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Robust static output feedback design with
deterministic and probabilistic certificates

D. Arzelier, F. Dabbene, S. Formentin, D. Peaucelle, and L. Zaccarian

Abstract Static output feedback design for linear plants is well known to be a chal-
lenging non-convex problem. The presence of plant uncertainty makes this chal-
lenge even harder. In this chapter, we propose a new BMI formulation with S-
variables which includes an interesting link between state feedback, output injec-
tion, state injection and static output feedback gains in a unified framework. Based
on this formulation, the robust design problem is suitably addressed by iterative op-
timization procedures with either deterministic or probabilistic viewpoints exploit-
ing the fact that Lyapunov certificates are separated from the control gain design
variables. The deterministic approach is for affine polytopic systems. The proba-
bilistic approach requires no assumption on the uncertain system and is based on
the Scenario with Certificates (SwC) method which was recently proposed to ad-
dress certain static anti-windup design problems. Numerical results illustrate the
effectiveness of the approach in both deterministic and stochastic cases.

1 Introduction

Static output feedback (SOF) represents probably the simplest and most intuitive
way to design a feedback control law: the plant’s output is measured and fed-back
to the input, multiplied by a specifically designed static gain. Its straightforward
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implementation and the fact that the full state vector is usually not accessible, and
only a partial information is available via the measured output, render it particularly
attractive to control designers and practitioners. Moreover, it is known that differ-
ent problems related to the design of dynamic controllers, such as e.g. fixed/low-
order control, can be recast as a SOF design problem by introducing a suitable re-
parameterization [10].

However, it has been known since many years that the SOF implementation sim-
plicity is counteracted by an intrinsic complexity in obtaining strong theoretical
results: the problem is extremely difficult, and no systematic constructive numerical
solutions exist guaranteeing SOF design, or allowing to determine whether such a
feedback does not exist. Even its exact theoretical complexity is not known. Indeed,
it is easy to see that the problem is immediately rewritten in terms of a bilinear ma-
trix inequality (BMI), whose solution is known to be NP-hard [16]. The interested
reader can refer to the 1997 survey [19], or to the most recent overview [18]. In par-
ticular, in [18], the different possible solutions proposed in the literature for tackling
the SOF problem are discussed and classified according to the specific approach
adopted: i) Methods based on the numerical solution of the ensuing BMI problems:
these techniques directly tackle the bilinear problem by making recourse to specific
optimization solvers, such as e.g. the PENBMI and PENLAB toolboxes [14, 11].
ii) Methods based on Lyapunov theory: most of these methods present an iterative
algorithm in which a set of linear matrix inequalites (LMIs) is iteratively repeated
until some termination criteria are met. iii) Non-Lyapunov-based static output feed-
back control strategies, such as those based on the direct solution of the non-smooth
optimization problem of minimizing the spectral abscissa of the closed loop sys-
tem, (see for instance the free package HIFOO [13], [2] or the MATLAB c© macro
HINFSTRUCT).

Among the previously introduced classes, the Lyapunov-based one presents some
very interesting features, as pointed out in [18]. First, these techniques allow keeping
a clear insight into the original problems, insight that is usually lost when directly
tackling the problem through an optimization-based approach. Secondly, the for-
mulation in many cases immediately extends to uncertain problems, i.e. problems
in which the plant to be controlled is not perfectly known but instead is affected
by uncertainty. This is an important characteristic, which is becoming of funda-
mental importance in modern control design. Hence, iterative LMI methods allow
extending the approach to the solution of robust static output feedback (R-SOF)
problems. Clearly, the presence of plant uncertainty makes this challenging problem
even harder. Hence, if on one side one may expect that the solution of the R-SOF
problem will enlarge its practical interest, on the other side one should be aware that
R-SOF solutions may not exist in many cases.

In this chapter, we follow the Lyapunov-based approach, and we introduce a
novel BMI formulation, based on S-variables. An interesting feature of the pro-
posed formulation is that the involved design variables provide a clear link to the
state feedback, output injection, state injection and static output feedback gains. In
particular, the formulation captures all these sub-problems in a unified framework.
Moreover, the formulation immediately extends to the uncertain case, so that vertex
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results available for polytopic-type uncertainty can be directly applied. Furthermore,
it is observed that a key feature of the derived framework is that it maintains an ex-
plicit distinction between design variables (i.e. those variables directly involved in
the definition of the controller gain, and the certificates, i.e. variables whose exis-
tence is necessary to prove the existence of a SOF, but that are not involved in the
controller construction. This paves the way to the use of recent results on probabilis-
tic robust design, based on the so-called scenario-with-certificates (SwC) approach
[12]. This approach represents one of the more recent findings in the area of random-
ized methods for systems and control [4, 20], emerged in the last decade to synergize
with the standard deterministic methods for control of systems with uncertainty. Re-
sults in this area are based on a combination of probability and random sampling,
and their goal is to provide the research engineer with robustness guarantees which
hold only with high probability. The payback is a reduction in the computational
complexity of classical control algorithms, and in the conservativeness of standard
robust control techniques.

The chapter represents the confluence and combination of two different view-
points to handle uncertainty in systems: the deterministic/robust approach, in which
one is interested in obtaining guaranteed results, that hold for every possible in-
stance of the uncertainty, and the so-called probabilistic approach, which charac-
terizes the uncertain parameters as random variables, and then evaluates the system
performance in terms of probabilities. This confluence was made possible by the
farsightedness and vision of our colleague and friend Roberto Tempo (1956-2017),
recently suddenly passed away. Roberto was a strong believer in collaboration and
cross-fertilization of research. He always insisted that the two approaches should
not be viewed as alternative but rather complementary to each other: one adds to the
other.

To describe the philosophy underlying the present work, we use Roberto’s words,
taken from the proposal of one of the first formal collaborations between our two
groups:1 “Robustness can be tackled by two means. One, probabilistic, consists
in testing a finite number of configurations among the infinitely many admissible
ones. This approach is said to be optimistic in the sense that if a level of perfor-
mance is valid for all tested cases, it may not hold for the actual ones. The second
approach, deterministic, provides, using mathematical tools, a guaranteed level of
performances for all configurations. It is unfortunately conservative (or pessimistic)
in the sense that the guaranteed performance is usually worse than the worst case.
The project aims at comparing and hence enriching the optimistic and pessimistic
approaches.”

We organize the presentation in three main sections. Section 2 presents the uni-
fied S-variable formulation used throughout the chapter. Section 3 illustrates deter-
ministic results and a corresponding heuristic design procedure. Section 4 presents
parallel results providing probabilistic guarantees. Finally, we illustrate the effec-
tiveness of the proposed constructions on numerical examples in Section 5.

1 Bilateral Project “Convex optimization and randomized algorithms for robust control”
(CORARC), between IEIIT CNR and LAAS CNRS (2012).
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Notation: I stands for the identity matrix. AT is the transpose of the matrix A.
{A}S stands for the symmetric matrix {A}S = A+AT . For a matrix A ∈ Rn×m

of rank r, A⊥ ∈ Rm×(m−r) is the matrix of maximal rank such that AA⊥ = 0, and
A◦ ∈ Rr×n stands for the full rank matrix such that A◦A is full rank. A � B is the
matrix inequality stating that A−B is symmetric positive definite. The terminology
“congruence operation of A on B” is used to denote AT BA. If A is full rank, and B�
0, the congruence operation of A on B gives a positive definite matrix: AT BA� 0. A
matrix inequality of the type N(X)� 0 is said to be a linear matrix inequality (LMI
for short), if N(X) is affine in the decision variables X . In the following, decision
variables are highlighted2 using the blue color. Φv̄ = {φv=1...v̄ ≥ 0, ∑

v̄
v=1 φv = 1} is

the unitary simplex in Rv̄. The elements φ of unitary simplexes are used to describe
polytopic type uncertainties. In the following, uncertainties φ are highlighted using
the red color.

2 S-variables formulation of robust stability

We consider an LTI uncertain system that depends on a vector of constant but un-
certain parameters q (to our knowledge the proposed results are the first to address
the case where all matrices are parameter-dependent):(

ẋ
y

)
=

[
A(q) B(q)
C(q) 0

](
x
u

)
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the vector of control inputs, and y ∈ Rp

is the vector of measured outputs. We assume that the uncertain parameters q take
values in a set Q whose structure will be specified next, depending on whether a
deterministic or a probabilistic approach is adopted for the static output feedback
stabilizer design.

For the uncertain system (1), our primary goal is to design a robustly stabilizing
static output feedback gain, clarified next:

(OF) Goal. Design a static output feedback gain F , such that the closed loop be-
tween plant (1) and u=Fy, corresponding to ẋ=(A(q)+B(q)FC(q))x is robustly
stable, namely the matrix A(q)+B(q)FC(q) is Hurwitz for all q ∈Q.

A suggestive aspect of the approach presented in the sequel is that a few auxiliary
(and arguably simpler) problems will turn out to be instrumental for the solution of
the (OF) Goal, and correspond to:

• (SF) Goal. Design a State Feedback gain K such that the closed loop between
plant (1) and u = Kx, corresponding to ẋ = (A(q)+B(q)K)x is robustly stable.

• (OI) Goal. Design an Output Injection gain L such that the closed loop ẋ =
(A(q)+LC(q))x is robustly stable.

2 Not available in the html-only version of the book.
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• (SI) Goal. Design a State Injection gain J such that the closed loop ẋ = (A(q)+
J)x is robustly stable.

For the problems above, a necessary condition for the existence of a solution to
the (SF) Goal is that the pair (A(q),B(q)) is stabilizable for all q ∈ Q. Moreover, a
necessary condition for the existence of a solution to the (OI) Goal is that the pair
(C(q),A(q)) is detectable for all q ∈Q (indeed L is well understood as the gain of a
full order Luenberger observer). Finally, both conditions above are necessary for the
existence of a solution to our main goal (OF), whereas goal (SI) is trivial and always
feasible as long as Q is bounded and matrix A(·) is a locally bounded function.

The heuristic approach proposed in this chapter for the solution of the (OF) Goal
is based on a main result presented here, wherein we manage to represent all the
design goals (OF), (SF), (OI), (SI) listed above within a single matrix inequality
depending bilinearly on a set of variables to be (optimally) selected. This matrix in-
equality arises from the dual calculations associated with [9, Thm 6.8], and involves
a Lyapunov certificate X(q)� 0 and a number of S-variables. It corresponds to: 0 0 X(q)

0 0 0
X(q) 0 0


≺




I

−
(

λ

[
C(q)
0p−n,n

]
+M(q)

)
−A(q)

S1(q)+

 0
S2

B(q)Z

[0 I −HT ]


S

.

(2)

In particular, the relation between feasibility of (2) for certain selections of the blue
variables, and the four design problems (OF), (OI), (SF) and (SI) is clarified in the
next main result.

Theorem 1. Consider system (1) and any selection of variables X > 0, λ , M, S1, S2,
Z, H satisfying (2) for all q ∈Q. The following holds:

• (OF) if λ = 1, M(q) = 0 for all q ∈ Q and S2 is nonsingular, then selection F =

−ZS−1
2

[
Ip

0n−p,p

]
solves the (OF) goal;

• (OI) if λ = 1 and M(q) = 0 for all q ∈ Q, then selection L = H
[

Ip
0n−p,p

]
solves

the (OI) goal;
• (SF) if λ = 0, M(q) = M is common to all q ∈ Q, and S2 is nonsingular, then

K =−ZS−1
2 M solves the (SF) goal;

• (SI) if λ = 0 and M(q) = M is common to all q ∈Q, then J = HM solves the (SI)
goal.

We shall prove the four items of the theorem one by one. In particular, given
any q ∈ Q, for each one of the four items, we show below that the corresponding
closed-loop matrix is Hurwitz. But before going into each individual proof, let us
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state the following facts. Assuming invertibility of S2, the congruence operation of[
I 0 0
0 B(q)(−ZS−1

2 ) I

]
on (2) implies

[
0 X(q)

X(q) 0

]
≺


 I

−A(q)−B(q)(−ZS2
−1)

(
λ

[
C(q)
0p−n,n

]
+M(q)

) Ŝ1(q)


S

(3)

where Ŝ1(q)= S1

[
I 0 0
0 B(q)(−ZS−1

2 ) I

]T

, and the congruence operation of
[

I 0 0
0 H I

]
on (2) implies

[
0 X(q)

X(q) 0

]
≺


 I

−A(q)−H
(

λ

[
C(q)
0p−n,n

]
+M(q)

) Š1


S

(4)

where Š1 = S1

[
I 0 0
0 H I

]T

. The uncertainty q will be omitted in most steps of the

following proofs to simplify the notations.
Proof of (OF). We need to show that matrix A(q)+B(q)FC(q) = A+BFC is Hur-
witz. Using the assumption that λ = 1, M(q) = 0, invertibility of S2, and the selec-

tion F =−ZS−1
2

[
Ip

0n−p,p

]
, inequality (3) implies

[
0 X
X 0

]
≺
{[

I
−A−BFC

]
Ŝ1

}S

. (5)

This S-variable inequality, together with X � 0, implies that A + BFC is Hur-
witz (see [9]). This is also corroborated by performing a congruence operation of[

A+BFC I
]

on (5) which gives the classical Lyapunov inequality: (A+BFC)X+
X(A+BFC)T ≺ 0.
Proof of (OI). We need to show that matrix A(q) + LC(q) = A + LC is Hurwitz.

Using the assumption that λ = 1, M(q) = 0, and the selection L = H
[

Ip
0n−p,p

]
,

inequality (4) implies [
0 X
X 0

]
≺
{[

I
−A−LC

]
Š1

}S

.

This S-variable inequality, together with X � 0, implies that A+LC is Hurwitz.
Proof of (SF). We need to show that matrix A(q) +B(q)K = A+BK is Hurwitz.
Using the assumption that λ = 0, invertibility of S2, and the selection K =−ZS−1

2 M,
inequality (3) implies
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0 X
X 0

]
≺
{[

I
−A−BK

]
Ŝ1

}S

.

This S-variable inequality, together with X � 0, implies that A+BK is Hurwitz.
Proof of (SI). We need to show that matrix A(q)+ J = A+ J is Hurwitz. Using the
assumption that λ = 0 and the selection J = HM, inequality (4) implies[

0 X
X 0

]
≺
{[

I
−A− J

]
Š1

}S

.

This S-variable inequality, together with X � 0, implies that A+ J is Hurwitz. �

Remark 1. Theorem 1 establishes conditions for specific selections of variables λ

and M. Alternative cases are also of interest. In particular, for the general case when
M 6= 0 and λ 6= 1, S-variable conditions (3) and (4) show respectively that matrices

A(q)−B(q)ZS−1
2

(
λ

[
C(q)

0n−p,p

]
+M(q)

)
and A(q)+H

(
λ

[
C(q)

0n−p,p

]
+M(q)

)
are

Hurwitz. These properties clarify the rationale behind the heuristic algorithm pro-
posed in the next section, which stems from picking an initial “simple” selection
such that A(q)+HM be Hurwitz, and then performing iterations aiming at mini-
mizing the norm of M(q) while converging to λ = 1, so that the first one of the two
matrices above corresponds to the closed loop with the static output feedback gain.

3 Robust Deterministic Static Output Feedback Design

3.1 Deterministic robust stability

In the deterministic approach addressed in this section, we shall assume a polytopic
uncertainty structure where the matrices in (1) lie in the convex hull of vertices
computed at extremal values q[v], v = 1, . . . , v̄, with v̄ being the number of vertices
of the polytopic representation:

Q= {q =
v̄

∑
v=1

φvq[v], φ = (φ1, . . . ,φv̄) ∈Φv̄}. (6)

A model from this uncertain polytopic set is parameterized by the barycentric coor-
dinates φ ∈Φv̄ in the following form:(

ẋ
y

)
=

[
Aφ Bφ

Cφ 0

](
x
u

)
=

v̄

∑
v=1

φv

[
A(q[v]) B(q[v])
C(q[v]) 0

](
x
u

)
. (7)

Alternatively, in the probabilistic approach addressed in Section 4, we will assume
a more general not necessarily convex dependence of the matrices in (1) on q, not
requiring convexity of the uncertainty set.
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The polytopic representation in (7), together with the peculiar structure of the S-
variable characterization in (2), allows providing bilinear conditions imposed at the
vertices of the polytope (6). Then, we may apply convex combinations to conclude
robust stability in the whole polytope, as long as the dependence on the uncertain
parameters is affine. In particular, a problematic term arises from the product be-
tween S1(q) and other uncertain variables in (2). Due to this fact, we propose the
use of a more conservative condition, corresponding to 0 0 X [v]

0 0 0
X [v] 0 0



≺




I

−
(

λ

[
C(q[v])
0p−n,n

]
+M[v])

)
−A(q[v])

S1 +

 0
S2

B(q[v])Z

[0 I −HT ]


S

,

(8)

for all v = 1 . . . v̄, where we selected a common value S1 for all the values of q ∈Q.
We may then prove the following Corollary to Theorem 1.

Corollary 1. Consider system (7) and any selection of variables X [v] � 0, λ , M[v],
S1, S2, Z, H satisfying (8) for all v = 1 . . . v̄. The following holds:

• (OF) if λ = 1, M[v] = 0 for all v = 1 . . . v̄, and S2 is nonsingular, then selection

F =−ZS−1
2

[
Ip

0n−p,p

]
solves the (OF) goal;

• (OI) if λ = 1 and M[v] = 0 for all v = 1 . . . v̄, then selection L = H
[

Ip
0n−p,p

]
solves

the (OI) goal;
• (SF) if λ = 0, M[v] = M is common to all v = 1 . . . v̄, and S2 is nonsingular, then

K =−ZS−1
2 M solves the (SF) goal;

• (SI) if λ = 0 and M[v] = M is common to all v = 1 . . . v̄, then J = HM solves the
(SI) goal.

Proof. The proof is based on the selection of the parameter dependent matrix Xφ =

∑
v̄
v=1 φvX [v] � 0, which emerges naturally when performing a convex combination,

through φ of inequalities (8), providing

 0 0 Xφ

0 0 0
Xφ 0 0

≺



I

−
(

λ

[
Cφ

0p−n,n

]
+Mφ

)
−Aφ

S1 +

 0
S2

Bφ Z

[0 I −HT ]


S

. (9)

Since equation (9) involves the matrices of the uncertain system (7), the proof is
completed following steps parallel to those of the proof of Theorem 1, using the
polytopic stability certificate Xφ . �
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Remark 2. While Theorem 1 provides conditions that are hard to check in practice,
Corollary 1 corresponds to a conservative way to obtain a viable practical approach
to the problem. In particular, the use of a common value of S1 for all vertices is key
to ensuring the affine nature of the conditions with respect to the polytopic uncer-
tainty in (6), so that the convex combination can be carried over to the uncertainty-
dependent conditions in (8). Note that while the common value of S1 may be a
source of conservatism of the tractable conditions of Corollary 1 (as compared to
those of Theorem 1), a byproduct is the polytopic nature of the selected Lyapuonv
function (see [9, Lemma 3.3] which proves that the search for polytopic Lyapunov
certificates is lossless under the constraint that the S-variable is common to all un-
certainties). More general parameter-depedent Lyapunov functions may be effective
at reducing the conservatism, perhaps at the expense of a higher computational bur-
den. This is one of the goals of the probabilistic approach adopted in Section 4.

3.2 Iterative heuristic for deterministic robust control

In this section we propose a heuristic procedure to design a robust static output feed-
back exploiting the matrix inequalities (8) and Corollary 1. The proposed approach
is an iterative procedure to address the bilinear nature of (8), while starting from a
reasonable initial condition. It consists of three fundamental phases:

• an initialization phase, which solves the (SI) and (SF) goals, also providing an
initial guess of a solution to (8) having promising features in terms of conver-
gence to the condition λ = 1 and M(·)≡ 0 required in item (OF) of Corollary 1;
• an iteration phase, which iterates between two steps aiming at refining the can-

didate solution to the BMI in the direction of this necessary condition λ = 1
and M(·)≡ 0;
• a validation phase, comprising a semidefinite program solving the (OF) and

(OI) goals, thus providing a static output feedback selection if the previous
phase converged to a solution sufficiently close to the condition λ = 1 and
M(·)≡ 0.

Let us present the three above-mentioned phases one by one.

3.2.1 Initialization phase

The initialization phase aims at finding an initial selection of X [v] > 0, λ , M[v], S1,
S2, Z, H satisfying (8). A possible strategy is to fix variables λ , M[v], and H, so that
optimizing the remaining variables is a convex LMI problem. We then select these
variables according to the following straightforward consequence of Corollary 1.

Proposition 1. For a selection X [v] � 0, λ = 0, M[v] = M, S1, S2, Z, H to be a
solution of (8), it is necessary that A(q)+J = A(q)+HM be Hurwitz for all q ∈Q.
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Motivated by the proposition above, we propose the following selection:

λ = λ0 = 0, M[v] = M0, H = H0 = J0M−1
0 , (10)

where J0 ensures that A(q)+ J0 be Hurwitz for all q ∈Q, and M0 is some invert-
ible common selection of M[v]. More specifically, keep in mind that we aim for the
following convergence

λ

[
C(q)

0n−p,p

]
+M(q)→

[
C(q)

0n−p,p

]
.

A natural choice of initial M0 is hence such that its first p rows mimic C(q). There-
fore define Cm = 1

v̄ ∑
v̄
v=1 C(q[v]) the average of all matrices computed at vertices, and

choose

M0 =

[
C◦mCm
C⊥T

m

]
. (11)

In this way M0 is square and non-singular and its first rows span the same range as
the average of the C(q) matrices.

For the initial guess of the SI matrix J0 in (10), to ensure that A(q)+J0 be robustly
stable, let µ denote the maximum real part of all matrices A(q[v]). Then we may
select

J0 = (−µ−h)I, (12)

where h > 0 is a positive scalar. For a sufficiently large value of h, matrix A(q)+ J0
is then robustly stable. Clearly, increasing h provides a natural way to strengthen this
robust stability condition, and is the baseline intuition for the initialization algorithm
below.

Phase 1. INITIALIZATION (PROVIDES SOLUTIONS TO (SI) AND (SF))

1: Input: Select the initial values as per (10)–(12) with h = 1.
2: Iteration: Solve the following LMI problem for v = 1 . . . v̄:

X [v] � 0, 0 0 X [v]

0 0 0
X [v] 0 0

≺

 I
−M0

−A(q[v])

S1 +

 0
S2

B(q[v])Z

[ 0 I −HT
0
]

S

.
(13)

If (13) is feasible, go to the next step. Otherwise, increase h, redefine H0 according to (10), (12)
and repeat step 2. If for larger values of h no solution exists, then stop: the iterative heuristic
fails.

3: Output If a solution X [v], S1, S2, Z to (13) is found, then output S1,0 = S1, K̂0 = −ZS−1
2 ,

K =−ZS−1
2 M0 and J = H0M0. From Corollary 1, K and J are proved to be robustly stabilizing

SF and SI gains, respectively.

It is emphasized that there is no guarantee that the algorithm provides a cor-
rect solution, and even in the case where there exists a gain K inducing a common
quadratic Lyapunov certificate X for the corresponding matrices A(q[v])+B(q[v])K,
it is unclear how to get a proof of its successful termination. Nevertheless, practical
experience revealed that the algorithm is quite effective in finding a feasible solution
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to (8). Moreover, there was not a need to iterate on the value of h. If the LMIs were
unfeasible for h = 1, then they happened to be unfeasible for larger values as well.

3.2.2 Iteration phase

If the initialization phase provides an initial feasible solution to (8), we may proceed
with the iteration phase, whose goal is (starting from λ0 = 0 and M0) to iteratively
reach a solution where λ = 1 and M[v] = 0. This is done by maximizing λ ∈ [0 1 ]
with a constraint on the norm of M[v] of the type (1−λ )I �MT M and as formalized
next.

Phase 2. ITERATION

1: Input: Start from the initial guess S1,0 and K̂0 provided by Phase 1 (initialization phase).
Initialize k = 0.

2: Step k,1: Let k := k+1. For a fixed K̂k−1, S1,k−1 coming from the previous step, maximize λ

under the following LMI conditions for v = 1 . . . v̄

X [v] � 0,

[
(1−λ )I M[v]T

M[v] I

]
� 0, λ ≥ 0,

 0 0 X [v]

0 0 0
X [v] 0 0



≺




I

−
(

λ

[
C(q[v])
0p−n,n

]
+M[v]

)
−A(q[v])

S1,k−1 +

 0
−I

B(q[v])K̂k−1

[ 0 −S2 Y T
]

S

at the optimum set λk = λ , M[v]
k = M[v] and HT

k = S−1
2 Y T .

If 1−λk is smaller than a (small) tolerance, then Fk = K̂k−1

[
Ip

0n−p,p

]
and Lk = Hk

[
Ip

0n−p,p

]
are reasonable candidates (OF) and (OI) robustly stabilizing gains, respectively. Therefore,
transfer selection Hk to the validation phase. Otherwise, go to Step k,2.

3: Step k,2: For fixed λk, M[v]
k and Hk coming from the previous step, search by bisection the

smallest α ∈ [0 1] such that the following LMIs hold for v = 1 . . . v̄

X [v] � 0, 0 0 X [v]

0 0 0
X [v] 0 0

≺

 I
−M̂[v](α)

−A(q[v])

S1 +

 0
S2

B(q[v])Z

[ 0 I −HT
k

]
S

where M̂[v](α) =

(
(1+α(λk−1))

[
C(q[v])
0p−n,n

]
+αM[v]

k

)
. At the optimum set αk = α , K̂k =

−ZS−1
2 and S1,k = S1.

If αk is smaller than a (small) tolerance, then Fk = K̂k

[
Ip

0n−p,p

]
and Lk = Hk

[
Ip

0n−p,p

]
are rea-

sonable candidates (OF) and (OI) robustly stabilizing gains, respectively. Therefore, transfer
selection Hk to the validation phase. Otherwise, go to Step k+1,1.
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The key feature enjoyed by the two steps of the procedure listed in Phase 2 above,
is that whenever moving from one step to the next one, the quality of the optimized
solution (in terms of size of 1−λ or α) cannot get worse. This is clarified in the
next proposition, whose proof is straightforward.

Proposition 2. For the iterations listed in Phase 2, the following holds:

• Given any initial solution provided by Phase 1, the conditions at Step 1,1 are
feasible for λ = 0;
• Given any solution from Step k,1, Step k,2 is feasible for α = 1;
• Given any solution from Step k,2, Step k+1,1 is feasible for λ = λk + (1−

λk)(1−αk).

3.2.3 Validation phase

This heuristic algorithm is completed by a validation phase, which comprises the
solution of an LMI, parameterized by matrix H, selected according to the iteration
phase of the previous section.

Phase 3. VALIDATION (PROVIDES SOLUTIONS TO (OI) AND (OF))

1: Input: Start from matrix H, produced as an output of Phase 2 (iteration).
2: Validation Step: Solve the following LMI feasibility problem for v = 1 . . . v̄

X [v] � 0,

 0 0 X [v]

0 0 0
X [v] 0 0

≺



I

−
[

C(q[v])
0p−n,n

]
−A(q[v])

S1 +

 0
S2

B(q[v])Z

[ 0 I −HT
]

S

.

(14)

If a solution is found, then from Corollary 1 F = −ZS−1
2

[
Ip

0n−p,p

]
and L = H

[
Ip

0n−p,p

]
are

respectively proved to be robustly stabilizing (OF) and (OI) gains. Otherwise the validation
phase fails and the algorithm should go back to the iteration phase reducing the tolerance for
α and λ .

Note that the LMI conditions in the Validation Step are guaranteed to be feasi-
ble whenever matrix H coming from the iteration step was associated with λ = 1
(equivalently, from Proposition 2, α = 0). However, in general one may find it con-
venient to run the validation step even for cases where these conditions are not
exactly met. Due to this fact, and possibly due to numerical errors, it makes sense to
possibly come back to the iteration phase (from a failing validation phase) to further
improve, via extra iterations, the previous candidate selection of H.
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4 Probabilistic Static Output Feedback Design

As emphasized in the previous section, using a polytopic approach to address the
design of suitable matrices guaranteeing the conditions in Theorem 1 may be too
conservative for the problem at hand. For this reason, in this section we follow an
alternative paradigm based on a probabilistic approach, which allows for uncertain
dynamics more general than (7) (thereby not requiring convexity with respect to the
uncertainty q), enables using multipliers that are not necessarily common among
the samples, reaches beyond the use of polytopic Lyapunov certificates, but comes
at the expense of providing a probabilistic guarantee of robust stability (rather than
a deterministic one), in addition to typically being computationally more expensive.

In particular, throughout this section we do not assume that the uncertainty lies in
a convex polytope, but we consider a more general setup, in which the state matrices
in (1) may be generic continuous (possibly nonlinear) functions of the uncertainty
parameter q. On the other hand, following a classical probabilistic approach [4, 20],
we require to have additional probabilistic information on the uncertainty. Formally,
we assume that A(q),B(q),C(q) are continuous measurable functions of q, and that
q is a random variable with probability distribution Pr with support Q. Such a proba-
bility distribution may describe the likelihood of each occurrence of the uncertainty,
or a user-defined weight for all possible uncertain situations.

Then, randomized algorithms are applied to design a controller that guarantees
performance with a prescribed level of probability. These algorithms are based on
the extraction of random samples of the uncertainty

q(1) . . .q(r̄) ∈Q,

and the construction of sampled convex programs. The focus of this approach is in
the derivation of sample complexity bounds, i.e. bounds on the number of samples
to be extracted so as to ensure that the desired probabilistic guarantees are met.

In the next section, we briefly recall the so-called scenario approach originally
presented in [3] for dealing with convex optimization problems in the presence of
uncertainty.

4.1 The scenario approach

Let us consider a generic class of robust convex optimization problems of the form

θ RO = arg min
θ∈Θ

cT
θ (15)

s.t. f (θ ,q)≤ 0, ∀q ∈Q,

where θ ∈Θ denotes the design variable, bounded in a domain Θ , which is a convex
and compact set in Rnθ , and q is the uncertainty, bounded in the uncertainty set Q,
not necessarily compact. For a given q ∈Q, f (θ ,q) is a convex function of the op-
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timization variable. Furthermore, we assume that f (θ ,q) is a continuous (possibly
nonlinear) function of q for any given θ .

To construct a sampled convex program, N independent identically distributed
(i.i.d.) samples are extracted according to the probability distribution of q, and the
following scenario optimization problem, based on r̄ instances (scenarios) of the
uncertain constraints

θ SO = argmin
θ∈Θ

cT
θ (16)

s.t. f (θ ,q(r))≤ 0, r = 1 . . . r̄.

Problem (16) represents a sampled relaxation of Problem (15), since it deals only
with a subset of the (infinite number of) constraints considered in (15), accord-
ing to the probability distribution of the uncertainty. However, under rather mild
assumptions on Problem (15), by suitably choosing r̄, this approximation may in
practice become negligible in some probabilistic sense. Specifically, r̄ can be se-
lected depending on the level of “risk” of constraint violation that the user is willing
to accept. To this end, we define the violation probability of a design θ as follows

Viol(θ) .
= Pr{q ∈Q : f (θ ,q)> 0} (17)

The following result has been proven in [6].

Proposition 3. [6] Assume that, for any multisample extraction, Problem (16) is
feasible and attains a unique optimal solution. Then, given an accuracy level ε ∈
(0,1), the solution θ SO of Problem (16) satisfies

Pr{Viol(θ SO)> ε} ≤ B(r̄,ε,nθ ), (18)

where

B(r̄,ε,nθ )
.
=

nθ−1

∑
k=0

(
r̄
k

)
ε

k(1− ε)(r̄−k). (19)

We note that non-uniqueness of the optimal solution can be circumvented by
imposing additional “tie-break” rules in the problem, see, e.g., Appendix A of [3].
Also, in [5] it is shown that the feasibility assumption can be removed at the expense
of substituting nθ −1 with nθ in B(r̄,ε,nθ ).

From (18), explicit bounds on the number of samples necessary to guarantee the
“goodness” of the solution have been derived. The bound provided in [1] shows that,
if, for given ε,δ ∈ (0,1), the sample complexity r̄ is chosen to satisfy the sample-
complexity bound

r̄ ≥ e
ε(e−1)

(
ln

1
δ
+nθ −1

)
(20)

(where e denotes the Euler number), then the solution θ SO of Problem (16) satisfies
Viol(θ SO) ≤ ε with probability 1− δ . This bound improves by a constant factor
upon previous bounds, see e.g. [5], and it shows that Problem (16) exhibits linear
dependence in 1/ε and nθ , and logarithmic dependence on 1/δ . Note however that,
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from a practical viewpoint, it is always preferable to numerically solve the one-
dimensional problem of finding the smallest integer r̄ such that B(r̄,ε,nθ )≤ δ .

4.2 Scenario with certificates

The classical scenario approach previously discussed deals with uncertain optimiza-
tion problems where all variables θ are to be designed. On the other hand, in the
design with certificates approach we distinguish between design variables θ and
certificates ξ . The certificates are represented here in green color, and correspond to
those variables which are not involved in the construction of the design, but whose
existence is necessary for its derivation. A classical example of certificates are Lya-
punov functions for proving stability.

Formally, we consider a function f (θ ,ξ ,q), jointly convex in θ ∈ Θ and ξ ∈
Ξ ⊆Rnξ for given q ∈Q, and study the following robust optimization problem with
certificates

θ RwC = argmin
θ

cT
θ (21)

s.t. θ ∈S (q), ∀q ∈Q,

where the set S (q) is defined as

S (q) .
= {θ ∈Θ | ∃ξ = ξ (q) ∈ Ξ satisfying f (θ ,ξ ,q)≤ 0} .

From the above formulation, the role of certificates is clear: for any value of the
uncertainty, the existence of a certificate (possibly depending on the given value
of q) is required.

A key observation is that the set S (q) is convex in θ for any given q, see [12,
Theorem 1]. These observations lead to the introduction of the following scenario
with certificates problem, based again on a sample extraction, to approximate Prob-
lem (21), inspired by a similar approach proposed in [17] for the iterative solution
of parameter-dependent LMIs:

θ SwC = arg min
θ ,ξ (1),...,ξ (r̄)

cT
θ (22)

s.t. f (θ ,ξ (r),q(r))≤ 0, r = 1 . . . r̄.

Note that, contrary to Problem (16), in this case a new certificate variable ξ (r) is
created for every sample q(r), r = 1, . . . , r̄. To analyze the properties of the solution
θ SwC, we note that, in the case of SwC, the violation probability of design θ are
given by

Viol(θ) = Pr
{

q ∈Q |@ξ ∈ Ξ satisfying f (θ ,ξ ,q)≤ 0
}
.
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Then, the following theorem can be stated, from [12, Thm 1].

Theorem 2. [12] Assume that, for a multisample extraction, Problem (22) is feasi-
ble and attains a unique optimal solution. Then, given an accuracy level ε ∈ (0,1),
the solution θ SwC of Problem (22) satisfies

Pr{Viol(θ SwC)> ε} ≤ B(r̄,ε,nθ ). (23)

We remark that Problem (22) has r̄ separate constraints, one for each q(r), and
each constraint involves a different certificate. However, notice that the dimension
nξ of the certificates ξ does not enter into the right-hand side of the probability
bound (23) in Theorem 2. Hence, the sample complexity of Problem (22) is smaller
than that of the scenario counterpart of the problem with common certificates, in
which both θ and ξ play the role of design variables. On the other hand, the com-
plexity of solving Problem (22) is higher, since the number of optimization variables
significantly increases, because a different variable ξ (r) is introduced for every sam-
ple q(r). This increase in complexity is not surprising, being Problem (22) much
more difficult than the robust problem involving common certificates.

4.3 Probabilistic robust stability

In this section, we exploit the SwC setting previously discussed to derive a sample-
based heuristic for designing a SOF controller guaranteeing robust stability in prob-
ability.

To this end, we revisit the heuristic approach presented in Section 3.2, and ob-
serve that both the initialization and the validation phases involve the solution of
uncertain LMI problems, where the values of λ , M and H are fixed (λ = 0, M = M0,
H = H0 in Phase 1 and λ = 1, M = 0, H = H in Phase 3). In that case, the necessity
of having a convex formulation with respect to q forced us to impose the S-variable
S1(q) to be fixed and independent of q. This limitation can be lifted in the sample-
based approach, due to the general result of Theorem 2.

In the following corollary, which is a direct application of Theorems 1 and 2, we
show how a sample-based approximation of Problem (2) with fixed values of λ , M,
and H, can be derived, together with a precise characterization of its probabilistic
properties.

Corollary 2. Given ε,δ ∈ (0,1), extract r̄ i.i.d. samples q(1) . . .q(r̄) of the uncer-
tainty q ∈Q, where r̄ satisfies

r̄ ≥ e
ε(e−1)

(
ln

1
δ
+n(n+m)−1

)
. (24)

Consider a selection of λ ∈ [0,1], M and H. If there exist matrices S2, Z, and
certificates X (r) � 0, S(r)1 , satisfying for r = 1 . . . r̄,
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0 0 0
X (r) 0 0



≺




I

−
(

λ

[
C(q(r))
0p−n,n

]
+M

)
−A(q(r))

S(r)1 +

 0
S2

B(q(r))Z

[0 I −HT ]


S

,

(25)

then, we guarantee with confidence at least 1−δ , a probability of at least 1−ε that

• (OF) if λ = 1, M = 0 and S2 is invertible, then selection F = −ZS−1
2

[
Ip

0n−p,p

]
solves the (OF) goal;

• (OI) if λ = 1 and M = 0, then selection L = H
[

Ip
0n−p,p

]
solves the (OI) goal;

• (SF) if λ = 0 and S2 is invertible, then K =−ZS−1
2 M solves the (SF) goal;

• (SI) if λ = 0, then J = HM solves the (SI) goal.

4.4 Iterative heuristic for probabilistic robust control

In the sequel, we show how the application of Corollary 2 allows deriving a sample-
based version of the heuristic introduced in Section 3.2 for the deterministic case.
In particular, the proposed approach involves again three phases:

1. An initialization phase, in which a sample-based SwC problem is solved, lead-
ing to the construction of initial candidate variables to be passed to the iteration
phase. In particular, this first phase returns, as a side-result, the design of proba-
bilistic solutions to the robust state feedback (SF) and state injection (SI) goals.
More specifically, we are able to assess precise probabilistic properties of these
solutions, in terms of the measure of the uncertainty set that it may fail to stabi-
lize.

2. An iteration phase, in which a small subset r̄d ≤ r̄ of the samples employed in
the first phase is randomly selected (for instance, the first r̄d ones), and is used
in an iterative way to “push” the design obtained in the first phase (wherein
λ = 0) towards a SOF design (wherein we need λ = 1).

3. A validation phase where, based on matrix H of the previous phase, a sample-
based SwC problem is solved for the design of probabilistic solutions to the
robust output feedback (OF) and output injection (OI) goals.

It should be noted that if Phase 3 fails, one may investigate more accurate se-
lections of matrix H by repeating phase 2 with a larger number r̄d of samples from
Phase 1.
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4.4.1 Sample-based initialization phase

The initialization phase represents, substantially, the sample-based equivalent of
Phase 1 presented in Section 3.2.1.

Phase 1. SAMPLE-BASED INITIALIZATION (PROVIDES PROBABILISTIC SOLUTIONS TO (SI)
AND (SF))

1: Input: Select the initial values as per (10)–(12) with h = 1.
2: Sample generation: Given probabilistic levels δ ,ε ∈ [0,1], set r̄ as per (24), and generate r̄

i.i.d. samples q(1) . . .q(r̄) according to distribution Pr.
3: Iteration: Solve the following sampled feasibility problem for r = 1 . . . r̄

X (r) � 0, 0 0 X (r)

0 0 0
X (r) 0 0

≺

 I
−M0

−A(q(r))

S(r)1 +

 0
S2

B(q(r))Z

[ 0 I −HT
0
]

S

(26)

If (26) is feasible, go to the next step. Otherwise, increase h, redefine H0 according to (10), (12)
and repeat step 2. If for larger values of h no solution exists, then stop: the iterative heuristic
fails.

4: Output If a feasible solution to (26) is found, then output K̂0 = −ZS−1
2 , K = −ZS−1

2 M0, J =

H0M0, together with samples q(1) . . .q(r̄) and the corresponding S-variables S(1)1 . . . S(r̄)1 , S2, Z.

Also in this case, there is no guarantee, even in a probabilistic sense, that this
step of the algorithm will return a feasible solution. However, if a solution is re-
turned, then by Corollary 2 K and J defined in Step 4 are guaranteed to solve in
a probabilistic way the robust state feedback (SF) and state injection (SI) goals,
respectively. Moreover, its output constitutes the initialization step of the iteration
phase presented next.

4.4.2 Sample-based iteration phase

The objective of this phase is to iteratively “push” the initial solution to (25) pro-
vided by Phase 1 (with λ0 = 0, M = M0) towards a solution to (25) with λ = 1 and
M = 0. This phase represents a completely heuristic procedure, which, if successful,
returns a parameter H for the next validation phase, which is instead based on the
rigorous results of Corollary 2.

This phase is the one that is computationally most expensive. To alleviate the
computational load, a subset of r̄d ≤ r̄ design samples is selected among the samples
returned by Phase 1.

Phase 2. SAMPLE-BASED ITERATION

1: Input: Start from the initial guess K̂0 provided by Phase 1 (initialization phase). Initialize k = 0
2: Design samples selection Select a (small) number r̄d≤ r̄ of samples q(r) and the corresponding

S-variables S(r)1,0 := S(r)1 , r = 1 . . . r̄d returned by Phase 1.



Robust static output feedback design with deterministic and probabilistic certificates 19

3: Step k,1: Let k := k+ 1. For fixed K̂k−1, S(r)1,k−1 coming from the previous step, maximize λ

under the following conditions for r = 1 . . . r̄d

X (r) � 0,

[
(1−λ )I M(r)T

M(r) I

]
� 0, λ ≥ 0,

 0 0 X (i)

0 0 0
X (r) 0 0



≺




I

−
(

λ

[
C(q(r))
0p−n,n

]
+M(r)

)
−A(q(r))

S(r)1,k−1 +

 0
−I

B(q(r))K̂k−1

[ 0 −S2 Y T
]

S

at the optimum set λk = λ , M(r)
k = M(r) and HT

k = S−1
2 Y T .

If 1− λk is smaller than a (small) tolerance level, then Fk = K̂k−1

[
Ip

0n−p,p

]
and Lk =

Hk

[
Ip

0n−p,p

]
are reasonable candidates (OF) and (OI) robustly stabilizing gains, respectively.

Therefore, transfer selection Hk to the validation phase. Otherwise, go to Step k,2.
4: Step k,2: For fixed λk, M(r)

k and Hk coming from the previous step, search by bisection the
smallest α ∈ [0 1] such that the following inequalities hold for r = 1 . . . r̄d

X (r) � 0, 0 0 X (r)

0 0 0
X (r) 0 0

≺

 I
−M̂(q(r),α)

−A(q(r))

S(r)1 +

 0
S2

B(q(r))Z

[ 0 I −HT
k

]
S

where M̂(q(r),α) =

(
(1+α(λk−1))

[
C(q(r))
0p−n,n

]
+αM(r)

k

)
. At the optimum set αk = α , K̂k =

−ZS−1
2 and S(r)1,k = S(r)1 .

If αk is smaller than a (small) tolerance level, then Fk = K̂k

[
Ip

0n−p,p

]
and Lk =Hk

[
Ip

0n−p,p

]
are

reasonable candidates OF and OI robustly stabilizing gains, respectively. Therefore, transfer
selection Hk to the validation phase. Otherwise, go to Step k+1,1.

Similar to its deterministic counterpart, the iterations in Phase 2 guarantee that
the quality of the optimized solution does not get worse. In particular, the results of
Proposition 2 still hold.

4.4.3 Sample-based validation phase

The validation phase, uses matrix H returned by the iterations in Phase 2 to construct
a scenario with certificates problem.

Phase 3. SAMPLE-BASED VALIDATION (PROVIDES PROBABILISTIC SOLUTIONS TO (OI) AND
(OF))

1: Input: Start from matrix H, produced as an output of Phase 2 (iteration).
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2: Sample generation: Given probabilistic levels δ ,ε ∈ [0,1], set r̄ as per (24), and generate r̄
i.i.d. samples q(1) . . .q(r̄) according to distribution Pr.

3: Validation Step: Solve the following sampled problem for r = 1 . . . r̄:

X (r) � 0, 0 0 X (r)

0 0 0
X (r) 0 0

≺



I

−
[

C(q(r))
0p−n,n

]
−A(q(r))

S(r)1 +

 0
S2

B(q(r))Z

[ 0 I −HT
]

S

(27)

If a solution is found, then from Corollary 2 selections F = −ZS−1
2

[
Ip

0n−p,p

]
and L =

H
[

Ip
0n−p,p

]
are probabilistic solutions to the output feedback (OF) and the Output Injection

(OI) goals, respectively. Otherwise, the validation phase fails and the algorithm should go back
to the iteration phase, increasing the number of selected samples by choosing a larger number
r̄d.

Note that the sample-based validation step is by nature less conservative than the
corresponding deterministic one (14) for two main reasons: i) it does not require
the solution to be feasible for all possible values of the uncertainty, but it requires
feasibility only for a suitably selected number of samples, ii) it does not require a
common S-variable S1, but it allows for parameter-dependent certificates. This is
done at the expense of giving up deterministic robustness, but instead allowing for
a (typically small) probability of failure.

However, if one is indeed interested in robustly guaranteed results, it should be
pointed out that nothing prevents us from testing the output of the probabilistic
Phase 2 by means to the corresponding deterministic Validation Step (14).

5 Numerical Examples

5.1 OF design without uncertainties

Although the results are intended for robust stability, the heuristic algorithm can also
be applied to systems without uncertainties. In this case, there is only one sample
and the deterministic and probabilistic algorithms coincide. The CompLeib library
provides a collection of such systems. We have tested the heuristic on some of these
examples (of low order). The results are as follows (h = 1 in all cases). The algo-
rithm finds a stabilizing output feedback gain

• at iteration k = 1 for examples AC1-AC5, AC12, AC15-AC17, HE2
• at iteration k = 2 for examples AC6, AC7, AC9, HE4
• at iteration k = 4 for example AC8
• at iteration k = 7 for example HE3
• does not converge for AC11, AC18, HE1 and HE5.
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These results are quite encouraging because some of these examples were proved to
be hard when tested with similar tools in [9].

5.2 Deterministic OF design with uncertainties

The next example is borrowed from [8] with slight modifications to ensure that all
system matrices A, B and C are uncertain. These uncertain matrices belong to a
polytope with two vertices:

A(q[1]) =

−1 4 0
0 0 1
a 6 −1

 , B(q[1]) =

 0
0

0.5

 , C(q[1]) =
[

1 1 0
0 1 0

]
,

A(q[2]) =

−1 1 0
0 −5 1
a 1 −1

 , B(q[2]) =

0
0
2

 , C(q[2]) =
[

1 1 0
0 0 0

]
.

(28)

The peculiarity of this numerical example is that the uncertain input matrices C(q)
are of full row rank except at one of the vertex of the polytope. This rank deficiency
corresponds to a failure of one of the sensors of the system. This uncertain system
may be robustly stabilized via static output feedback for different ranges of the pa-
rameter a ∈ [a , a] as indicated in Table 1. For each integer value of a ∈ [0 ,10]
we search for the maximal integer a such that the algorithm finds a solution to the
(OF) goal. K0 is the state feedback (SF) gain found at the initialization Phase 1. k̄ is
the number of iterations in Phase 2 of the algorithm. The maximal number of itera-
tions was set to 10, therefore k̄ = 10 indicates that Phase 2 terminated because this
maximal number is reached. Otherwise the iterations stop when 1−λ < 10−7. The
column Fk̄ gives the value of the output-feedback gain when the algorithm succeeds
in finding a robustly stabilizing one. Results are given in Table 1. They outperform
significantly those of [8]. Note that in many cases the number of iterations is very
low (typically 2) and hence the computation time is not prohibitive. The last row
of the table is a test of the method’s capability to find robustly stabilizing state-
feedback gains. For this last test we have set h = 10 in the initialization Phase 1. In
all other tests h = 1.

5.3 A comparison between the deterministic and probabilistic
approaches

The following example is taken from [7]. The system is given by

A(q) =
[

0 −0.5+q1
0.5+q2 0

]
, B(q) =

[
0.5+q1
0.5−q2

]
, C =

[
1 0
]
.
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[a , a] K0 k̄ Fk̄ time
[0 , 9]

[
−1.5939 −17.5869 −7.1516

]
2
[
−1.3792 −27.4388

]
6.5s

[1 , 14]
[
−3.0824 −20.0953 −7.4500

]
2
[
−2.6507 −29.2585

]
7.4s

[2 , 23]
[
−5.1340 −24.8380 −8.4098

]
2
[
−4.9091 −37.1852

]
7.4s

[3 , 29]
[
−7.1790 −32.6351 −10.1779

]
7
[
−6.8056 −48.0987

]
33.8s

[4 , 49]
[
−16.1234 −48.9351 −13.5936

]
10
[
−13.0042 −52.9144

]
51.3s

[5 , 58]
[
−21.4924 −57.7095 −14.8185

]
5
[
−14.4984 −47.2955

]
28.1s

[6 , 72]
[
−27.1872 −59.7972 −14.1779

]
7
[
−18.9969 −45.5168

]
45.6s

[7 , 77]
[
−31.3509 −62.1565 −14.7895

]
10
[
−21.6073 −42.3976

]
45.6s

[8 , 80]
[
−34.4863 −63.0824 −14.8762

]
2
[
−23.2575 −38.5662

]
7.5s

[9 , 83]
[
−37.6496 −63.8179 −14.9218

]
2
[
−25.2797 −35.1410

]
8.0s

[10 , 86]
[
−40.7372 −64.4806 −14.9106

]
2
[
−26.9999 −31.4823

]
6.8s

[0 , 1000]
[
−1305.7 −695.5 −73.5

]
10 fail 59.3s

Table 1 Robust stabilizing SOF gains for numerical example (28).

To compare the deterministic and the probabilistic approaches, we let q1 and q2
be defined as

q1 = q̄cos(2θ), q2 = q̄sin(θ), θ ∈
[
−π

2
,

π

2

]
,

where q̄ is a fixed parameter determining the upper bound on the absolute value of
the uncertain parameters for any value of θ .

To perform a robust deterministic design, we need to assume two independent un-
certainties |q1| ≤ q̄ and |q2| ≤ q̄, without explicitly considering their (nonlinear) de-
pendence on the common parameter θ . With this assumption, the parameterization
becomes convex and we can run the procedure in Section 3.2. Such an overparam-
eterization of the uncertainty results in a larger uncertainty set: see the grey-shaded
box in Figure 1 as compared to the real set indicated by the black solid line. Clearly,
the corresponding design is convex but more conservative.

For this simple example, one can compute by hand the robustly stabilizing OF
gains and these are exactly such that q̄−0.5

q̄+0.5 < F < 0. Moreover for q̄ > 0.36 there
is no state-feedback that may quadratically stabilize the system (stability may not
be proved with a common to all uncertainties Lyapunov matrix). For q̄ > 0.36 only
parameter-dependent Lyapunov certificates may be used to prove robust stability of
the closed-loop.

The heuristic algorithms are applied to the example for various values of q̄. The
results are given in Tables 2, 3 and 4. K0 is the state feedback (SF) gain found at
the initialization Phase 1. k̄ is the number of iterations in Phase 2 of the algorithm.
The maximal number of iterations is set to 10, therefore k̄ = 10 indicates that Phase
2 terminated because this maximal number is reached. Otherwise the iterations stop
when 1−λ < 10−7. The column 1−λk̄ shows how close λ is to the value 1 when
the iterations stop. The column Fk̄ gives the value of the OF gain when the algorithm
stops. The column named ’Validation’ indicates whether the validation Phase 3 is
successful (OK) or not (-). The computation time is the total time including initial-
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Fig. 1 Deterministic uncertainty set (grey-shaded box) and real uncertainty set (black solid line)
for q̄ = 0.4, namely the limit value for a successful deterministic OF design. In the background, the
contour plot of the absolute value of the determinant of the reachability matrix of the system in [7]
is also illustrated. This is null corresponding to the red cross and along the red curve in the right
bottom part of the figure. Also, a stabilizing SOF cannot be found if the system is unobservable,
that is for all points on the dashed line q1 = 0.5.

ization and termination phases. For each tested value of q̄ the theoretical limit of the
stabilizing output feedback gains is recalled.

The algorithms are applied for three cases. The first one (results of Table 2) corre-
sponds to the purely deterministic case described in Section 3. The last one (results
of Table 4) corresponds to the purely probabilistic case described in Section 4. The
probabilistic designs are done considering r̄d = 10 samples for the iterations in Phase
2. The number of samples in Phases 1 and 3 is set to r̄ = 450. This value is com-
puted from (20) with ε = 0.05 and δ = 10−4. The results of Table 3 correspond to
an intermediate case where the probabilistic approach is applied to the deterministic
model, that is when considering only the four vertices as samples. This case does
not allow to conclude robustness (no deterministic nor probabilistic robustness can
be deduced) but corresponds to simultaneous stabilization of the four vertices. The
goal is to illustrate the degrees of freedom obtained when relaxing S1 from being
common to all vertices/samples.

Some conclusions about these results:

• The deterministic (OF) design is successful up to q̄ = 0.4 but when looking at
the results for larger bounds on the uncertainties it seems that the algorithm is
close to converging to valid values. One reason for this non convergence is due
to the heuristic nature of the algorithm. The other possible reason is that there
might not be any solution to the BMIs for q̄ > 0.4. The true bound on q̄ for the
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q̄ q̄−0.5
q̄+0.5 K0 k̄ 1−λk̄ Fk̄ Validation time

0.1 -0.6667
[
−0.6589 −0.9263

]
2 7.5 ·10−9 -0.5082 OK 5.3s

0.2 -0.4286
[
−0.4012 −1.0939

]
3 2.9 ·10−9 -0.3166 OK 8.6s

0.3 -0.2500
[
−0.1776 −1.0576

]
3 1.4 ·10−8 -0.1185 OK 8.8s

0.4 -0.1111
[
−0.0471 −0.9240

]
7 3.5 ·10−8 -0.1104 OK 26.7s

0.41 -0.0989
[
−0.0427 −0.9057

]
10 8.4 ·10−7 -0.1030 - 45.0s

0.42 -0.0870
[
−0.0387 −0.8886

]
10 2.7 ·10−6 -0.0928 - 53.3s

0.43 -0.0753
[
−0.0345 −0.8728

]
10 7.7 ·10−6 -0.0827 - 47.0s

0.44 -0.0638
[
−0.0319 −0.8654

]
10 1.5 ·10−5 -0.0712 - 54.0s

0.45 -0.0526
[
−0.0337 −0.8739

]
10 3.8 ·10−5 -0.0623 - 50.1s

0.455 -0.0471
[
−0.0353 −0.8758

]
10 8.3 ·10−5 -0.0546 - 49.2s

0.46 -0.0417 - 1.2s

Table 2 Numerical results for the deterministic approach.

q̄ q̄−0.5
q̄+0.5 K0 k̄ 1−λk̄ Fk̄ Validation time

0.1 -0.6667
[
−0.6763 −0.8962

]
2 9.4 ·10−9 -0.5409 OK 4.5s

0.2 -0.4286
[
−0.4403 −0.9932

]
3 3.4 ·10−9 -0.3657 OK 8.4s

0.3 -0.2500
[
−0.2174 −0.9742

]
4 1.1 ·10−8 -0.2371 OK 11.7s

0.4 -0.1111
[
−0.0569 −0.8682

]
4 1.8 ·10−9 -0.1012 OK 12.9s

0.41 -0.0989
[
−0.0522 −0.8492

]
4 1.2 ·10−8 -0.0927 OK 17.0s

0.42 -0.0870
[
−0.0480 −0.8297

]
3 1.6 ·10−8 -0.0792 OK 9.4s

0.43 -0.0753
[
−0.0443 −0.8095

]
2 2.9 ·10−8 -0.0638 OK 5.1s

0.44 -0.0638
[
−0.0406 −0.7889

]
5 1.9 ·10−9 -0.0554 OK 22.2s

0.45 -0.0526
[
−0.0392 −0.7867

]
10 5.6 ·10−6 0.0950 - 50.8s

0.455 -0.0471
[
−0.0413 −0.7968

]
5 1.5 ·10−8 -0.0337 OK 22.4s

0.46 -0.0417 - 1.2s

Table 3 Numerical results for the probabilistic method applied to the deterministic model.

existence of a stabilizing output feedback gain is q̄ < 0.5, but we cannot say that
this bound can be approached by the proposed conservative BMI conditions.

• When relaxing the constraints on having common variables S1, the (OF) goal is
almost always attained whatever q̄ ≤ 0.455. The fact that it fails for q̄ = 0.45
can be due to numerical errors at some stage of the iteration, or because the
heuristic fails by going in an inappropriate direction. The improvements when
comparing Tables 2 and 3 illustrate the potential reduction of conservatism that
can be achieved by probabilistic methods.

• The approach allows achieving the robustly (SF) goal up to q̄= 0.455. We know
that such a goal cannot be achieved when imposing common Lyapunov matri-
ces to all uncertainties. This illustrates the fact that the new LMIs of the initial-
ization Phase 1 have quite some potential for the robust state-feedback design
problem that remains open.

• The probabilistic approach allows going further in terms of the (SF) goal. This
is not surprising since, compared to the deterministic approach, there is some
(small) tolerance on stability violation. Typically, during Phase 1 of the proba-
bilistic approach, the extremal values of the uncertainties (which happen in this
example to be the worst case values) have low probability to be drawn. Phase
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q̄ q̄−0.5
q̄+0.5 K0 k̄ 1−λk̄ Fk̄ Validation time

0.1 -0.6667
[
−0.7028 −0.8958

]
2 5.2 ·10−9 -0.6125 OK 31.2s

0.2 -0.4286
[
−0.4885 −1.0711

]
3 4.0 ·10−9 -0.4047 OK 43.1s

0.3 -0.2500
[
−0.2597 −1.1284

]
4 1.1 ·10−8 -0.2480 OK 53.4s

0.4 -0.1111
[
−0.0855 −1.0275

]
6 2.8 ·10−8 -0.1296 - 79.0s

0.4 -0.1111
[
−0.0750 −1.0250

]
3 2.7 ·10−8 -0.1501 - 43.0s

0.41 -0.0989
[
−0.0619 −1.0026

]
4 2.8 ·10−8 -0.1275 - 55.2s

0.42 -0.0870
[
−0.0464 −1.0069

]
3 5.0 ·10−9 -0.0547 - 37.5s

0.43 -0.0753
[
−0.0365 −0.9873

]
2 1.5 ·10−8 -0.0942 - 35.0s

0.44 -0.0638
[
−0.0241 −0.9828

]
2 2.7 ·10−8 -0.0619 - 52.0s

0.45 -0.0526
[
−0.0109 −0.9624

]
3 4.7 ·10−8 -0.0293 - 42.25s

0.455 -0.0471
[
−0.0052 −0.9607

]
2 1.2 ·10−8 -0.0173 - 38.2s

0.46 -0.0417
[
−0.0045 −0.9433

]
2 3.6 ·10−8 -0.0174 - 39.1s

0.465 -0.0363
[
−0.0019 −0.9434

]
3 2.1 ·10−8 -0.0027 - 54.8s

0.47 -0.0309
[

0.0006 −0.9293
]

- num pb - 88.6s
0.48 -0.0204

[
0.0053 −0.9237

]
5 6.4 ·10−8 8.98 ·10−5 - 84.9s

0.49 -0.0101
[

0.0010 −0.8937
]

- num pb - 54.4s
0.495 -0.0050

[
0.0024 −0.8724

]
4 1.2 ·10−8 -0.0127 - 80.0s

0.50 0 - 12.4s
0.505 no - 15.2s

Table 4 Numerical results for the randomized approach.

1 is hence applied considering a large scenario of samples (N = 450 in our
case) but there might be no value close the critical samples |q1|= |q2|= q̄. The
relaxed (SF) goal is hence feasible (in probability).

• Since the approach is dependent on the samples that have been drawn, there is
no possible monotonicity in the results. This is illustrated for the case where
we applied the method for two different scenarios, and the results are inevitably
different. For q̄ close to 0.5 the problem becomes very constrained and for some
cases (depending on the samples) we noticed numerical errors in the algorithm
(the LMIs become unfeasible during the iterations although the sequence λk is
proved to be theoretically decreasing monotonously).

• The iterations of Phase 2 are done on a sub-set of the scenario. When it con-
verges, and this is quite often the case as illustrated by the value of 1−λ , the
conclusion is that we have good candidates for stabilization of the few sys-
tems (r̄d = 10) used during this phase. There is no guarantee of robustness, not
even probabilistic. This is the reason why the termination Phase 3 usually fails
(except for q̄ ≤ 0.4). It fails even-though the computed value of the (OF) gain
actually does solve the problem. This result illustrates the fact that, even for the
scenario situation, the BMIs are conservative. Conservatism comes from the
fact that the S-variable S2 is imposed to be the same for all samples.

The computations were done on a MacBook Pro 2.9 GHz Intel Core i5 with
Matlab2016b. The LMIs were coded using YALMIP (release R20141030) by [15]
and solved using SDPT3 (version 4.0) by [21].
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6 Conclusions

In this chapter we proposed a new robust static output feedback design method stem-
ming from an S-variable description of the set of feasible solutions. The proposed
approach leads to both deterministic and probabilistic designs, the first one provid-
ing worst-case guarantees (pessimistic approach) requiring polytopic uncertainty
sets and specific multipliers structures, and the second one removing these assump-
tions at the cost of extra computational burden and probabilistic guarantees (opti-
mistic approach). The derived conditions are coded as bilinear matrix inequalities
for both cases, so that a heuristic procedure is proposed for their solution. Interest-
ingly, the heuristic approach starts from solving a robustly stabilizing state injection
gain and a robust state feedback stabilizer, which is then refined into a robust out-
put feedback stabilizer and a robustly stabilizing output injection gain. Numerical
tests on some examples taken from the literature have shown good performance of
the heuristic, first in finding nominally stabilizing output feedback gains, and then
addressing robust stabilization problems.

Future works involve better characterizing the properties of the suggested heuris-
tic algorithms, possibly providing more sophisticated solution methods for the pro-
posed BMI problems, in addition to further characterizations of the merits of the
proposed approach on relevant case studies.
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