be a nomi-
nal annihilator 1 for (1) if, for all xa(0) ∈Xa and all in-
puts v(·) ∈ L∞, the corresponding outputs urd(·), xrd(·)
satisfy

ẋrd(t) = Ap(0)xrd(t) +Bp(0)urd(t)

0 = Cp(0)xrd(t),

for all t ∈ R≥0.

Under Assumptions 2, 3 a nominal annihilator for (1)
can be designed using geometric tools. The con-
struction, which stems from the results in [17], is
reported below for sake of completeness. Let us
denote by R? ⊂ Xp the supremal controllabil-
ity subspace contained in kerCp(0), and let F(R?)
be the set of friends of R? (see [20, Ch.5]). Define
V := Bp(0)−1R?. It is known that kerBp(0) ⊂ V , and
dim V /kerBp(0) = rank Bp(0)− p, see [12].

V

V /kerBp(0)

R? R?

U Xp Xp E

Bp(0) Aa

Bp(0) AK(0) Cp(0)

π

Da Ea Ea
0

Ba

Figure 1. Commutative diagram of the nominal annihilator.

Select, arbitrarily, a symmetric set Ωρ ⊂ C− and let
K ∈ F(R?) be such that specAK |R? = Ωρ, where

AK := Ap(0)+Bp(0)K. LetBp(0) denote the co-domain
restriction to R? of the domain restriction of Bp(0) to

the subspace V , i.e.,Bp(0) = R?|Bp(0)|V ,Da be the in-
sertion map of V in U , and Ba : V / kerBp(0)→ R? be

the unique map satisfying Baπ = Bp(0), where π : V →
V / kerBp(0) denotes the canonical projection modulo
kerBp(0). Furthermore, let Ea : R? → Xp denote the
insertion map of R? in Xp, let Ca : R? → U be defined

1 The interconnection of (5) and the internal model unit
of (3) is termed extended reference model in [17].

3



as Ca = KEa and let Aa := AK |R?. With this assign-
ment, the 5-ple (Aa, Ba, Ca, Da, Ea) defines a nominal
annihilator for (1). According to the commutative dia-
gram in Figure 1 we derive the following identities:

(Ap(0) +Bp(0)K)Ea = EaAa (7a)

Ca = KEa (7b)

Bp(0)Da = EaBa (7c)

Cp(0)Ea = 0. (7d)

Remark 1 Notice that the nominal annihilator is de-
fined on the basis of the nominal plant and the invisi-
bility property reported in Definition 1 is, in general, no
longer preserved when µ 6= 0. y

By construction the signal urd does not affect the track-
ing error e, therefore it can be added to the contribution
provided by (3) in order to optimize the total input. Fol-
lowing [21,17], the total input u is realized as a sum of
two contributions

u := ureg + urd, (8)

where ureg ∈ U represents the regulation component,
able to zeroing asymptotically the error signal e, and
urd ∈ U represents a redundant component that can be
selected by manipulating the input v on the basis of some
optimality criterion. The interconnection of (1), (3) and
(5) through (8) leads to the following linear system:

ẋ = A(µ)x+B(µ)v + P (µ)w (9a)

e = C(µ)x+Q(µ)w, (9b)

where x := col(xp, xc, xa) ∈ X and the augmented

state space is defined as X := Xp × Xc × Xa. The
matrices A(µ) ∈ Rn×n, B(µ) ∈ Rn×q, P (µ) ∈ Rn×s,
C(µ) ∈ Rp×n, Q(µ) ∈ Rp×s, where n := np + nc + na,
are reported below:A(µ) B(µ) P (µ)

C(µ) 0 Q(µ)

 :=


Ap(µ) Bp(µ)Cc Bp(µ)Ca Bp(µ)Da Pp(µ)

BcCp(µ) Ac 0 0 BcQp(µ)

0 0 Aa Ba 0

Cp(µ) 0 0 0 Qp(µ)

 .

Remark 2 It is important to notice that under As-
sumption 1 and the interconnection (8), the matrixA(µ)
defined above is Hurwitz for all µ ∈ M. This is clear
noticing that the state matrix of the annihilator is Hur-
witz by construction, and that the upper left block is
Hurwitz by hypothesis, see (4). y

Remark 3 In nominal conditions (µ = 0) the controller
trajectory response xc(·) does not depend on the selec-
tion of v(·). This is straightforward remembering that
the controller (3) is in a error-feedback form and the
tracking error e(·) is not affected by v(·). As a conse-
quence the pair [A(0), B(0)] is not controllable but it is
stabilizable. y

Once the annihilator (5) is included into the plant-
controller loop, the signal v represents a degree of free-
dom that can be used for optimization purposes without
affecting the tracking error of the nominal model. Let
us suppose we want to optimize a function

J : V ×X → R≥0, (11)

which depends on the augmented state x and the anni-
hilator input v. Our goal is to find a suitable selection
of v that leads to an instantaneous minimization of the
value of J . This selection is performed using a dynamic
allocation unit that is explicitly presented in Section 3.
However a selection of v that instantaneously minimize
J may lead to destabilizing allocation strategies. Indeed,
the response forced by v(·) on the state trajectory x(·) is
not taken into account. To overcome this issue, and to en-
sure internal stability of the plant, it is useful to require
a weaker form of optimality: an asymptotic optimality.
By asymptotic optimality we mean that only the asymp-
totic behavior of (9) matters. More explicitly we aim to
optimizing xss = −A(µ)−1B(µ)v−A(µ)−1P (µ)w, which
represents the steady-state value reached by (9) when
forced by constant v(·) and w(·). Asymptotic optimal-
ity allows us to derive closed form solutions for a large
class of strongly convex problems, whose explicit design
is presented in Section 4.

However, since the value of µ and w are not available
for measurements, the best that we can do is to consider
the following change of coordinates that highlights the
effects of a non zero µ and non constant v on the nominal
dynamics

x := −A(0)−1B(0)v + x. (12)

Here x ∈X represents a time varying signal due to the
transient response of (9) and −A(0)−1B(0)v represents
the corresponding nominal steady-state value forced by
a constant v. Assuming w constant and only looking
at steady-state conditions may appear quite restrictive;
however in many cases it is possible to speed up the al-
locator dynamics in order to induce a proper time scale
separation property. In this way the slow dynamics, that
corresponds to the plant plus the annihilator, can be con-
sidered almost in steady-state conditions and the change
of coordinates in (12) is not too restrictive. Plugging (12)
into (9) yields the following representation,

ẋ = A(µ)x+B1(µ)v +B2v̇ + P (µ)w, (13)

where matrices B1(µ) ∈ Rn×q, B2 ∈ Rn×q are defined
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below:

B1(µ) := B(µ)−A(µ)A(0)−1B(0)

B2 := A(0)−1B(0).

It is worth noticing that B2 does not depend on the
uncertain parameter µ and B1 satisfies B1(µ)|µ=0 = 0.
Substituting (12) into (11) we define a steady-state cost
function J : V ×X → R≥0 as

J(v, x) := J(v,−A(0)−1B(0)v + x). (15)

Taking advantage of (15), the selection of the most suit-
able input v is performed as an on-line minimization of
J with respect to v, regarding x as perturbation inde-
pendent of v. More precisely, for any x? ∈X we aim at
solving the following optimization problem:

minimize
v∈V

J(v, x?). (16)

Remark 4 Optimization problem (16) can be also tack-
led in a different way using Model Predictive Control
(MPC). MPC is rather popular in the allocation litera-
ture [14,2,23,22], since optimization of the actuators re-
dundancy can be often formulated as an MPC problem.
In our setup, a possible MPC formulation is the follow-
ing:

minimize
v̇(·)∈L∞

∫ T

0

J(v, x) dt

subject to (13), (2),

(17)

where we considered v as a part of an augmented state
through a dynamic extension and we optimize over v̇ ∈
L∞. Clearly (17) is parametrized by the initial condi-

tions x(0) = x0 ∈ X and w(0) = w0 ∈ W , plus some
positive time horizon T ∈ R>0. However, there are re-
markable differences between (17) and (16). First, (16) is
a punctual minimization, while in (17) the running cost
J is minimized over a time horizon T . Second, (16) does
not require a precise model of (13), but treats x as a dis-
turbance affecting the objective function J , while in (16)
the presence of the exosystem is explicitly taken into ac-
count (reference/disturbance signal w is assumed to be
available). We also remark that (17) is not a standard
LQR problem, not even in the case of quadratic running
cost J(v, x) and T = ∞, since, in general, the presence
of the marginally stable exosystem implies J(v, x) 9 0
for T →∞. y

In the dynamic allocation spirit we assume that the min-
imizer of Equation (16) is dynamically tracked by a pos-
sible nonlinear redundancy allocator of the form:

v̇ = γg(v, x), (18)

where v ∈ V is the redundancy allocator state, x ∈ X
is the input and γ ∈ R>0 is a time scaling parameter.

We assume that the vector field g(·, ·) is smooth, so that,
solutions to (18) exist uniquely for any initial conditions.

We are now ready to formally state the optimal dynamic
allocation problem:

Problem 2 (Optimal dynamic allocation) Given
the plant model (1), the regulator (3), the nominal anni-
hilator (5) and the cost function (15), find a redundancy
allocator of the form (18) that satisfies the following
requirements:

i) Nominal output regulation: The matrix in (4) is
Hurwitz for all µ ∈M and asymptotic regulation is
achieved for µ = 0.

ii) Nominal invisibility: For µ = 0 the tracking error e
defined in (9) does not depend on v.

iii) Structurally well defined steady-state: For any ini-
tial condition (x(0), v(0), w(0)) ∈ X × V ×W the
solution to

ẋ = A(µ)x+B1(µ)v +B2v̇ + P (µ)w (19a)

v̇ = γg(v, x) (19b)

ẇ = Sw, (19c)

is well defined for all µ in a sufficiently small neigh-
borhood of µ = 0 and converges exponentially to a
unique steady-state [16].

iv) Structural asymptotic optimality: There exists γ? ∈
R>0 such that for all γ ∈ R(0,γ?] in (19) and for each
µ in a sufficiently small neighborhood of µ = 0, the
point (−A(µ)−1B1(µ)v?(µ), v?(µ)) ∈X ×V , where

v?(µ) := arg min
v∈V

J(v,−A(µ)−1B1(µ)v),

exists, is unique, and constitutes a globally exponen-
tially stable equilibrium for (19) when the exosystem
is disconnected, i.e., w = 0.

The relevance of the requirements defined in Problem 2
is commented below.

i) Nominal output regulation ensures that in the nom-
inal case (µ = 0) the tracking error e asymptotically
vanishes. In the perturbed case (µ 6= 0), because the
allocator unit (18) is a nonlinear, the steady-state
trajectories may not provide output zeroing, as the
linear internal model unit of the regulator may not
be able to offset higher-order harmonics of the ex-
ogenous signals generated by (18). However, a prac-
tical regulation holds, since the global contractivity
property in the proof of Proposition 3 ensures that
the interconnection between (19a), (19b) is ISS with
respect to the the exogenous signal w, see [16, The-
orem 2.29]. We conclude that, because the output
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map is linear, the tracking error is bounded. In the
special case of quadratic allocation, see Section 4,
the allocator unit is linear and the steady-state en-
tails e(t)→ 0 due to the strong properties of robust
linear regulators [11].

ii) Nominal invisibility ensures that when the plant is
known (µ = 0), the addition of the redundant com-
ponent urd at the controller output ureg according
to (8) has no effect on the tracking error e.

iii) Structurally well defined steady-state entails the
property that, for arbitrary initial conditions, the
trajectories of the closed-loop system driven by
the exosystem converge exponentially to a unique
steady-state. We show that this property can be ob-
tained using a global contraction property of (13),
which ensures a number of desiderable properties.

iv) Finally structural asymptotic optimality ensures
that for any initial condition there exist a unique
globally exponentially stable equilibrium for (13),
and this equilibrium solves the optimization prob-
lem defined in (16). Moreover the structural re-
quirement ensures that this equilibrium point is
robustly exponentially stable for sufficiently small
values of the parameter µ.

Remark 5 Although Problem 2 has been set up in the
output regulation framework, as done in [17], the result
presented is of more general validity, and can be applied
to other tracking problems where a stable right-inverse
of the plant is available, as for instance done in [7]. y

Remark 6 The global contractivity associated to iii)
ensures that the steady-state is periodic if the eigenval-
ues of the exosystem matrix have commensurate angular
frequencies. y

3 Allocator design and analysis

Following the paradigm given in [18] for the redundancy
allocator in (18) we adopt a gradient descent flow dy-
namics defined as follows

v̇ = γg(v, x) := −γ∇vJ(v, x), (20)

where γ ∈ R>0 is a positive gain tuning the speed of the
gradient descent. In order for (20) to make sense we need
differentiability of the cost function J and in addition to
this we also assume some other desiderable properties of
J useful to solve Problem 2.

Assumption 4 (Regularity of the cost function)
The cost function J(·, ·) is twice continuously differen-
tiable and satisfies the following properties:

• uniformly bounded curvature: there exist c1, c2 ∈ R>0

such that:

c1I ≤ ∇2
vJ(v, x) ≤ c2I, (21)

for all (v, x) ∈ V ×X .
• bounded mixed interaction: there exists c3 ∈ R>0 such

that: ∣∣∇2
xvJ(v, x)

∣∣ ≤ c3,
for all (v, x) ∈ V ×X .

• limited curvature: there exists c4 ∈ R>0 such that:∣∣∇2
xJ(v, x)

∣∣ ≤ c4 (22)

for all (v, x) ∈ V ×X .

Remark 7 Alternative choices for the strategy in (20)
are possible. For example one may think to employ
higher order minimization methods, that exploit knowl-
edge of the Hessian matrix to speed up the convergence
process. Some well known examples are the the steepest
descent method, where g(·, ·) is defined as follows

g(v, x) :=
∇vJ(v, x)>∇vJ(v, x)

∇vJ(v, x)>∇2
vJ(v, x)∇vJ(v, x)

∇vJ(v, x),

and the Newton method, where g(·, ·) has an expression
that we do not report explicitly here. These optimiza-
tion techniques are faster but require additional assump-
tions, e.g., Lipschitz continuity of the Hessian matrix,
see [3, Page 488], and complicate the analysis of the re-
sulting closed loop. Moreover we will show in Theorem 1
that the allocation speed, which is proportional to γ,
must be selected sufficiently small to guarantee stability
of the allocator unit. We believe that selecting more ag-
gressive versions of g(·, ·) will then require reducing γ in
the practical tuning of our solution. y

The bound on the Hessian ∇2
vJ(v, x) ensures the exis-

tence and the uniqueness of a minimizer for (16) and
guarantees that the resulting gradient-based redun-
dancy allocator (20) is globally convergent. Further-
more the weak interaction assumption ensures that the
interaction among the annihilator (5) and the gradient-
based redundancy allocator (20) is not too strong so
that it is possible to find γ small enough such that this
interconnection is stable. Finally the bounded Hessian
in the x direction ensures that also in the unnominal
case the minimizer for (16) exists and is unique. Having
clarified the role of Assumption 4 we are ready to state
the main result of the paper.

Theorem 1 (Main result) Under Assumptions 2, 3,
4 there exist γ? ∈ R>0 such that for all γ ∈ R(0,γ?) the
redundancy allocator in (20) satisfies the requirements
of Problem 2 with respect to the performance criterion
defined in (15).

For the convenience of the reader the proof of Theorem 1
is broken into separate parts according to each individual
requirement defined in Problem 2.
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Proposition 1 The annihilator defined in (5) enjoys
the nominal invisibility property defined in Problem 2.

Proof. By construction the annihilator (5) satisfies the
equalities in (7). Since the invisibility holds only in the
nominal case we can consider µ = 0 and without loss of
generality we also assume ureg = 0 and w = 0. Under
these assumptions the plant dynamics can be written as

ẋp = Ap(0)xp +Bp(0)Caxa +Bp(0)Dav

e = Cp(0)xp.

Consider the change of coordinates x̃p = xp − Eaxa.
Using the identities in (7) and the annihilator dynamics
(5), after some manipulations one obtains,

˙̃xp = Ap(0)x̃p
e = Cp(0)x̃p,

which shows that the output e is not affected by v. �
The following proposition establishes useful properties
of the cost function J that are direct consequences of
Assumption 4.

Proposition 2 Under Assumption 4, the function
J(v, x) is strongly convex and radially unbounded with
respect to v. Moreover, for all x? ∈ X the minimizer
v? = arg minv∈V J(v, x?) exists and is unique.

Proof. By Assumption 4, J(·, ·) is twice differentiable and
with positive definite Hessian with respect to v, therefore
strong convexity of J(·, x) holds for each x by definition.
Given any x, consider an arbitrary direction v? ∈ V and
the function τ 7→ J(τv?, x) where τ ∈ R≥0. The second
derivative with respect to τ yields d2J(τv?, x)/ dτ2 =
(v?)>∇2

vJ(v, x)|v=τv?v? and since

c1|v?|2 ≤ (v?)>∇2
vJ(v, x)|v=τv?v? ≤ c2|v?|2,

integrating with respect to τ twice we obtain the follow-
ing quadratic bounds

c1|v?|2
τ2

2
+ c11τ + c12 ≤ J(τv?, x)

≤ c2|v?|2
τ2

2
+ c21τ + c22,

for some c11, c12, c21, c22 ∈ R. Since the direction v? is ar-
bitrary and c1, c2 are positive by Assumption 4, J(v, x)
is radially unbounded with respect to v. Moreover, for
any x? ∈ X , the function J(·, x?) is continuous, posi-
tive definite and radially unbounded, thus its level sets
are compact and by the extreme value theorem for each
level set there exist at least one minimizer. Finally since
every strongly convex function is also strictly convex,
the minimizer v? = arg minv∈V J(v, x?) is unique and
satisfies ∇vJ(v, x?)|v=v? = 0. �

Now we tackle the problem of the existence of a struc-
turally unique steady-state for (19). Toward this goal it
is useful to introduce the notion of global contractivity.

Definition 2 (Global contractivity) A smooth non-

linear system ξ̇ = f(ξ, d), with state ξ and input d, is
globally contracting with respect to the (constant) met-
ric M = M> > 0 with contraction rate κ ∈ R>0 if the
condition

He(∇ξf(ξ, d)M) ≤ −κI, (25)

holds for all (ξ, d).

The notion of contractivity was introduced in [15] and
many extensions have been proposed, see for example the
recent work [10] and references therein. For our purposes
it is sufficient to recall that globally contracting systems
converges exponentially to a unique steady-state, [15],
and therefore a sufficient condition for the existence of
a unique steady-state can be cast as a global contractiv-
ity requirement. This idea is formalized in the following
proposition.

Proposition 3 (Structural steady-state) For µ and
γ sufficiently small the interconnection between (20) and
(13) is globally contracting and satisfies the structurally
well defined steady-state property in Problem 2.

Proof. According to Definition 2 we consider a metric
M(µ) = M(µ)> > 0 (to be specified) and a generic
κ ∈ R>0. The interconnection between (20) and (13) is
globally contractive if

He

([
∇xẋ ∇vẋ
∇xv̇ ∇v v̇

]
M(µ)

)
≤ −κI. (26)

To establish (26) we consider the congruence transfor-
mation T :=

[
I −B2

0 I

]
and focus on dynamics (13), (20)

to get:

T

[
∇xẋ ∇vẋ
∇xv̇ ∇v v̇

]
=

[
A(µ) B1(µ)

−γ∇2
xvJ(v, x) −γ∇2

vJ(v, x)

]
.

(27)
Pick M(µ) := diag (P (µ), I) > 0, where P (µ) is the
unique solution of the following Lyapunov equation

A(µ)P (µ) + P (µ)A(µ)> = −I, (28)

then using (28) and (27), we get

Ξ(x, v, γ, µ) : = He

(
T

[
∇xẋ ∇vẋ
∇xv̇ ∇v v̇

]
M(µ)T>

)

= He

([
−I/2−M1(µ)/2 0

−γM2(x, v, γ, µ) −γ∇2
vJ(v, x)

])
,

(29)
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where for conciseness of notation we introducedM1(µ) ∈
Rn×n and M2(x, v, µ, γ) ∈ Rq×n defined as follows:

M1(µ) :=B1(µ)B>2 +B2B1(µ)>, (30a)

M2(x, v, µ, γ) :=∇2
xvJ(v, x)P (µ)

−∇2
vJ(v, x)B>2 + γ−1B1(µ)>.

(30b)

By assumptionM1(µ) depends in a continuous way on µ,
and since µ ranges over a compact set |B1(µ)| is bounded.
Moreover for any fixed selection of γ thanks to Assump-
tion 4 also |M2(x, v, µ, γ)| is uniformly bounded for all
(x, v) ∈ X × V . Simple manipulations involving (30)
and (22) show that the following inequality holds

|M2(x, v, µ, γ)| ≤ |∇2
xvJ(x, v)P (µ)|+ |∇2

vJ(x, v)B>2 |
+ γ−1|B>1 (µ)|
≤ c3|P (µ)|+ c2|B>2 |+ γ−1|B1(µ)>|,

where c2, c3 are defined in Assumption 4. Since B1(0) =
0, M1(0) = 0 and B1(·),M1(·) are continuous, then for
each γ there exists a small enough µ? ∈ R>0 such that
for all |µ| ≤ µ? we have,

I +M1(µ) ≥ m1I (31a)

|M2(x, v, µ, γ)| ≤ c3|P (µ)|+ c2|B>2 |+ 1 ≤ m2, (31b)

where m1 := min|µ|≤µ? λ1(I + M1(µ)) > 0, and m2 :=

c3 max|µ|≤µ? |P (µ)|+c2|B>2 |+1 > 0. Using (31) we show
below that there exists a small enough γ and κ′ ∈ R>0

such that

Ξ(x, v, γ, µ) ≤ −κ′I, ∀µ : |µ| ≤ µ?. (32)

Due to the structure of Ξ(x, v, γ, µ) in (29), via the con-
gruence transformation T we readily obtain (26) for a
small enough κ ∈ R>0. Then a well defined steady-state
follows from (25) and Definition 2. We complete the
proof by showing (32). By a Schur complement applied
to (29), (32) holds if

∇2
vJ −

κ′I
2γ
≥ c1

2
I

−I −M1 + κ′I +
γ

2
M>2

(
∇2
vJ −

κ′I
2γ

)−1
M2 ≤ 0

where the arguments of M1, M2 and ∇vJ have been
omitted for brevity. The first equation above follows
readily from the lower bound in (21) after choosing κ′ ≤
c1γ. For the second one we use the bounds in (31) and
again the upper bound in (21) with κ′ ≤ c1γ to obtain
the following sufficient condition

−m1 + κ′ + γ
m2

2

c1
≤ 0, ∀|µ| ≤ µ?, (33)

which is satisfied for a small enough γ ∈ R>0 and small
enough κ′ ∈ R>0. �

Remark 8 The proof of Proposition 3 entails the essen-
tial derivations employed to show contractivity and then
robust stability “in the small” of our scheme. From the
interplay between γ and µ?, we emphasize that there is
a trade-off between the speed of the allocation (γ large)
and the level of the plant uncertainty that we can tol-
erate before losing stability of the loop. This considera-
tion is consistent with the intuitive idea that allocation
must be performed in the right “directions” (which are
unknown in the unnominal case) otherwise the invisibil-
ity property defined in Problem 2 is no longer preserved
and stability may be lost. In our preliminary work [5],
we favored robustness versus performance by enforcing
a restricted robust allocation policy minimizing a cost
J evaluated with u = ureg + βurd, with β ∈ R(0,1] be-
ing a parameter establishing the trade-off between ro-
bustness (stability is guaranteed for any µ ∈ M if β is
small enough) and restricted optimality (if β = 1 then
the original optimization problem is recovered by the
allocator). In that setting the proof of Proposition 3 is
not much different because parameter β appears in (32),
which is guaranteed by a suitable interplay between γ
and β without any restriction on µ ∈M. y

Finally we solve the structural asymptotic optimality
requirement defined in Problem 2. The precise statement
is the following one.

Proposition 4 (Structural asymptotic optimality)
For µ and γ sufficiently small and a disconnected exosys-
tem (w = 0), the interconnection between (20) and (13)
converges exponentially to the the unique equilibrium
point defined in Problem 2.

Proof. First, let us notice that in nominal conditions
B1(0) = 0 and by Proposition 2, the point v?(0) ∈ V
defined as

v?(0) = arg min
v∈V

J(v, 0),

exists and is unique. We now claim that also in the un-
nominal case the perturbed minimizer v?(µ) exists, is
unique and satisfies

v?(µ) = arg min
v∈V

J(v,−A(µ)−1B1(µ)v).

For this purpose let us define the following quantities

J̃(v) := J(v,−A(µ)−1B1(µ)v)

R(µ) := −A(µ)−1B1(µ),

which represent a perturbed cost function J and a short-
hand symbol for −A(µ)−1B1(µ). Then consider the fol-

8



lowing quantity

∇2
vJ̃(v) := ∇2

vJ(v,R(µ)v) +R(µ)>∇2
vxJ(v,R(µ)v)

+∇2
xvJ(v,R(µ)v)R(µ)

+R(µ)>∇2
xJ(v,R(µ)v)R(µ).

Since |∇2
xvJ(v,R(µ)v)| = |∇2

vxJ(v,R(µ)v)| ≤ c3 and
|∇2

xJ(v,R(µ)v)| ≤ c4 are bounded by Assumption 4,
observing that R(µ)→ 0 for µ→ 0, it is concluded that

∇2
vJ̃(v) is positive definite and J̃(·) is strongly convex

for all µ sufficiently close to the origin. Then following
the same argument of Proposition 2 we obtain the ex-
istence and the uniqueness of the perturbed minimizer
v?(µ). Moreover ∇vJ(v?(µ),−A(µ)−1B1(µ)v?(µ)) = 0
and the point (−A(µ)−1B1(µ)v?(µ), v?(µ)) ∈X ×V is
the unique equilibrium for (19) with the allocator choice
in (20) when the exosystem is disconnected (w = 0). In
Proposition 4 we already established that the intercon-
nection between (20) and (13) is globally contractive.
By establishing the existence of an equilibrium, the
global contraction property is sufficient to say that all
trajectories exponentially converge to this equilibrium,
see [15,16], which completes the proof. �

4 Design examples

In this section we develop three design example of prac-
tical interest, explicitly showing the resulting allocator
structure. The three cost functions that we consider in-
volve only the overall input u, therefore the setup of
Problem 2 is specialized into the dynamic input optimiza-
tion framework, see [21]. Since the input u is directly
available, knowledge of the plant state xp is not required
and the corresponding redundancy allocator (18) can be
implemented in an error-feedback form. The three cost
functions are relaxed versions of the 1, 2 and∞ norms of
u that are especially suitable to optimize sparsity, power
and maximum amplitude of u. The resulting redundancy
allocator could be useful in different applications. For
example 1-norm is a good way to measure energy con-
sumptions in satellites actuated by thrusters, see [19,4],
while consumptions in hybrid cars [6] is related to the
2-norm of the input. Finally the ∞-norm is very useful
to cope with saturation limits, see for example [21,8], or
to optimize the internal forces in multi-robot systems
[1]. We show that under a mild assumption these re-
laxed norms satisfy Assumption 3 with known bounds
and consequently the corresponding dynamic input al-
location problems are well posed and admit an explicit
solution.

We start by solving the problem in a fairly general setting
and we will show that the relaxed 1, 2 and ∞ cases
follow as special cases. For clarity of the presentation
it is useful to introduce an intermediate performance
criterion Ju : U → R≥0. According to the change of

coordinates in (12) the input (8) can be expressed in the
(x, v) coordinates as follows

u = φ(x, v) := Fx+Gv (34)

where F ∈ Rm×n and G ∈ Rm×q are properly defined
matrices whose explicit expression is the following F :=
[0, Cc, Ca], G := Da − CaA

−1
a Ba. Thanks to (34) and

according to (15) the steady-state performance criterion
is written as

J(v, x) := Ju(φ(v, x)).

The gradient descent strategy defined in (20) and the
corresponding input redundancy allocator yields,

v̇ = −γ∇vJ(v, x)

= −γ∇vφ(v, x)∇uJu(φ(v, x))

= −γG>W (u)u|u=φ(v,x),
= −γG>W (φ(v, x))φ(v, x),

(35)

where W (u) ∈ Rm×m is an input dependent matrix that
“weighs” the allocation directions, see also its use in
[21,1]. Notice that there is no real loss of generality in
assuming that∇uJu(u)> := W (u)u, but some attention
may be required in the definition of W (u). The termi-
nology weight matrix is borrowed from the 2-norm min-
imization problem, see Subsection 4.2; indeed, taking

Ju := u>Wu/2, with W = W
>
> 0, the corresponding

allocator has the expression v̇ = −γG>Wφ(v, x). To-
ward the goal of checking Assumption 3, we provide an
explicit expression for the curvature and for the mixed
interaction as follows:

∇2
vJ(v, x) = G>∇2

uJu(u)|u=φ(v,x)G (36a)

∇2
xvJ(v, x) = G>∇2

uJu(u)|u=φ(v,x)F (36b)

∇2
xJ(v, x) = F>∇2

uJu(u)|u=φ(v,x)F. (36c)

To avoid trivial scenarios, the following assumption is
made:

Assumption 5 Matrix G has full column rank.

Assumption 5 involves no loss of generality, as otherwise
one can reduce the dimension of v by projection modulo
kerG (note that q < m, as shown in [17]). Thanks to
Assumption 5 we can state the following:

Proposition 5 If Assumption 5 holds true and there
exist c5, c6 ∈ R>0 such that

c5I ≤ ∇2
uJu(u) ≤ c6I, ∀u ∈ U , (37)

then Assumption 4 is satisfied.
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The proof is a trivial consequence of matrix properties
involving (36) and is omitted. In the following subsec-
tions we show that (37) holds so that Proposition 5 ap-
plies for three peculiar choices of the cost function Ju
and we derive then an explicit representation for the re-
dundancy allocator structure.

4.1 Relaxed Manhattan norm (1-norm)

In this subsection we consider a smoothed version of the
1-norm of the input u. The cost function Ju : Rm → R≥0
is defined as follows

Ju(u) :=

m∑
k=1

√
u2k + ε22 +

ε3
2
u2k, (38)

where ε2 ∈ R>0 is a smoothing constant and the ε3 ∈
R>0 term is used to enforce the strong convexity prop-
erty required in Assumption 3. Then according to the
gradient-based allocation strategy defined in (38) the ex-
plicit expression for the components of ∇uJu(u) is

∇ui

(
m∑
k=1

√
u2k + ε22 +

ε3
2
u2k

)
=

ui√
u2i + ε22

+ε3ui, (39)

for i = 1, . . . ,m. We may also notice that the above
expression can be put in the form (35) by defining the
weight matrix as follows

W (u) :=


1√
u2
1+ε

2
2

0
. . .

0 1√
u2
m+ε22

+ ε3I.

It is also interesting to notice that the eigenvalues of
W (u) satisfy the inequality

ε3 ≤ λi(W (u)) ≤ ε3 + ε−12 ,

for i = 1, . . . ,m and for all u ∈ U . According to Propo-
sition 5 we want prove that ∇2

uJu(u) is uniformly up-
per and lower bounded as in (37). We start by noticing
that due to the special structure of the gradient (39),
∇uiJu(u) depends only on ui as a consequence ∇2

uJu(u)
is diagonal and its (i, i) entry is given by

∇2
ui,uiJu(u) = − u2i

(u2i + ε22)
3
2

+
1√

u2i + ε22
+ ε3

=
ε22

(u2i + ε22)
3
2

+ ε3.

(40)

for i = 1, . . . ,m. By inspection we can verify that
∇2
uJu(u) is positive definite, the eigenvalues are uni-

formly bounded and satisfy the inequality

ε3 ≤ λi
(
∇2
uJu(u)

)
≤ ε3 + ε−12 , (41)

for i = 1, . . . ,m and for all u ∈ U . According to Propo-
sition 5 the cost function defined in (38) satisfies As-
sumption 4 with bounds c5 = ε3 and c6 = ε3 + ε−12 and
then Theorem 1 applies.

4.2 Quadratic norm (2-norm)

In this subsection we consider the quadratic norm (or
weighted Euclidean norm) of the input u. The quadratic
norm is a very special case and is considerably easier to
manage compared to other norms. We define the cost
function Ju : Rm → R≥0 as follows

Ju(u) :=
1

2

m∑
k=1

m∑
`=1

uku`W k` =
1

2
u>Wu, (42)

where 0 < W = W
> ∈ Rm×m is a symmetric positive

definite matrix. The cost function (42) may represent the
instantaneous power of u and could be useful optimize
consumptions. According to (20) the gradient-based dy-
namic input optimizer takes the form

v̇ = −γG>Wu|u=φ(v,x),

where ∇2
uJ(u) = W is positive definite thanks to the

following inequality

λ1(W ) ≤ λi
(
∇2
uJu(u)

)
≤ λm(W ),

for i = 1, . . . ,m. Again according to Proposition 5 the
cost function defined in (42) satisfies Assumption 4 with
bounds c5 = λ1(W ) and c6 = λm(W ) and Theorem 1
applies.

4.3 Max norm (∞-norm)

Finally we consider a smoothed version of the∞ norm of
the input u. This allocation strategy is especially useful
to avoid the occurrence of input saturation. The cost
function Ju(u) employs a modified version of the soft-
max function, plus a differentiable approximations of the
absolute value. For our purposes we define Ju : Rm →
R≥0 as follows,

Ju(u) = ε1 log

(
m∑
i=1

exp

(
ε−11

√
u2i + ε22

))
+
ε3
2
u>u,

(43)

where ε1, ε2 ∈ R>0 are small smoothing constants and
ε3 ∈ R>0 is a small regularizing term used to enforce
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strong convexity. The expression in (43) approximates
the infinity norm |u|∞ for ε1, ε2, ε3 sufficiently small.
Again we choose the dynamic input allocator according
to (35) and the explicit expression of the components of
the gradient are

∇uiJu(u) =
exp

(
ε−11

√
u2i + ε22

)
ui/
√
u2i + ε22∑m

k=1 exp
(
ε−11

√
u2k + ε22

) + ε3ui

for i = 1, . . . ,m. We may also notice that the above
expression can be written in the form (35) defining the
weight matrix W (u) as follows

W (u) := Λ(u) + ε3I. (44)

where Λ(u) ∈ Rm×m is a diagonal matrix depending on
a normalization function ρ : Rm → R≥0 as reported
below:

ρ(u) :=
1∑m

k=1 exp
(
ε−11

√
u2k + ε22

)
σ(ν) :=

exp
(
ε−11

√
ν2 + ε22

)
√
ν2 + ε22

Λ(u) := ρ(u)


σ(u1) 0

. . .

0 σ(um)

 .
Similarly to the 1-norm case, see Subsection 4.1, the
eigenvalues of W (u) are uniformly bounded and satisfy
the inequality

ε3 ≤ λi (W (u)) ≤ ε3 + ε−12

for i = 1, . . . ,m and for all u ∈ U . Now in order to
check Assumption 3 we need an explicit expression for
∇2
uJu(u) and for simplicity we proceed component wise,

∇2
uj ,uiJu(u) = ∇ujρ(u)σ(ui)ui + ρ(u)∇ujσ(ui)

+ ε3∇ujui
= −ε−11 ρ(u)2σ(uj)uju

>
i σ(ui)

>

+

(
1 + ε−11 ε−22 u2i

√
u2i + ε22

1 + ε−22 u2i

)
ρ(u)σ(ui)δij

+ ε3δij ,

for i = 1, . . . ,m, j = 1, . . . ,m and where δij denotes the
usual Kronecker delta function. This expression can be
also written in a more compact form as follows:

∇2
uJu(u) = V (u)− b(u)b(u)> + ε3I, (46)

where b(u) := ε
−1/2
1 Λ(u)u and V (u) ∈ Rm×m is a diag-

onal matrix, whose diagonal elements are defined as:

Vii(u) :=

(
1 + ε−11 ε−22 u2i

√
u2i + ε22

1 + ε−22 u2i

)
Λii(u),

for i = 1, . . . ,m . Equation (46) shows that∇2
uJu(u) is a

diagonal uniformly positive definite matrix, V (u) + ε3I,
plus a rank one perturbation term bb>. Thanks to this
special structure we can employ a large number of results
regarding rank one perturbations. Now the goal is to
show that Proposition 5 holds for the cost function (43).
The proof comprises three steps. In Step 1, we show that
V (u) is positive definite for all u ∈ U . In Step 2, using
Weyl’s inequality we prove that the rank one perturbed
matrix V (u)−b(u)b(u)> hasm−1 bounded and positive
eigenvalues. In Step 3, thanks to the matrix determinant
lemma, see [9], we show that det

(
V (u)− b(u)b(u)>

)
has

the same sign as detV (u) so that we can conclude that
all the eigenvalues are positive and bounded. Finally we
notice that the ε3I term enforces the desired uniformity
property.

Step 1. We start noticing that V (u) is diagonal and by in-
spection the elements Vii(u) satisfies the following bound

0 ≤ Vii(u) ≤ max{ε−11 , ε−12 } (47)

for i = 1, . . . ,m and for all u ∈ U , thus matrix V (u) is
positive definite.

Step 2. For the convenience of the reader, we recall an
adapted version of Weyl’s theorem, see [13, Theorem
4.3.1, page 239]. For the sake of simplicity we drop the
u dependence for matrices V = V (u) and b = b(u).

Theorem 2 (Weyl) Let V , bb> ∈ Rm×m be symmetric
and let the respective eigenvalues of V , bb> and V −
bb> be [λi(V )]

m
i=1,

[
λi(−bb>)

]m
i=1

and
[
λi(V − bb>)

]m
i=1

,
each list being algebraically ordered. Then for each i =
1, . . . ,m the following inequality

λi(V − bb>) ≤ λi+j(V ) + λm−j(−bb>), (48)

holds for all j = 0, . . . ,m− i and

λi−j+1(V ) + λj(−bb>) ≤ λi(V − bb>), (49)

for all j = 1, . . . , i.

Inequality (48) can be used to upper bound the eigen-
values of V − bb>, indeed taking j = 0, using (47) and
the fact that λm

(
−bb>

)
= 0, we readily obtain

λ1(V − bb>) ≤ λ1(V ) ≤ max{ε−11 , ε−12 }
...

λm(V − bb>) ≤ λm(V ) ≤ max{ε−11 , ε−12 }.
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For a lower bound we may similarly use (49) by taking
j = i, which yields

λ1(V ) + λ1(−bb>) ≤ λ1(V − bb>)

λ1(V ) ≤ λ2(V − bb>)

...

λ1(V ) ≤ λm(V − bb>).

Recalling that V is positive definite, this shows that
λi(V − bb>) ≥ 0 for i = 2, . . . ,m.

Step 3. To show positivity of the last eigenvalue λ1(V −
bb>), we can use the matrix determinant lemma [9] re-
ported next.

Lemma 1 (Matrix determinant lemma) Let V ∈
Rm×m be an invertible matrix, and bb> ∈ Rm×m a rank-
one matrix obtained as a dyadic product between vectors.
Then

det(V − bb>) =
(
1− b>V −1b

)
det(V ).

Thus it is sufficient to show that the following holds

b>(u)V −1(u)b(u) < 1 (52)

for all u ∈ U . Since b(u)>V (u)−1b(u) involves the prod-
uct of diagonal matrices the products is also diagonal
and the elements are given by

ε−11 Λii(u)Vii(u)−1Λii(u) =
(1 + ε−22 u2i )Λii(u)

ε−11 + ε−22 u2i
√
u2i + ε22

.

After some manipulations the value of the quadratic
form (52) yields

b(u)>V (u)−1b(u) =

∑m
i=1 α(ui) exp

(
ε−11

√
u2i + ε22

)
∑m
k=1 exp

(
ε−11

√
u2k + ε22

)
where the coefficients α(ui) ∈ R, are defined below

α(ui) :=
u2i (1 + ε−22 u2i )

u2i (1 + ε−22 u2i ) + ε1
√
u2i + ε22

< 1 (53)

for i = 1, . . . ,m. Thanks to (53), (52) is satisfied and
λ1(V − bb>) > 0. Combining the results of Weyl’s in-
equality and the matrix determinant lemma we obtain
the following inequality

ε3I ≤ ∇2
uJu(u) ≤ I(ε3 + max{ε−11 , ε−12 }) (54)

for all u ∈ U . Then according to Proposition 5 the
cost function defined in (43) satisfies Assumption 4 with

bounds c5 = ε3 and c6 = (ε3 + max{ε−11 , ε−12 }), and im-
plies that Theorem 1 holds also for the relaxed max norm
defined in (43).

5 Simulations

We present an academic example to illustrate the effec-
tiveness of the proposed approach. We consider an ex-

osystem of the form S := diag
([

0 1/2
−1/2 0

]
, 0
)

with ini-

tial conditionw(0) := (1, 0, 1) ∈ R3. The arising solution
is of the form w(t) = (sin(t/2), cos(t/2), 1), providing a
sinusoidal reference to track and a constant disturbance
to reject. Matrices Ap(0), Bp(0), Cp(0) have been ran-
domly generated and are reported in (55) at the top of
the next page. Matrix Pp(0) is designed to extract from
w the constant part while Qp(0) selects the sinusoid as
a reference to track for the output. The nominal trans-
fer matrix H0(s) := C(0)(sI − A(0))−1B(0) has been
perturbed H(s) := H0(s) + ∆(s) by a norm-bounded
additive disturbance ∆(s), satisfying |∆(jω)| ≤ 0.1 for
all ω ∈ R≥0. Regarding the allocator, because the con-
vergence rate of a gradient descent strategy depends on
c6/c5, see [3, Page 466], we suggest to select the smooth-
ing parameters ε1, ε2, and ε3 in such a way that c6/c5 is
not excessively large. In order to facilitate the selection
we may use the explicit bounds reported in (41) and (54).
For this specific example we chose ε1 = ε2 = ε3 = 0.05.
The selection of γ can be performed in the nominal sce-
nario using (33) and afterwards decreasing its value in
order to compensate for uncertainties. In this example
we selected γ1 = 4, γ2 = 10, and γ∞ = 8, respec-
tively for the 1-2 and ∞ norm case. For the 2-norm,
W = ε3I. The initial condition for (1) has been set equal
to xp(0) = (−110, 12, 90) ∈ R3, which is large enough
so that we can illustrate global convergence towards the
steady state, while xc(0) and xa(0) have been set to zero.

Figure 2 shows the input u for the three allocation strate-
gies. For the 1 and∞-norm allocation we observe a non-
linear response due to the nonlinear gradient of the cost
function J . It is also interesting to point out that the 1-
norm can be considered as a rough approximation of the
0-norm 2 . Finally we observe that, thanks to the prop-
erties of contracting systems [15], the steady-state re-
sponse is periodic. Figure 3 shows a comparison between
the norm of ureg and u. We notice that the redundant
control action urd helps in reducing the peak values, but
we remark that the performance strongly depends on
the uncertainty level. If the plant is too uncertain, a slow
allocation must be performed and we can only hope to
optimize a constant steady state value. Figure 4 shows

2 Given a vector x ∈ Rn, the zero norm |x|0 is the number of
non-zero elements of x. It can be considered as a special case
of the Hamming distance. Notice that technically speaking
the 0-norm is not a norm because it is not homogeneous.
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A(0) B(0) P (0)

C(0) 0 Q(0)

 =


0.68 0.27 0.45 0.32 −0.35 −0.30 0.45 0 0 −0.57

−0.28 0.07 −0.44 −0.44 0.92 0.79 0.19 0 0 −0.08

0.70 −0.46 −0.18 0.48 0.03 −0.10 −0.05 0 0 0.18

0.90 0.51 −0.26 0 0 0 0 1 0 0

 (55)
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Figure 2. Comparison of the plant input u for the three al-
location strategies presented in Section 4. Respectively from
above: 1, 2 and ∞-norm allocation.
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Figure 3. Comparison among norms of the controller output
ureg and the net plant input u. From above 1, 2, and ∞ norm.

the convergence of the tracking error e. Only for the 2-
norm allocation we recover asymptotic regulation, while
in the other cases a spurious periodic perturbation due
to higher order harmonics, results into a practical regu-
lation. This is, however, a small price to pay for a consid-
erable improvement of the response in terms of sparsity
(1-norm) and overall amplitude (∞-norm) of the con-
trol effort, which are inherently nonlinear performance
metrics. Finally, it is interesting to compare the gradi-
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Figure 4. Euclidean norm of the tracking error in the case of
an uncertain plant (µ 6= 0).
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Figure 5. Gradient allocation vs MPC allocation for the
2-norm optimization problem.

ent based allocation scheme with the optimal solution to
(17) obtained numerically with an MPC scheme, formu-
lated according to the discussion in Remark 4. Toward
this goal, we discretized (17) using a Tustin algorithm
selecting a sampling time Ts = 0.005 s and a time hori-
zon T = 5 s (large enough to guarantee stability of the
closed-loop). The discretized quadratic allocation prob-
lem in Section 4.2 results into an unconstrained least
square problem which can be solved explicitly. Minimiza-
tion of the 1 and ∞ norms can be formulated as Lin-
ear Programming (LP) problems, see [3, Exercise 4.11],
and consequently used into a MPC framework. However
over-actuated systems are often large and the resulting
LP problem may be extremely demanding from a nu-
merical point of view.

From Figure 5 we observe that the MPC allocation per-
forms much better, but in contrast to the gradient allo-
cation strategy, the MPC algorithm has full access to the
plant, controller and exosystem state. On the contrary,
the gradient allocation requires only ureg to work. Fi-
nally we remark that the gradient allocation strategy de-
veloped in this paper has a plug and play structure that
can easily connected/disconnected from an pre-designed
control loop and is associated to computationally attrac-
tive implementations not requiring online optimizations.
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6 Conclusions

We defined the dynamic redundancy allocation prob-
lem for linear uncertain over-actuated systems in the
framework of robust linear output regulation. We pre-
sented a procedure to solve this problem under some
regularity conditions on the cost function and we de-
rived explicit designs for three case of practical interest.
We shown that the proposed dynamic allocation strat-
egy ensures structural stability and contractivity of the
closed-loop system and implies the existence of a unique
attractive steady-state motion. Simulations performed
on an academic example indicate that the method is ef-
fective in providing on-line minimization of the desired
cost function. It is noted, however, that nonlinear allo-
cation strategies may produce a steady-state error with
perturbed plants, pointing to the need for a redesign of
the internal model unit of the regulator to offset the spu-
rious harmonics generated by the dynamic optimizer.
The redesign of the internal model unit and the devel-
opment of better allocation strategies using the knowl-
edge of the controller state to improve performance will
be the subject of future works.
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