N

N

PRS: a high level supervision and control language for
autonomous mobile robots
Félix Ingrand, Raja Chatila, Rachid Alami, F. Robert

» To cite this version:

Félix Ingrand, Raja Chatila, Rachid Alami, F. Robert. PRS: a high level supervision and control
language for autonomous mobile robots. EEE International Conference on Robotics and Automation,
1996, Minneapolis, United States. hal-01972550

HAL Id: hal-01972550
https://laas.hal.science/hal-01972550
Submitted on 7 Jan 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-01972550
https://hal.archives-ouvertes.fr

PRS: A High Level Supervision and Control Language

for Autonomous Mobile Robots

*

Francois Félix Ingrand, Raja Chatila, Rachid Alami, Frédéric Robert
LAAS - CNRS, 7, Avenue du Colonel Roche 31077 Toulouse Cedex - France

e-mail: {felix, raja, rachid, fr}@laas.fr

Abstract

In this paper, we discuss Procedural Reasoning Sys-
tem (PRS) as a high level Control and Supervision lan-
guage adapted to autonomous robots to represent and
erecute procedures, scripts and plans in dynamic enuvi-
ronments. We discuss the main reasons why PRS is well
suited for this type of application: (1) The semantics of
its plan (procedure) representation, which is important
for plan execution and goal refinement; (2) Its ability
to construct and act on partial (rather than complete)
plans; (3) Its ability to pursue goal-directed tasks while
at the same time being responsive to changing patterns
of events in bounded time; (§) Its facilities for managing
multiple tasks in real-time; (5) Its default mechanisms
for handling stringent real-time demands of its environ-
ment; and (6) Its meta-level (or reflective) reasoning
capabilities. C-PRS* has been used to implement an em-
bedded control and supervision system for autonomous
mobile robots in two different experimentations that we
briefly present (Eden and Martha). We conclude with
some suggestions to further develop C-PRS and with a
short review of related work.

1 Introduction

The study and the design of high level control ar-
chitectures for autonomous robots, have always been
an important research subject at LAAS [4, §8]. Part of
this research is concerned with the design of tools and
languages to implement components of these architec-
tures. In recent years, we started to use the Procedural
Reasoning System (PRS) to implement the control and
supervision component. Other components, using other
languages and tools, are used in these architecture and
are linked to PRS. For example, a high level planner can
be used to pass plans to PRS for execution. Similarly,
to access and control the mobile robot, PRS is asyn-
chronously connected to low level modules [5] . These
other components are not discussed in this paper (al-
though we mention how C-PRS may interface to them).

*This paper has been published in the Proceedings of the
1996 TEEE International Conference on Robotics and Automa-
tion (Minneapolis, USA).

L An implementation of PRS in C.

PRS implements a generic tool for representing ac-
tions and procedures and reasoning about them. It
provides tools and mechanisms to represent and exe-
cute plans, scripts and procedures,?
quences of actions which can be run to achieve given
goals or to react to particular situations. C-PRS 1is
used in the Martha and the Eden demonstrations, two
large experimentations developed at LAAS. The Eden
experiment aims at demonstrating a fully autonomous
navigation in a natural environment, including percep-
tion, environment modeling, robot localization, and mo-
tion planning and execution on flat or uneven terrain
(see [12] for more information). Martha is an European
Esprit project which objective is to study the problem
of planning and controlling the actions of a fleet of au-
tonomous mobile robots to handle container transporta-
tion in harbors, airports and railway stations (see [1] for
a more complete presentation).

In these two applications, C-PRS 1s used as the on-
board reactive decisional system. It does not plan the
high level mission, nor does it engage in low level control
loops. It merely executes predefined plans, making the
runtime decisions specified by these plans, current poli-
cies and/or modalities. This activity is often referenced
as reactive planning as it does not produce new plans
from action descriptions as would a standard planner.
Nevertheless it reasons about and decides, at run time,
what are the best options to fulfill the current goals.
These run time decisions can either be specified as ex-
plicit tests in a given plan, or as application contextual
conditions of the plan or, provided that more than one
plan is applicable to the same goal, as a general policy
controlling the choice of which plan gets executed.

i.e., conditional se-

2 The Procedural Reasoning System
PRS? is composed of a set of tools and methods to
represent and execute plans and procedures. Procedural

2The terms plans, scripts, procedures and KAs (for Knowledge
Area) are used interchangeably in this paper. We are aware that
they do not really mean the same object, but as far as PRS is
concerned, the data structure holding them is the same.

3We shall refer to PRS as the general concept of Procedural
Reasoning System and to C-PRS as the specific implementation
used.

@ New goals & new facts

External events g [(overpressurized FRCS)| Triggering @

(! (position valve close))
(soak kal kad)

andUnification

Posting new gubgoal

Plans/Scripts/Procedures Library

Invocation Part:
(overpressurized $x)

Invocation Part:

@

Primitive
action

Invocation Part: v Body:
(pressurization-alarm) ((? (connected $x $y))
(while (2(> (pressure-of $x) 20))

®

Action KA:

Graph KA: Invocation Part: I?VOCH}i_OH Part:
(! (position switch $x)) | (! (position valve $x))

Action Part:
(signal switch $x)

(signal switch s1) Oré

Procedure|Execution

c I o

®

Select and intend
procedure(s) @

VA

Execute the roots of th\ task graph

s KA2

(Alarm) ! (position valve clmc)J

KA -
(soak <Ka-7> <Ka-3>)

(position tb bp)

KA 6
(alarm)

w

(position valve op)

Tasks Graph
KA 4

Figure 1: PRS

reasoning differs from other commonly used knowledge
representations (rules, frames, ...) as it preserves the
control information (i.e. the sequence of actions and
tests) embedded in procedures or plans, while keeping
some declarative aspects.

A description of PRS is given in previous papers [10].
Nevertheless, we find it necessary to present the archi-
tecture of a PRS kernel here (with examples in the mo-
bile robot world). A PRS kernel is composed of three
main elements:

a database which contains facts representing the
system view of the world and which is constantly and
automatically updated as new events appear. In typical
robotic applications, the database may contain symbolic
but also numerical information such as the position of
the robot, the container it carries, pointers to trajecto-
ries produced by a motion planner, the currently used
resources, etc. Note that the database is not just a place
holder for information related to the robot and its envi-
ronment. Mechanisms are provided to define evaluable
predicates which, although they look like if they are in
the database, call or trigger some internal C code to
retrieve their value/binding.

a library of plans (or procedures, or scripts),
each describing a particular sequence of actions and
tests that may be performed to achieve given goals
or to react to certain situations. The content of this
plan/procedure library is definitely application depen-
dent. In any case, keep in mind that PRS does not
plan by combining actions, but by choosing among
alternative plans/or execution paths in an executing
plan. Therefore this library must contain all the plans/-

Interpreter

procedures/scripts needed to perform the tasks for
which the robot is intended.

a tasks graph which is a dynamic set of tasks cur-
rently executing. Tasks are dynamic structures which
execute the “intended plans”, they keep track of the
state of execution of these intended procedure, and of
the state of their posted subgoals. This task graph can
be thought of as the set of processes of an operating
system. For example, in a mobile robot application, the
task graph could contain the tasks corresponding to var-
ious activities the robot is performing (one activity to
refine its current mission, another to monitor incoming
messages from a central station giving orders, another
one managing the communication layer with low level
functional modules, etc) (see Figure 6).

As shown in Figure 1, an interpreter manipulates
these components. It receives new events (both from
outside and from asserted facts) and internal goals (1),
checks sleeping and maintained conditions, selects ap-
propriate plans (procedures) based on these new events,
goals, and system beliefs (2), places the selected proce-
dures on the tasks graph (3), chooses a current task
among the roots of the graph (4) and finally executes
one step of the active procedure in the selected task (5).
This can result in a primitive action (6), or the estab-
lishment of a new goal (7).

2.1 Plans, Scripts and Procedures

Information about how to accomplish given goals or
to react to certain situations is represented in PRS by
declarative plan/procedures. We illustrate the following
presentation with two procedures:? a text procedure on

4 Although the syntax remains Lisp like, there is no Lisp inter-

(defka |Long Range Displacement |
:invocation (achieve (position-robot $x $y $theta))
:context (and (test (position-robot
Qcurrent-x @current-y Qcurrent-theta))
(test (long-range-displacement
$x $y $theta Qcurrent-x Qcurrent-y
@current-theta)))
:body ((achieve (notify all-subsystems displacement))
(wait (V (robot-status ready-for-displacement)
(elapsed-time (time) 60)))
(if (test (robot-status ready-for-displacement))
(while (test (long-range-displacement
$x $y $theta Qcurrent-x
Qcurrent-y @current-theta))
(achieve (analyze-terrain))
(achieve (find-subgoal $x $y $theta
Q@sub-x @sub-y @sub-theta)
(achieve (find-trajectory $x $y $theta @sub-x
Qsub-y @sub-theta Qtraj)
(% (achieve (execute-trajectory @traj))
(maintain (battery-level 0.200000)))
(test (position-robot @current-x Qcurrent-y
@current—theta)))
(achieve (position-robot $x $y $theta))
else
(achieve (failed)))))

Figure 2: A Plan for Long Range Displacement

Figure 2 and a graphic procedure on Figure 3. These
procedures are not withdrawn from our applications,
they merely illustrate the various mechanisms provided

by PRS.

Each procedure consists of a body (presented under
graphic or text format), which describes the steps of the
procedure/plan®, an invocation condition, which speci-
fies the goal the procedure may fulfill (in our example
the goal to get the robot to a particular position) or
the events to which it reacts, and a context describ-
ing under which situations the procedure is applicable.
Other piece of information are stored in procedure such
as facts to conclude or retract upon successful execution
(e.g. the trajectory-history EFFECTS of the proce-
dure Figure 3), documentation or properties which hold
user-defined property/value pairs (the used-resources
and priority PROPERTIES of the procedure Figure 3).

2.1.1 Goals

In PRS, goals are descriptions of a desired state associ-

ated to a behavior to reach/test this state.

Achieve: The goal to achieve a certain statement
C). So the goal to po-
sition the robot is written (achieve (position-robot
20 10 45)). Note that this goal is satisfied if the robot
is already located at this position (i.e. the database
“contains” this information). Note also that the two
plans presented above are achieving this particular goal

C is written (achieve C) or (!

(although in a different context).

preter in C-PRS.

5Some procedures, called action procedures, just have an ex-

ternal function call as body.

Short Range Displacement

{achieve {compute-trajectory
$x $y $theta $length
$width $radius $trajl)

INVOCATION:
{achieve {position-robot $x $y $thetal))

CONTEXT:
{and {(test {(position-robot
Beurrent-x Bcurrent-y Bourrent-thetal?

(test (" {long-range-displacement
$x $y $theta Bocurrent-x Bocurrent-y
Bourrent-theta))))

Tna][F]

SETTING:
{and {(robot-giration-radius $radius}
{robot-size $length $width)}

DOCUMENTATION:
"This KA is used for short range displacement,"”

{achieve {compute-trajectory-using-exp-method
$x $y $theta $length
$width $radius $trajl?

{achieve {execute-trajectory $traj}}

PROPERTIES:
{{used-resources {,loco pilo ,}}
{priority 43

EFFECTS:

{{assert {trajectory-history

{time} Bcurrent-x Bcurrent-y Bocurrent-theta
$x $y $theta $trajrl)

Figure 3: A Plan for Short Range Displacement

Test: The goal to test for a statement c¢ is writ-
ten (test c) or (? «c¢). So the goal to test if the
robot is located in a particular position would be writ-
ten (test (position-robot 20 10 45))). Similarly,
the goal to find out where is currently located the robot
is written using variables® (test (position-robot $x
$y $theta)). This implies that either the database
contains this information or there is a procedure to find
out what is the position”.

Wait: The goal to wait until a statement ¢ is true
is written (wait ¢) or (* ¢). So the goal to wait un-
til the robot is ready to move could be written (wait
(robot-status ready-for-displacement)). No at-
tempt is made by the plan which posts this goal to make
the statement true. Technically, a wait goal never fails
(it just sleeps forever). In our example (Figure 2), we
wait for a disjunction which insures that the awaited
statement will eventually become true.

Preserve: The goal to passively preserve c is writ-
ten (preserve c) or (# c). Still refering to our exam-
ple, one could imagine that the system could post a goal
such as (& (achieve (position-robot 20 10 45))
(preserve (- (robot-status emergency)))) (the ~
is the negation operator). Such goal insures that the
condition (7 (robot-status emergency)) remains al-
ways true during the achievement of (position-robot
20 10 45). This behavior is usually refered as a
“guarded” action.

SThere are two types of variables in PRS, $ variables are sim-
ilar to the variables in logical programming language, while @
variables can be rebound in the procedure scope.

7 Another possibility is to have position declared as an evalu-
able predicate which would run some internal code to “read” the
position from the appropriate place (odometric system, etc).

Maintain: The goal to actively maintain ¢ is writ-

ten (maintain c¢) or (% c). So the goal to main-
tain the robot battery level above 20% while execut-
ing a trajectory can be written: (& (achieve (exe-
cute-trajectory @traj))
(maintain (battery-level 0.200000))). Note that
if the maintain goal fails, the system interrupts the goal
to achieve and try to reestablish the maintained goal.
In our example, one can imagine that the trajectory ex-
ecution would be interupted and some attempt would
be made to reload the battery.

The wait (°), preserve (#) and maintain (%)
operators can usually be used to implement sophisti-
cated supervision and control operations.

There are two last goals which can be used to ex-
plicitely assert or retract information from the database.
For a statement ¢ they are respectively written (assert
c) or (=> ¢) and (retract c) or (~> C).

2.1.2 Body

The body part of the procedure is built using the differ-
ent types of goal presented above. As illustrated with
our two examples, one can build “text” or graphic proce-
dures. In text procedures, the execution start from the
first instruction and proceeds from then, following the
standard programming structures such as if-then-else,
while, do-while, parallel (//), goto, etc. In graphic pro-
cedures, the execution starts from the start node and
proceeds to the next nodes achieving the goal labelling
the edge. In both case, the goal is the “basic” instruc-
tion. When a goal appears as the condition of a con-
ditional instruction (such as an if-then-else, a while or
before an “if-then-else” node (see node n4 on Figure 3))
the condition is satisfied if the goal can be achieved, it
fails otherwise. On the other hand, when a goal is not in
a conditional position, its failure leads to the complete
procedure failure.

2.2 Meta-level Procedures

The set of procedures in a PRS application system
not only consists of procedural knowledge about a spe-
cific domain (Figure 2 and 3), but also includes meta-
level procedures (Figure 4) — that is, procedures able
to manipulate applicable procedures, goals, and tasks
of PRS itself. The use of meta-level procedures ranges
from methods for choosing among multiple applicable
procedures, or to insure mutual exclusion on critical re-
sources. To achieve such objectives, these meta-level
procedures make use of information about plans, goals,
facts that is contained in the database or in the prop-
erties slot of the procedure. For example, the meta
procedure presented in Figure 4 insures that any fact
invoked procedure, is intended. Moreover, it guaran-
tees some kind of priority mechanism if some particular

S |IRC Receivel 0

{ IRC-RECEIYE>

S IMission supervisor| 0
{MISSION-SUPERVISOR

->1Meta Selector (facts preferred and ordered)| 0<-]

{S0AK S IMission refinement| 0]
{,<Ka_instance 0x234988> {MISSION-REFINEHENT

<Ka_instance 0x711708> ,)} —

S |Coordination supervisor| 0
COORDINATION-SUPERVISOR)
—
S |Start plan merging protocolel 0
AN-MERGING-PROTOCOLE}

|Execution supervisor| 0
n;n_ UTION-SUPERYISOR

Figure 6: Partial Task Graph Snapshot

properties hold for the procedure to intend.
2.3 The Interpreter

The PRS kernel interacts with its environment both
through its database, which acquires new facts corre-
sponding to changes in the environment, and through
the actions it performs as it carries out its tasks.

An important part of the main loop is the one which
finds applicable procedures and selects those to be in-
tended. Basically, this part is composed of one meta-
level reasoning loop inside the main loop. The purpose
of this inner loop is to determine the successive sets of
applicable procedures, in the light of the concluded facts
on the previous set of applicable procedures. This inner
loop stops whenever no applicable procedure is found.
This means that there exist no more criteria (i.e. appli-
cable meta procedures) to select among the applicable
procedures.

The tasks graph holds all the tasks which have been
intended. Indeed, when a procedure is applicable, the
system (i.e., the main loop or some meta procedure ex-
ecution) may decide to intend it (i.e., to propose it for
execution). If the procedure instance is invoked by an
event, it results in a new task, if it was invoked by a
goal, it is intended in the task the goal originated. This
distinction makes sense as plans pursuing a goal posted
by the system would be intended in the same task as
the one their goal originated from. On the contrary,
procedures applicable because of changes in the world,
i.e. events, are not explicitly connected to any previous
activity. Figure 6 illustrates a situation where a meta
procedure (Meta Selector...) is currently executing
and adding new tasks corresponding to fact invoked ap-
plicables procedure.

3 PRS as a High Level Supervision and
Control Language for Mobile Robots
Considering the PRS language and its interpreter, we
see that PRS remains a generic tool, which would allow
implementation of systems ranging from almost pure
rule based system to procedural approach. It provides
a general frame for acting on and maintaining a declar-
ative representation of the environment. Nevertheless,

3 . = i |

Fle PRS Inspect Trace Option Display Help
BT =] Intention Meleop-: To &
vt rou SHEINIT 8 eTeop-supervisor|
fetive e sn:,m?rcém. - |(TELEOP-SUPERVISOR)
H 4 H <Intention 0x37d408> achieving the goal: (! (PHMO-PROTOCOLE)) E
Meta Selector With Priority e N N T
E REE HON 12 nitislized g
: . <Thread 0:37cad8> in KAz Goal Intention, which is: ACTIVE [Tiission refiranentl 0
INVOCATION: e ’fi:ﬁ ng—m% ﬂ and has the following son(s): ((HISSION-REF INEHENT)
: . : | 5o RS: P_INIT2 end. Qm—m 0x33388> in KA: IPlan nerging protocolel, whic
(fact-invoked-kas $fact-invoked-kas) (achieve (= $decision-procedures P st oo PER_SET. P05 41 <Goal 0x72008>: (! (PHO-STO {ENEXT-STO-DNULLY))
{get-the-decision-procedures-of Next | [fre: row PERSETPOS 1) R —— | Conditions
CONTEXT: $fact-invoked-kas))) Halt Pei rov PERLSET_POS 18
. rs: *send MP_OCCUPIED_TF The conditions are: B
{or (> {length $fact-invoked-kas) 1) Roset | |1 | RS: ohos coirg oratst | |_update Condition 573666 i of tupe: THREAD ACTIVATION for <Thread 0 /
(and (equal (length $fact-invoked-kas) 1) Bl 7 Mkt B e eeloire oo VLSOR) (NEMEXEC-PLA- =
—an-i -0f -1 i =i -] 1 <Condition 0x97ach0> is of type: THREAD ACTIVATION for <Thread Ox &Y
(rt-sristance-f-ve (Frst $fct-inokodss)) Semaphore Take TIMEOUT ™| | o et o s it S i e
) 3t i3 not an 7
(achieve (= $rest INVOCATION: Q0 (= 5T g | | Condition 057EZ | I Intention Graph
(hsg;d‘“emnﬁed y (1 (SEH-P-TIMEOUT $SEH $TIHEOUT)) o P asg;gz'; <Thread 0;37ebeB> in KAz IPlan nerging protocole State0l,
act-invoked-kas Jatt——|| | <Condition Oxs7baas <Goal 0<7e0c8>: (* (¥ (REOUIRED (@NAHE-NULLY {GP-FLAG-51
T d waits: (4 d has the foll 2H
$decision-procedures))) (* (v (ELAPSED-TINE STIME STIHEO! e ot n eneies the folloving sonts |
(& (SEMAPHORE $SEM @VAL) <Thread 0x37c348> in KA: Goal waiting KA, which is: Sl
O VAL 1)) =) (V (REQUIRED {@NAME-DNULLY {@P-FLAG-DNULL} {@P->NULLY
CONTEXT: — y = Database 1
(SEMAPHORE-TYPE $SEM SEM-BASIC) @ 3 ¥
PROPERTIES: | \ upuste : JepmsT—— B
N h - & e i et (2 (ELAPSED-TIME STIME $TIMEQUT <Intention 0x34e708> in jrcd o I
((esisionprocetre 1) (shieu (= Sintande-decision rocedres Y SRR | BT EERS e
(get-intended-decision-procedures))) [ENDZ]-wtt—(! (FAILED) [Tms]fF] < (RLLOVED-CHI-HIS-FAILURE ALLOED-ENTITIES)
<1 (STORT-CRITICAL-SECTION T (ALLOWED-CHD-HIS-FRILURE CONTINUEY
a = . ANY-)
DOCUMENTATION: || cerockng-gequesT-noex o
"This KA uill get the semaphore $SEH, i GUNIRY (RCELL 00
It waits at t STIMEOUT te t it,"
| vaits ot pos o o ‘ Update (CCS-CONNECTION NONE)
" (CHECKING-REPLY-QUEUE
{achieve (meta-intended-all-uith-priority (7 (SEMAPHORE 9SEH QYALY) | | cronosT i1l
DOCUMENTATION: e |
"Meta KA used uhenever there is more than Zrest " dld dures)) o] G o
i - ion- P - ! (CI-RECEIVE)
one fact invoked KA applicable,” intended-decision-procedures (=> (SEMGPHORE $SEH (- BYAL 1)) ‘ I
CCOORINATION-LEVEL-BUSY)
0 O ML o) (COORDINATION-LIST ¢, .3
(CURRENT-ABSCISSA -1,000000)
v |
. : (106,
(achieve (intended-all-kas-as-root ; H T
: (=> (SEMAPHORE-INTENTION $SEM (GET-CURRENT-INTENTION)))
$decision-procedures))
Update Dismiss. Help
€1 eun-rRITICl EECTION Y
N 1
X-PRS 1.3.3 Beta [

Figure 4: A Simple Meta Level Procedure

there are a number of reasons why the PRS language
appears to be well suited to implement control and su-
pervision components of mobile robots, and we shall
now examine them.

3.1 Partial Plan/Script Representation

In PRS, each procedure is self-contained, as it de-
scribes in which condition it is applicable and the goals
it achieves. Tt usually contains in its “body” tests which
condition the proper posting of its subgoals while leav-
ing to the interpreter (and the meta-level procedures)
the choice of the adequate plan to try to satisfy each
posted subgoal.

This is particularly well adapted to context based
task refinement and to a large class of robot tasks which
can be viewed as incremental. The same task corre-
sponding to the achievement of a given goal has to be
pursued for a given period of time while its conditions
change due to its own execution state or to changes in
the environment state or the robot state. A typical task
of this type is navigation in a partially known and/or
dynamic environment.

For example, in the the Eden experiment, a number
of tests and actions must be performed before the robot
begins to plan its motion. Nevertheless, the choice of
the motion planner used (2d or 3d) is left to the in-
terpreter and possibly to meta-level procedures which
decides which method is the best in the current situa-
tion.

Figure 5: C-PRS Interface (from Martha)

3.2 Event and Goal Driven Behavior

Procedures can be triggered upon occurrence of
events or posting of goals. This is a key feature for im-
plementing a periodic monitoring through a set of sit-
uation driven procedures while refining and executing
a plan as provided by the planner. A convenient way
to interface the supervisor and the planner is the PRS
data base. This allows for example to express “execu-
tion modalities” as facts which will modify the execution
of plans, inhibit or awaken others.

The notion of goal in PRS is rather strong as it really
represents an objective the interpreter tries to satisfy by
any means, i.e. by trying one after another the proce-
dures which unify with it (the applicablility of the pro-
cedure is reevaluated after each unsuccessful attempt).
As a consequence, a goal is considered as failed after all
procedures for each valid unification binding have been
tried, and have failed.

The notion of event differs from the notion of goal.
An event may render some procedures applicable, but
these procedures do not pursue an explicit goal. They
merely reply to events and produce subgoals to be
achieved without any explicit objective, and the over-
all success or failure of these event-driven procedures
is not analyzed by any means. Moreover, events repre-
sent new pieces of information which are usually stored
in the database for further reference and to update the
state of the world as seen by the system.

3.3 Advanced Reasoning

The meta level reasoning available under PRS pro-
vides a powerful mechanism to control the PRS main
loop. Currently, meta level reasoning is mainly used in
the procedure selection part of the PRS main loop®.

In applications such as the ones developed at LAAS,
meta level reasoning has been used for a number of rea-
sons, e.g., to ensure mutual exclusion of the execution of
incompatible procedures, or to implement a preference
on the method used to achieve a particular goal when
multiple alternatives are given, or to implement some
event or procedure based priority mechanism.

In fact, by using meta level procedure, the user gets
a hook on the intending process (i.e. which proce-
dures/plans at the end gets a chance to be executed),
and therefore gain an important control on the PRS
main loop.

3.4 Real-time Aspects

The algorithms and the main loop used in C-PRS
are such that, under some reasonable assumptions, the
C-PRS main loop can guarantee an upper bound on
reaction time.

It turns out that if Tp,.s is the time to parse a proce-
dure invocation, 7, is the time to intend a procedure
and T poose 18 the time to choose among applicable pro-
cedure, the cycle time C7; depends on the previous cycle
time C'T;_1, the frequency of event arrival p;_; during
the cycle C;_1, the time taken by the action Tgye.(4)
(if any) executed during cycle C; and a constant value
(TInt + TChoose)~

We can show that the cycle time of C-PRS is: C'7T; =
(CTizy X pti—1 X Tears) + Trnt + Tehoose + Thzec(?)
Defining maxima we show that for all : CT; < piprqee X
TPars X Cﬂ—l + TEIMZ‘Z}; + TInt + TChoose
The first observation we can make 1s that to have a
bound on all the C7T; we need: pprae X Tpars < 1.
Interpreting this constraint means that if this value
UMar X Tpars > 1 then the value of CT; diverges and
it becomes impossible to guarantee an upper bound on
the reaction time. However, if parqr X Tpars < 1, then

we can show the existence of an upper bound on C7T;
TMa® LT i+ TChoose

1-pnraeXTPars
See [9] for a more detailed account of these results.

From this bound on reaction time, the user can de-
rive or implement other complex and advanced temporal
properties, such as priority mechanisms, deadlines, and
so on. For example, using meta level procedures, it is
easy to implement a mechanism which can guarantee
that a procedure with a particular property is intended
as root of the task graph (therefore executed before any

which 1s:

8However, it can easily be extended to other parts of the PRS
interpreter (for example to react to task graph changes or to goal
failure).

other procedure). The meta level procedure on figure 4
does exactly that for all fact-invoked procedures.

3.5 Miscellaneous Features

C-PRS interfaces (see Figure 5) provide mechanisms
to the user to examine the various tasks intended, to
check/change the content of the database, to follow the
execution of particular procedure, and to load or delete
procedures on the fly.

C-PRS provides a number of mechanisms to allow
interaction with the real world: a communication li-
brary over sockets, but also more sophisticated means
to provide high level interprocess communications and
shared memory services between C-PRS and low level

modules [5].

In the Eden experiment, all C-PRS code was still ex-
ecuted on a SparcStation, to which the robot remained
connected by an Ethernet cable. In the Martha project,
the C-PRS application is small enough (less than 300k)
to fit on board the robots on a 68040 boards in a VME
rack under VxWorks.

4 Future Developments

There are a number of developments which we think
would improve the overall capabilities of C-PRS to han-
dle supervision and control of mobile robots.

An important issue which remains open in the cur-
rent version of C-PRS is the ability to execute a sub-
set of the loaded procedures with a guaranteed bound
on their execution time. This could be achieved us-
ing compilation techniques similar to the ones used in
Kheops [7], a 07 rule based-system, that produce a
bounded-depth decision tree or using situated automata
such as in Rex/Gapps [11].

Another point which appears critical in the two men-
tioned applications is the ability to handle errors at the
“procedure” level. We could implement in C-PRS some
kind of error handling mechanism on plans. Each plan
would then have a number of error handlers which trig-
ger under specified conditions or with particular signals.
These handlers could be implemented using the inter-
nal mechanisms currently used by the PRESERVE (#)
and the MAINTAIN (%) operators.

Last, we think that the notion of activity, which cor-
responds to tasks under execution, although more or
less present in the task concept, must be further devel-
oped to be easily handled by the user [4]. The activity
tree is an important representation level in mobile robot
control as it allows to send events or signals to activ-
ities and propagate them to its children. This notion
would improve the control mechanism because it repre-
sents more accurately the status of the robot execution
tasks.

5 Related Work

The earliest work on using PRS to control mobile
robot i1s a study performed by Georgeff et al at SRI
and described in [6]. One of the major criticisms one
can make to this study is that it never reached a point
where a real robot ran under the control of SRI PRS.
For various reasons, but mainly performances, the pro-
cedures were ran with a robot simulator. Moreover, the
version of SRI PRS used at that time lacked many of
the functionalities which now make an implementation
such as C-PRS better suited for this type of application.

More recently, other research laboratories have found
interest in using the PRS approach for mobile robot
applications. In [13], the authors describe an imple-
mentation of procedural reasoning (called UM-PRS) to
control an outdoor environment vehicle. The paper de-
scribes early experiments which although very promis-
ing do not reach the level of achieveness obtained with
C-PRS in the Eden and Martha experiments.

There are other languages which have been used to
program control and supervision system for autonomous
mobile robot Esterel® [3] and Rex!®/Gapps [11]. A com-
mon point to this two languages is that they used a syn-
chronous approach, which allows the user to prove some
temporal properties of the system, as well as make some
formal proof of the resulting system. However, we con-
sider these languages as complementary to PRS, which,
as we have shown, provide a richer and higher level lan-
guage, but lacks most of the nice properties which result
of the synchronous approach paradigm.

6 Conclusion

This paper presents the use of PRS as a high level
language for supervision and control systems for au-
tonomous mobile robots. After a presentation of PRS,
we discuss some of the critical features of PRS: its plan
(procedure) representation for plan execution and goal
refinement; its ability to construct and act upon par-
tial (rather than complete) plans; its ability to pursue
goal-directed tasks while being responsive to changing
patterns of events in bounded time; its ability to man-
age multiple tasks in real-time; its default mechanisms
to handle real-time demands of its environment; and its
meta-level reasoning capabilities have been extensively
used in both applications. C-PRS proves to be very flex-
ible and has been used in different implementations of
control and supervision systems for mobile robots. Each
application is too complex to be presented in this paper
but have been described in previous papers: Martha [1]
and Eden [12]. In the Eden and in the Martha experi-
ment, the mission interpretation, as well as the control
of the functional modules (motion execution, motion

9Esterel is being used at INRTA.
10Rex has been used on SRI's Flakey robot.

planner, perception, etc) are implemented in C-PRS.
More specifically, in the Martha project, which involves
a fleet of autonomous robots, the plan coordination be-
tween robots (Plan Merging Operation [2]) is also im-
plemented in C-PRS. Work on improving some features
in C-PRS is on-going to better suit embedded control
and supervision of autonomous mobile robots.

References
[1] L. Aguilar, R. Alami, S. Fleury, M. Herbb, F. F. In-
grand, and F. Robert. Ten autonomous mobile robots
(and even more) in a route network like environment.

In Proceedings of IROS 95, Pittsburg (USA), 1995.
[2] R. Alami, F. Robert, F. F. Ingrand, and S. Suzuki.

Multi-robot cooperation through incremental plan-

merging. In IEEE ICRA, Nagoaya, (Japan), 1995.

[3] G. Berry and G. Gonthier. The Synchronous Program-
ming Language Esterel: Design, Semantics, Implemen-
tation. Science of Computer Programming, 19(2), 1992.

[4] R. Chatila, R. Alami, B. Degallaix, and H. Laruelle. In-
tegrated planning and execution control of autonomous
robot actions. In JEEE ICRA, Nice, (France), 1992.

[5] S. Fleury, M. Herrb, and R. Chatila. Design of a modu-
lar architecture for autonomous robot. In IFEE ICRA,
San Diego California, (USA), 1994.

[6] M. P. Georgeff, A. L. Lansky, and M. Schoppers. Rea-
soning and planning in dynamic domains: an exper-
iment with a mobile robot. TN380, Al Center, SRI
International, Menlo Park, California (USA), 1987.

[7] M. Ghallab and H. Philippe. A compiler for real-time
Knowledge-based Systems. In International Workshop
on Al for Industrial Applications, Hitachi City, Japan,
May 1988.

[8] F. F. Ingrand, R. Chatila, and R. Alami F. Robert.
FEmbedded control of autonomous robots using proce-
dural reasoning. In Proceedings of ICAR 95, San Feliu
de Guixols, Spain, 1995.

[9] F. F. Ingrand and V. Coutance. Real-Time Reasoning
using Procedural Reasoning. Technical Report 93-104,
LAAS/CNRS, Toulouse, France, 1993.

[10] F.F.Ingrand, M. P. Georgeff, and A. S. Rao. An Archi-
tecture for Real-Time Reasoning and System Control.
IEEE Ezpert, Knowledge-Based Diagnosis in Process
Engineering, 7(6):34 44, December 1992.

[11] L. P. Kaelbling. Goals as Parallel Program Specifica-
tions. In Proceedings of IJCAI Saint Paul, Minnesota
(USA), 1988.

[12] S. Lacroix, R. Chatila, S. Fleury, M. Herrb, and
T. Simeon. Autonomous navigation in outdoor envi-
ronment : Adaptative approach and experiment. In

IEFE ICRA, San Diego, California, May 1994.

[13] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny.
UM-PRS: An Implementation of the Procedural Rea-
soning System for Multirobot Applications. In Proceed-
ings of IRFFSS, Houston, Texas (USA), March 1994.

