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Geometric trajectory tracking with attitude planner for vectored-thrust
VTOL UAVs

Davide Invernizzi1, Marco Lovera1 and Luca Zaccarian2

Abstract

This paper addresses the trajectory tracking problem for VTOL UAVs in which the thrust vector can be delivered only in
a fixed direction with respect to the aircraft frame. The proposed control law, based on an inner-outer loop strategy, guarantees
robust tracking of a desired position trajectory. The attitude error dynamics, associated to the inner loop, is stabilized by a
control torque that does not cancel non-harmful nonlinearities and that tracks at the same time a desired heading direction. This
choice results in a non-autonomous feedback interconnection between the attitude and position loops, the stability of which
is studied within the framework of differential inclusions. The proposed control force accounts for attitude errors to improve
transient performance compared to other designs. The control scheme is tested on a multi-body model of a hexacopter UAV
with actuators dynamics and aerodynamics effects, not included in the control design model.

I. INTRODUCTION

Small scale Vertical Take-Off and Landing (VTOL) UAVs have gained a large success in recent years and they are
employed in numerous applications. In particular, multirotor UAVs with co-planar propellers have become popular thanks
to their mechanical simplicity combined with good performance offered in many flight conditions. These vehicles belong to
the class of vectored-thrust UAVs for which the propulsive system can deliver a control force only in a fixed direction, the
thrust axis, with respect to the airframe. As a consequence, such platforms are underactuated mechanical systems in which
the position dynamics can be controlled by changing the attitude of the body-fixed frame: position and attitude tasks cannot
be fully decoupled. In this work, we specifically consider the problem of designing a control law that guarantees position
tracking, which is mandatory in most applications involving UAVs.

The literature about trajectory tracking for UAVs is vast and the reader is referred to the survey appeared in [5] and to
the references cited therein. The vectored-thrust dynamical model has a cascade structure in which the attitude dynamics,
usually assumed fully actuated, is used as inner-loop to tilt the thrust vector in a desired direction. This direction and the
thrust magnitude can be assigned by an outer-loop in charge of stabilizing the position dynamics. Furthermore, any rotational
motion around the thrust force direction required for position tracking can be tracked, which is equivalent to assigning a
desired heading direction. The geometric control law proposed in [7] guarantees local exponential tracking for UAVs whose
propulsive system can produce both negative and positive thrust along the thrust axis. The control design presented in [4]
for thrust-propelled VTOL UAVs achieves almost global tracking results. This strategy is based on a hierarchical design
that considers the angular velocity as an intermediate control input, by relying on a sufficiently large time-scale separation
between the attitude and position loops. Inner-outer loop paradigms, which combine a nested saturations stabilizer for the
position dynamics and a hybrid approach to stabilize the attitude error dynamics, are employed in [10]. The control law
presented therein, which ensures robust global tracking, relies on an exosystem to study the stability of the attitude subsystem.

Our work takes inspiration from [11], in which the emphasis was on defining classes of position and attitude controllers that
stabilize the system at a given position (constant reference). In particular, we tackle attitude tracking by selecting a control
torque that does not cancel non-harmful nonlinearities and that has a simpler expression than the ones usually employed for
UAV attitude control [7]. This choice is a representative candidate for a large class of admissible attitude control laws that
guarantee uniform asymptotic tracking (UAT). Then, by designing a control force that guarantees a (small signal) Input-to-
State Stability (ISS) property for the perturbed position error dynamics, the stability of the resulting feedback interconnection
is studied within the framework of differential inclusions. This approach simplifies the analysis of the corresponding non-
autonomous system: the proof technique relies on casting the control problem as a stability problem for a compact attractor
with dynamics satisfying regularity conditions that ensure robustness of the stability property against a very large class of
(sufficiently small) perturbations [3, Chapter 7]. The control law guarantees robust tracking under mild smoothness and
boundedness properties of the desired trajectory with no restriction on the initial position error and with some relatively
standard restrictions on the initial attitude error. Furthermore, the computation of the reference attitude required to stabilize the
position dynamics accommodates the heading direction tracking task and avoids, by design, possible degenerate conditions
that are present in the solution proposed in [7]. Finally, we introduce an attitude error dependent term in the definition of
the control force, which is shown to reduce significantly the position overshoot when the initial attitude error is large.

1Davide Invernizzi and Marco Lovera are with Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34, 20156
Milano, Italy {davide.invernizzi, marco.lovera}@polimi.it

2Luca Zaccarian is with CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France, Univ. de Toulouse, LAAS, F-31400 Toulouse, France,
and Dipartimento di Ingegneria Industriale, University of Trento, Italy. zaccarian@laas.fr



Fig. 1. Reference frame definition.

Notation. For A ∈ Rn×n, the minimum and maximum eigenvalues are denoted as λm(A) and λM(A), respectively, and
skew(A) := A−AT

2 is the skew-symmetric part of A. The unit vectors corresponding to the canonical basis in Rn are ei :=
[0, . . . , 1, . . . , 0]T for i = 1, ..., n. The identity matrix in Rn×n is denoted as In := [e1, · · ·ei · · · ,en]. The notation Ru(θ) is
used to represent the rotation matrix corresponding to a rotation about a unit axis u ∈ S2 of an angle θ ∈ R. Given the
vectors x,y we often denote (x,y) := [xT ,yT ]T . Given ω ∈ R3, the hat map ·̂ : R3 → so(3) := {Ω ∈ R3×3 : Ω = −ΩT} is
such that ω̂y = ω× y, ∀y ∈ R3. The inverse of the hat map is the vee map, denoted as (·)∨ : so(3)→ R3. K is the class of
function R≥0→ R≥0 which are zero at zero, strictly increasing, and continuous. K∞ is the subset of class-K functions that
are unbounded. KL is the class of functions R≥0×R≥0→ R≥0 which are class-K in the first argument and decreasing and
converging to zero as their second argument tends to +∞.

II. MATHEMATICAL MODELING

The configuration of a UAV is globally and uniquely described by the pair (R,x) ∈ SO(3)×R3, where R and x are,
respectively, the rotation matrix and the position vector of a body-fixed frame FB = (OB,{b1,b2,b3}) with respect to an
inertial frame FI = (0I ,{e1,e2,e3}) (Figure 1). The well-known equations of motion for control design are [9]:

ẋ = v (1)
Ṙ = Rω̂ (2)

mv̇ =−mge3 +R fc (3)
Jω̇ =−ω̂Jω + τc, (4)

where ω ∈R3 is the body angular velocity, v∈R3 is the translational velocity of the center of mass, resolved in FI , m∈R>0
and J = JT ∈R3×3

>0 are the mass and the inertia matrix of the rigid body, respectively and ( fc,τc) ∈R6 are the control force
and torque resolved in FB. These equations may be employed to design control laws for a large class of small-scale UAVs
in which the components are sufficiently rigid, the flight conditions are such that aerodynamic effects can be dominated
with high gain control and the actuators dynamics is fast enough. The propulsive system of vectored-thrust VTOL UAVs
allows to produce a control force directed only along the positive direction of b3 := Re3, i.e., its components in the body
frame must satisfy:

fc = T (t)e3, 0 < T (t)≤ TM, ∀t ≥ 0 (5)

where T ∈R>0 is the thrust magnitude. It is usually assumed that the control torque τc spans R3, i.e., the rotational dynamics
(2), (4) is fully actuated.

III. CONTROL PROBLEM

This work deals with the tracking control problem for the system described by (1)-(4). It is well known that it is not
possible for vectored-thrust UAVs to track an arbitrary full pose trajectory t 7→ (Rd(t),xd(t)) ∈ SO(3)×R3. To show this
formally, let us compute the nominal control wrench, which is obtained by inverting the system dynamics evaluated at the
reference, i.e.:

f ss
c (t) := mRT

d (t)(v̇d(t)+ge3) (6)
τ

ss
c (t) := Jω̇d(t)+ ω̂d(t)Jωd(t). (7)

Notice that f ss
c will be compatible with the constraint in equation (5) if and only if bd3 := Rde3 is aligned with the vector

m(v̇d +ge3), namely bd3(t) =
v̇d(t)+ge3
‖v̇d(t)+ge3‖

. In this case, the position tracking objective can be achieved whereas the attitude
one can be partially realized: only an arbitrary rotation around bd3 is compatible with the constraint. Indeed, given a feasible
Rd , RdRe3(ψd) is feasible as well: f ss

c = RT
e3
(ψd)RT

d m(v̇d +ge3) = {0,0,‖m(v̇d +ge3)‖}. In this case, the steady state force
is in the form f ss

c = Te3, with T = ‖m(v̇d +ge3)‖. If one is willing to relax the position tracking objective, attitude tracking
of an arbitrary set-point is feasible but only the desired vertical motion xd3 can be freely assigned. While the latter flight



Fig. 2. Feedback interconnection (error dynamics).

condition may be used, safely, only for short maneuvers, most applications involving UAVs require position tracking. In the
following, we will refer to the reduced tracking problem on R3×S1, which will be embedded on SO(3)×R3 via a proper
mapping S1 → SO(3). Specifically, we will introduce a reference attitude Rp ∈ SO(3), which is the output of an attitude
planner, that is computed in order to be compliant with the constraint (5) and to guarantee the fulfillment of the reduced
attitude tracking problem.

The following assumptions are required to hold for the desired trajectory.
Assumption 1: Smoothness, boundedness and trackability of the desired trajectory. Given a trajectory t 7→ (Rd(t),xd(t),vd(t),ωd(t))∈

SO(3)×R9, where vd(t) := ẋd(t) and ωd(t) := (Rd(t)T Ṙd(t))∨, the following conditions hold:
1) the position trajectory xd(·) belongs at least to C4;
2) the acceleration v̇d(·) and jerk v̈d(·) belong to L∞; in particular, v̇d(·) is such that f ss

c defined in (6) is bounded by
0 < f ss

m ≤ ‖ f ss
c (t)‖ ≤ f ss

M < TM ∀t ≥ 0, where TM is defined in (5), and inft≥0(m|g+ v̇d3(t)|)> 0.
3) the attitude Rd(·) satisfies Rd(t)e3 =

v̇d(t)+ge3
‖v̇d(t)+ge3‖

∀t ≥ 0;
4) the angular velocity is bounded and continuously differentiable, i.e., ωd(·) ∈C1∩L∞.

IV. ROBUST TRACKING DESIGN

In this section we present the design of a control law that ensures robust tracking of any desired trajectory satisfying
Assumption 1 with no restriction on the initial position error and some reasonable restriction on the initial attitude error.
The resulting closed-loop is a feedback interconnection in which an attitude planner provides the reference to the attitude
subsystem which, in turn, affects the position error dynamics (Figure 2).

A. Control force and position error dynamics

According to the dynamics in (1)-(4), the natural choice of the tracking errors for position and velocity is expressed in
the inertial frame:

ex := x− xd ev := v− vd . (8)

The control objective is to stabilize (ex,ev) = (0,0). Consider equations (1), (3) and the definition of the errors in (8). Then,

ėx = ev (9)
mėv = m(v̇− v̇d) =−m(v̇d +ge3)+R fc. (10)

The system would be fully actuated if one could arbitrarily assign fc, and if it would be possible to enforce R fc = fd , with

fd := β (ex, ev)+m(v̇d +ge3) , (11)

where β : R6→R3 is a static state feedback stabilizer. The corresponding closed-loop dynamics would be described by (9)
and mėv = β (ex, ev). Thus, the zero equilibrium would be globally asymptotically stable for a suitable choice of β . As it is
not possible to obtain R fc = fd under constraint (5), it is convenient to rewrite the velocity error dynamics as:

mėv =−m(v̇d +ge3)+RRT
p Rp fc (12)

=−m(v̇d +ge3)+ReRp fc (13)

where
Re := RRT

p ∈ SO(3) (14)

is the so-called left attitude error [1]. Introducing the corresponding angular velocity error,

eω := ω−ωp, (15)

a natural choice for the control force fc is
fc := RT

p Φ(Re, eω , t) fd (16)

where Φ(Re, eω , t) : T SO(3)×R≥0→ R3×3, T SO(3) := SO(3)×R3 is the tangent bundle of SO(3). Indeed, by adding and
subtracting fd in equation (13), one gets:

mėv = β (ex, ev)+∆R(Re,eω , t) fd(ex,ev, v̇d) (17)



where
∆R(Re, eω , t) := ReΦ(Re, eω , t)− I3. (18)

The position error is affected by the attitude error through the term ∆R fd , which weighs the mismatch between the desired
force fd and the control force resolved in FI , i.e., R fc.

Remark 1: The explicit dependence on time in the definition of Φ(Re, eω , t) in equation (16) gives more freedom in the
tuning of the control action in the transient phase. In particular, when then attitude error is large, the term Φ can be exploited
to reduce the control force and correspondingly limit the overshoot in the position tracking.

The rationale behind the proposed control law is that if the desired attitude error equilibrium can be made asymptotically
stable, then, for t → ∞, Re(t)→ I3, Φ(Re(t), eω(t), t)→ I3 and the term R(t) fc(t) = Re(t)Φ(t) fd(t)→ fd(t), which is the
force, in the inertial frame, required to track the desired position trajectory. Indeed, in this case, the mismatch between the
desired and actual control force converges to zero as well, namely ∆R(t) fd(t)→ 0. However, to prove this idea, we have to
study the stability of the complete system, including the attitude error dynamics. In particular, we have to make assumptions
on the attitude error dependent matrix Φ and on the feedback stabilizer β in equations (18)-(17), so that the position error
dynamics have certain desired properties. First of all, the choice of Φ must be such that the following property holds true
for the attitude mismatch ∆R.

Property 1: (Vanishing perturbations). Consider ∆R defined in equation (18). Given Va(Re,eω) :=
√
‖eω‖2 +Ψ2(Re),

where Ψ(Re) :=
√

1
4 tr(I3−R3), there exists a bounded class-K function γ : R≥0→ R≥0, satisfying ∀(Re, eω , t) ∈ T SO(3)×

R≥0:
‖∆R(Re,eω , t)‖ ≤ γ (Va (Re, eω)) . (19)

A convenient choice of Φ is to employ a scaling transformation, dependent on the attitude error alone, as follows:

Φ(Re, eω , t) := c(Re,eω , t)I3, (20)

where c : T SO(3)×R≥0→R≥0 is a suitably selected scaling function. Property 1 is needed to ensure that, at convergence,
the magnitude of the delivered control force fc in (16) converges to the nominal force f ss

c (6). The next proposition gives
an example of function c, which is naturally written in terms of the angle θe between the planner axis bp3 := Rpe3 and the
body axis b3:

θe(Re,Rp) := arccos(bT
p3

b3) = arccos(eT
3 RT

p ReRpe3). (21)

Proposition 1: Given c(Re, t) := `−(1−cos(θe(Re,Rp(t))))
` , where θe is defined in (21), then, for Φ(Re,eω , t) := c(Re, t)I3 and

` > 2, Property 1 is satisfied.
Proof: The proof is similar to the one of [6, Prop. 4].

We now state the main properties concerning the choice of the feedback stabilizer.
Property 2: Consider the closed-loop position dynamics (9), (17) and Assumption 1. The feedback stabilizer β in equation

(11) is such that:
1) β (·, ·) ∈ L∞∩C2 and, given βiM ∈ R>0 : |βi(ex,ev)| ≤ βiM , ∀(ex,ev, i) ∈ R6×{1,2,3}, it holds that:

max
i=1,2,3

βiM < min
(

TM− f ss
M√

3
, inf

t≥0
(m|g+ v̇d3(t)|)

)
, (22)

where TM is defined in (5) and f ss
M in Assumption 1-3.

2) ∇β (·, ·) ∈ L∞, and ∇βex(ex,ev) = 03×3 ∀(ex, ev) ∈Ωp :=
{
(ex,ev) ∈ R6 : ‖ev‖ ≥ eM

}
, for some eM ∈ R>0.

3) the position error dynamics is small signal ISS, i.e., there exists ε ∈ R>0 such that, given any piecewise contin-
uous perturbation t 7→ ∆(t) ∈ R3 : ‖∆(t)‖ < ε ∀t ≥ t0 ≥ 0, the solution of (9) and mėv = β (ex,ev) + ∆(t) satisfies
‖(ex(t),ev(t))‖≤α(‖(ex(0),ev(0))‖, t−t0)+µ (‖∆‖∞) for some α(·, ·)∈KL, µ(·)∈K and ∀(ex(0),ev(0))∈R6, ∀t ≥ t0.

In this work we will employ the nested saturation stabilizer of [10], which satisfies all the above properties:

β (ex, ev) := λ2sat
(

k2
λ2

(
ev +λ1sat

(
k1
λ1

ex

)))
, (23)

where k1,k2 are stabilizing gains and λ1,λ2 are suitably chosen saturation levels [10, Prop. 1].

B. Control torque and attitude error dynamics

The attitude controller has to ensure the convergence of the attitude tracking errors according to the fully actuated rotational
dynamics in equations (2), (4). We consider a reference trajectory (Rp, ωp) ∈ T SO(3) for which ωp(·) = (RT

p (·)Ṙp(·))∨ ∈
C1∩L∞. Consider the control law

τc =−RT
p eR−Kω eω + Jω̇p + ω̂pJω, (24)



where Kω ∈ R3×3 is positive definite and eR := skew(KRRe)
∨ is the left-trivialized derivative of the navigation function

ΨKR(Re) := 1
2 tr(KR(I−Re)). Combining the control torque (24) with the rotational equations of motion (2)-(4), the dynamics

of the errors (14) and (15) evolves as:

Ṙe = ReRpêω RT
p (25)

Jėω =−RT
p eR−Kω eω − êω Jeω − êω Jωp. (26)

The control torque (24), first proposed by [1], has a simpler expression than the one based on the right group error considered
in [7] and no cancellation of non-harmful nonlinearities occurs. The equilibrium points for the attitude subsystem are the
points where the differential eR of ΨKR and the angular velocity error vanish, namely (eR,eω) = (0,0). This set of equilibria
contains the desired equilibrium (Re,eω) = (I3,0) and additional undesired configurations corresponding to the other critical
points of ΨKR . This is intrinsic to the structure of SO(3): as is well known, no continuous time-invariant control law can
globally stabilize the identity element. Nonetheless, by defining the positive constant `R := λm (tr(KR)I3−KR) it is possible to
show that in the sublevel set SR := {Re ∈ SO(3) : ΨKR (Re)< `R} the point Re = I3 is the unique critical point and minimum
of ΨKR . We can state the following result which extends [1, Lem. 9] and the proof is omitted due to space limitations.

Theorem 1: Consider the system described by (25)-(26) controlled by (24) and a reference attitude t 7→ (Rp(t), ωp(t)) ∈
T SO(3), such that ωp(·) := (RT

p (·)Ṙp(·))∨ ∈C1∩L∞. For any symmetric matrix KR ∈R3×3 such that (tr(KR)I3−KR) ∈R3×3
>0

and any matrix Kω ∈R3×3
>0 , the equilibrium point (Re, eω) = (I3, 0) is robustly uniformly asymptotically stable with basin of

attraction containing the set Sa := {(Re, eω) ∈ T SO(3) : VR (Re, eω)< `R} where `R := λm(tr(KR)I3−KR) and VR(Re, eω) :=
1
2 eT

ω Jeω +ΨKR (Re).

C. Attitude planner

The attitude planner is in charge of producing the reference attitude (Rp,ωp) ∈ T SO(3) so that the control force is
compatible with the actuation constraint and the desired heading direction is tracked.

The control force computed in (16) has to satisfy the actuation constraint (5), namely, for some T ∈ R>0,

fc = c(Re,eω , t)RT
p fd = Te3. (27)

By selecting the third planner axis as bp3 := fd
‖ fd‖

the constraint (5) is readily verified with T = c(Re,eω , t)‖ fd‖. Indeed, in
vector form, one gets:

c(Re, t)

bT
p1

fd
bT

p2
fd

bT
p3

fd

=

 0
0

c(Re,eω , t)‖ fd‖

 , (28)

because bp1 ,bp2 must be chosen orthogonal to bp3 to have a well defined rotation matrix Rp. Selecting bp3 as above fixes
two out of three parameters in the definition of Rp and the remaining one can be exploited to fulfill the heading direction
tracking task. A viable choice is

Rp = RcRe3(ψd), Rc :=
[

bp2×bp3

bp3×e1
‖bp3×e1‖

bp3

]
, (29)

or alternatively the one proposed in [7]:
Rp :=

[
bp2×bp3

bp3×bd
bp3×bd

bp3

]
, (30)

where bd(t) := [ cos(ψd(t)) sin(ψd(t)) 0 ]T , where t 7→ ψd(t) ∈ S1 is the desired yaw angle (used to generate Rd(t)).
The definitions of Rp in equation (29) or (30) become both indeterminate in the degenerate cases when ‖ fd‖= 0 and bp3

is parallel to e1 or bd . These issues have not been addressed in the pioneering work of [7] but only recently (for the first
degenerate case) in [10]. We propose a solution that solves the issues altogether. First of all, by referring to Property 2-1
of β , we can write the following inequality ‖ fd(t)‖ ≥ | fd3(t)| ≥ inft≥0(m|g+ v̇d3(t)|)−β3M > 0 ∀t ≥ 0. To ensure that the
term ‖bp3 ×bd‖ does not vanish, it is enough to choose the reference heading direction bd in the horizontal plane (e1, e2),
as done in equation (29) or (30). Indeed, the cross product will never result in the zero vector because the third component
of bp3 is always different from zero.

Lemma 1: (Feasibility conditions of the reference attitude). If the desired reference satisfies Assumption 1 and β (·, ·) is
selected according to Property 2, then, the planner output t 7→ (Rp(t), ωp(t)), where Rp(t) is obtained according to equations
(29) or (30) and ωp(t) := (Rp(t)T Ṙp(t))∨, is feasible, in the sense that ωp(·) ∈C1∩L∞ ∀t ≥ 0.

Proof: The proof is similar to the one presented in [10] and it exploits Property 2-1 and 2-2. Note that we do not
require boundedness of the planner angular velocity.



V. STABILITY ANALYSIS OF THE COMPLETE DYNAMICS

This section presents the main results of the stability analysis for the complete system. Our proof is based on a compact
representation of the closed loop wherein the solutions of the time-varying dynamics is embedded into a time-invariant
differential inclusion, in ways that are similar to the strategy in [10], even though the approach adopted here does not
require the (somewhat stringent) assumption that ω̇p must be bounded. By introducing xa := (Re,eω) ∈ T SO(3) and xp :=
(ex,ev)∈R6, the solutions to the attitude error dynamics (25)-(26) and the position error dynamics (9), (17) can be embedded
within the solution generated by the following constrained differential inclusion:

(A) ẋa ∈ Fa(xa), xa ∈ T SO(3) (31)

(P) ẋp ∈ Fp (xp,xa) , xp ∈ R6, (32)

where we used a slight abuse of notation1 and Fa(xa), Fp(xp) are defined as

Fa(xa) := (33)⋃
Rp ∈ co(SO(3))∥∥ωp

∥∥≤ ωM

[
ReRpêω RT

p
−J−1

(
RT

p eR +Kω eω + êω Jeω + êω Jωp
) ] ,

Fp(xp,xa) :=
[

ev
1
m

(
β (ex, ev)+ fMγ(Va(Re,eω))B3

)] (34)

where co(·) denotes the closed convex hull, B3 denotes the closed unit ball and ωM ∈ R>0 is a constant whose existence
is ensured by Assumption 1. Moreover, function γ comes from (19), and scalar fM :=

√
3maxi=1,2,3 βiM + f ss

M is a bound on
the term fd defined in equation (11) which holds thanks to Assumption 1 and Property 2.

Based on representation (31), (32), asymptotic tracking for the complete dynamics can be proven, under Assumption 1,
as stated by the following Theorem.

Theorem 2: Consider the closed-loop system described by (9), (17), (25), (26) controlled by (16), (24), a desired trajectory
t 7→ (Rd(t),ωd(t),xd(t),vd(t)) satisfying Assumption 1 and the planner output (Rp,ωp) given by equation (29) or (30) and
ωp = (RT

p Ṙp)
∨. Assume that c(·, ·, ·) is such that Φ(·, ·, ·) given in (20) satisfies Property 1 and β (·, ·) in (11) is selected

according to Property 2. Then, the control force (16) satisfies equation (5) and, for any symmetric matrix KR such that
(tr(KR)I3−KR) ∈ R3×3

>0 , any Kω ∈ R3×3
>0 , the point (Re, eω , ex, ev) = (I3,0,0,0) is robustly uniformly asymptotically stable

with domain of attraction containing Sa×R6, where SA is defined in Theorem 1.
Proof: The feedback interconnection (31), (32) comprises the (static) attitude planner, the attitude subsystem (31), the

stability properties (with domain of attraction Sa) of which have been established in Theorem 1, and the position subsystem
(32), which is stabilized by function β , which satisfies Property 2. First, note that the planner output matches the condition
of Theorem 1 thanks to Lemma 1. Then, (local) stability of the cascade between the attitude and position subsystems follows
from reduction theorems for differential inclusions (see, e.g., [8]) whereas attractivity from Sa×R6 can be established using
the small signal ISS properties of stabilizer (23) following the same steps as in [10, Proof of Prop. 4]. Finally, stability and
attractivity of the point (Re, eω , ex, ev) = (I3,0,0,0) for the closed-loop implies KL asymptotic stability from [3, Thm 7.12],
and then also robust KL asymptotic stability from [3, Thm 7.21]. Finally, the control force fc defined in (16) with Rp given
by (29) or (30), automatically satisfies constraint (5) as shown in (28).

VI. NUMERICAL RESULTS

In this section two simulation examples are presented. We refer to a hexarotor UAV (Figure 1), which is an aerial
vehicle equipped with six propellers. This system has six control inputs (the rotor angular velocities {Ωr1 , · · · ,Ωr6} that
can be exploited to apply the required control ( fc,τc) according to equations (24), (16). In particular, the mixer map that
relates the actual inputs and the control action is pseudo-invertible as shown in [2]. The simulation model is a multi-body
system with seven rigid-bodies, developed in the Modelica modelling language, augmented to include the dynamics of
the motor/propeller groups (first-order models). Furthermore, body-drag and induced-drag forces are accounted for as well
as the aerodynamic damping torque by the disturbance wrench ( fe,τe) ∈ R6. Specifically, we consider simplified models
τe := Daω where Da = −diag(0.04,0.04,0.02), and fe := −cd‖v‖v−∑

6
i=1 cI

√
Ti(vi− (vT

i b3)b3) where cd = 0.01, cI = 0.05
are the body and induced drag coefficients, respectively, vi is the velocity of the hub of the i-th rotor and Ti is the thrust
delivered by the i-th rotor. For the sake of conciseness, only the nominal values used for the control tuning are reported:
J = diag(0.008, 0.008, 0.016)kgm2,m = 1kg. The controller gains are KR = 0.9I3, Kω = 0.1I3, ` = 2.1, λ2 = 9, λ1 = 1,
k1 = 0.06 and k2 = 9.

1To be consistent with the formulation, the differential inclusion should be written by exploiting the vectorization, vec(Ṙe) ∈ vec(FR (Re, eω ))



A. Eight-shaped trajectory tracking

We consider the eight-shaped trajectory, xd(t) =
[

sin(2ωst)
3−cos(2ωst)

2cos(ωst)
3−cos(2ωst)

1
]T

m with ωs =
2π

12 rads−1, whilst the desired
heading direction is bd(t) = e1. The reference trajectory (dotted line) is shown in the small box in Figure 3, together with
the actual path of the rigid body (solid line) for five rounds, starting from a misplaced hovering condition at x(0)= [1.2 0 1 ]T m.
The attitude tracking performance is illustrated in Figure 4. It is clear that even in the presence of unmodeled dynamics,
the tracking errors are bounded.

B. Trajectory tracking with large attitude error recovery

Let us consider the case of an attitude recovery maneuver to show the benefit that can be gained by exploiting the
scaling factor c(Re,eω , t) introduced in the control force (16). The initial conditions correspond to the hexacopter being
dropped with the reference plane perpendicular to the ground: x(0) = [0 0 1 ]T m, v(0) = [0 0 0 ]T ms−1 and R(0) = Re2

(
π

2

)
,

ω(0) = [0 0 0 ]T rads−1. The set-point is the hovering condition at x(0) = [0 0 1 ]T m. We compare the results obtained by
selecting c(Re,eω , t) as in Proposition 1 with the standard choice c(Re,eω , t) = 1 [10]. Note that the approach in [7] cannot
be tested since it would result in ‖ fc‖= 0N. The corresponding term has a scaling effect on the magnitude of the delivered
control force, which cannot be instantaneously directed as the desired control force fd in (11) due to the underactuation.
While the thrust axis b3 is converging to the direction of fd thanks to the attitude stabilizer (24), the position overshoot is
dependent on the magnitude of the control force and the scaling effect introduced by function c limits this unwanted effect.
Figure 5 shows that the percentage difference of overshoot in the position tracking is reduced of about 50% with respect to
the case without scaling.
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Fig. 3. (A) Position tracking error - ex.

0 10 20 30 40 50 60

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
ne

rg
y 

[J
]

(R
e
)

0 1 2

x [m]

0

0.2

0.4

y 
[m

]

Fig. 4. (A) Attitude tracking error - Ψ(Re) :=
√

1
4 (I3−Re).



0 10 20 30 40 50 60

Time [s]

0

1

2

3

4

5

6

7

8

P
os

iti
on

 e
rr

or
 [m

]

c(R
e
)

c=1

Fig. 5. (B) Position errors comparison - ‖ex‖ .

VII. CONCLUSIONS

In this paper the trajectory tracking control problem for underactuated VTOL UAVs has been addressed. The proposed
approach relies on an inner-outer loop paradigm in which the attitude subsystem stabilizes the position error dynamics and
guarantees the tracking of a desired heading direction. The design of a control force that weighs attitude errors improves
significantly the transient performance, in terms of position overshoot, compared to existing approaches. Finally, our method
avoids by design degenerate conditions that affect other approaches, specifically for what concerns the computation of the
reference attitude. Future works will address the possibility of exploiting more aggressive position stabilizers than those
based on nested saturations.
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