Emmanuel Gu

Rachid Alami
email: rachid@laas.fr

Let's reduce the gap between task planning and motion planning

In the stream of research that aims to speed u p p r actical planners, we propose a new approach to task planning based o n P r obabilistic Roadmap Methods (PRM). Our contribution is twofold. The rst issue concerns the development of ShaPer, a task planner that is able to deal e ciently with large problems. Shaper captures the structure of the task space. The second contribution involves promising results on robot task planning. This is obtained t h r ough an analysis of the task space structure that exhibits the relation between task and geometric reasoning for a given robot task. To illustrate such an approach, we solve a complex problem where motion and task planning are closely interleaved.

Motivations

Task planning has often used examples borrowed from robotics like, for instance, Pick&Place scenarii. However, the e ective use of practical task planners in robotics has always been limited to domains where it was possible to establish a clear and impermeable hierarchy b e t ween a high-level task planner and a lower level where geometric problems are dealt with. This is clearly insu cient if one wants to tackle realistic robotics problems. For instance, a plan for building a stack of objects may be substantially modi ed if one adds an obstacle or changes the shape of the robot 10, 8].

We h a ve proposed in the early nineties a geometrical formulation of the manipulation problem 2]. We formulated the problem as a series of motion planning problems in presence of movable obstacles. We s h o wed that it was possible to compute regions in the global con guration of the system where a grasp or a release action may cause a qualitative c hange in the topology of the free space allowing to access new states in the task space of a given manipulation problem. Such re-gions correspond to links between various "slices" of the global con guration space 1].

While the formulation was satisfactory and gave a deep understanding of the manipulation problem, its e ective application has been limited to environments with a small number of degrees of freedom 1].

Indeed, we faced three problems. The rst one was due to the limitations of the motion planners of that (old) times. It was unrealistic to try to solve m otion problems with more than 3 degrees of freedom. The second problem was the absence of an operational link between task planning and motion planning. The third problem which w as also discouraging was the slowness of task planners.

We are convinced that the recent and independent advances in motion and task planning have r e a c hed a level where it becomes realistic and fruitful to investigate the links between them and to devise paradigms that e ectively involve the two aspects in close relation and not simply through a gross and somewhat arti cial hierarchical decomposition. This paper is a rst step toward this goal.

Even though task planners have made very substantial progress 3] o ver the last years, they are still limited in their use. There are also domains, like i n robotics which heavily in uence the structure of the task space learning such a structure will certainly help in building an e cient planner in a given domain. However, the structure of the environment (at least the useful one) heavily depends not only on the environment but also on the actions that can be performed. Our aim is to develop a generic planner that will exhibit and learn the structure of a given domain. This is the reason why w e propose to investigate approaches based on Probabilistic Roadmap (PRM). PRM basically captures the space topology through random con guration generation and connectivity t e s t s b e t ween states using a local planner. PRM obtains good results in robot path planning because it is relatively easy to test the validity o f a randomly generated con guration and because there exist good metrics and numerous very e cient l o c a l planners. PRM can even obtain excellent results when careful techniques are devised in order to construct a compact graph and to direct the search t o ward nonexplored regions 9].

Our contribution is twofold. The rst issue concerns ShaPer1 , a task planner that is able to deal eciently with large problems. We will show that, even if problems are modeled in rst-order logic, there exists a topology for task planning domains. With a PRM like algorithm, we s h o w h o w w e can devise a task planner which builds a graph of the task space.

The second contribution involves promising preliminary results on joining task and geometrical reasoning. Indeed the environment de nition and the robot con gurations can be modeled in rst-order logic. ShaPer's expressiveness coupling with a PRM like algorithm is also able to deal with geometrical constraints.

Both contributions are illustrated through a prototype implementation presented on a problem where motion and task planning are closely interleaved.

ShaPer: An e cient task planner

In this section, we brie y present S h a P er, a new version of the task planner proposed in 6]. Shaper is based on STRIPS formalism 4]2 . It performs in two steps: rst an accessibility graph is generated oline, and then the planner solves online task planning problems by extracting a plan from the learned graph. Even though usual task planners are limited by a c o mbinatorial explosion, ShaPer is able to learn the accessibility graph for substantially large domains this is possible because this graph only contains relevant states with respect to the state space tolopology .

Relevant states

A new state is declared relevant if it allows to access to an unknown state (i.e. there is no other state in the current graph G with the same shape). We s a y that two states S and g have the same shape i there exists a substitution such t h a t S = (g). Consider equal to S (= fA=A C=B B=Cg). Thus, if P is a sequence of actions applicable to g, then (P) is applicable to S and ((P))(S) = (P(g)). Such a graph G also contains all accessible shapes (of a given connexity). Table 1 presents an algorithm to test the relevance of a state.

An accessibility graph learning

In motion planning, PRM generates a random conguration, checks its validity (if it is in C f r e e) and tries to connect it to the current g r a p h . I n t a s k p l a nning, there is no general way t o c heck the validity o f a state. This is the reason why w e do not generate states randomly. Instead of that, we generate random valid plans starting from a given initial valid state (see table 2 3). [START_REF] Alami | A geometrical approach to planning manipulation tasks. the case of discrete placements and grasps[END_REF] We d e v elop a graph with only one connected component including the initial state S begin by applying valid local plans. -a- After each random generation of a state S 0 by applying a random valid plan ;, w e m ust check the relevance of the new node S 0 = ; (S). T o d o s o , w e r s t look for a substitution between S 0 and G. I f i t i s not the case, S 0 is potentially relevant we m ust then verify that S 0 allows to access to to a new state S 00 that is not directly accessible from the current G (i.e. 8g 2 G ::L(S 00 g) -see Table 1 and gure 1).

G init goal G A B C D A B C D A C D C B B A D B C A D D A C B Initial State Goal State -c- D B C A B A C D -b- G init goal G A B C D A B C D A C D C D A B A B C D C B B A D B C A D D A C B
Owing to the accessibility property of shapes (i.e. if S = (g) and P a p l a n s u c h t h a t S 0 = P(S) then (S 0) = ((P))(g)), even if the graph is limited to one substitution, we are able to extract sound plans.

Solution extraction

Note that the planner can not directly use the graph G to extract a solution. Indeed, the initial state S init , the goal state S goal and the graph G may correspond to di erent substitutions (see, for instance, gure 2.a).

So, the solution extraction 4 consists in four steps: 1. Build the graphs G init and G goal using S init and S goal substitutions 2. Connect 5 G init and G goal with a local planner 3. Connect S init to G init (S i) a n d S goal to G goal (S g) 4. Search for a path between S i and S g . This new algorithmanswers the problem of randomlygenerating a v alid state in the method presented in 6]. [START_REF] Blum | Fast planning through planning graph analysis[END_REF] Note that two states S 1 and S 2 with the same shape are not necessary in the same connexity (i.e. there exists no path between G 1 and G 2). In such case, we can say that there exists no solutions. [START_REF] Fikes | Strips: A new approach t o the application of theorem proving to problem solving[END_REF] Note that although connection is always possible (if a plan exists), in restricted domains, to connect G init and G goal , t h e planner may need to nd intermediate substitutions.

Results for classical planning domains

Table 3 presents some problem resolutions for the block-world and the gripper domain. We compare ShaPer to IPP-v4.0 7] one of the fastest task planners. The problems that have been used in the block-world domain are de ned by: the initial state corresponds to the highest possible tower and the goal state to the same tower except for the top block that is put at the bottom. In the gripper domain, the problem consists in moving all balls from a table to another with a robot which can pick t wo balls at a time.

Predicate independence

While the previous section presented the general framework of our planner, there are still e orts to be dedicated in order to reduce the graph size. For instance, one can take a d v antage of predicate independence. Indeed, given two independent predicates f and h, and F (resp. H) the accessibility graphs constructed from f (resp. h), we w ould have, with the algorithm described above, Card(G) = Card(F) Card(H), whereas the construction of Card(G) = Card(F) + Card(H) would have been su cient.

When?

Two predicates f and h are said to be independent, in a given domain, i 8o 2 O :

f 2 A o D o ! h = 2 A o D o .
Similarly, w e de ne classes of independent operators: two operators o 1 and o 2 are independent i (D o1 A o1)\(D o2 A o2) = Note that even if o 1 and o 2 are independent, we c a n h a ve P o1 \(A o2 D o2) 6 = .

This means that o 1 may need preconditions from other predicate classes. For instance, in a domain where the robot moves blocks from a table to another, blockposition is independent o f robot-position, but to pick a block (operator of the block-position class) the robot needs to be near the table.

How?

The algorithm presented in table 4 builds a more compact accessibility graph by taking into account predicate independence.

To better understand this algorithm, we r u n 6 it on a v ery simple domain. The environment is composed of three locations (L 1 ,L 2 and L 3 with T a b l e (L 1) and Let us rst decompose the initial state into E 1 and E 2 : e 1 1 = fOn(B 1 L 1) O n (B 2 L 1) HandEmptyg E1 , e 1 2 = fAt(L 1)g E2 and c = fT able(L 1) T a b l e (L 3) Connect(L 1 L 2) Connect(L 2 L 1) Connect(L 2 L 3) Connect(L 3 L 2)g C onst: Now w e apply the algorithm step by step (see gure 3 for the state description): [START_REF] Gu | A possibilistic planner that deals with non-determinism a n d c o n tingency[END_REF] To simplify explanations, we present a deterministic version of table 4. The deterministic version develops all possible actions in all possible classes. [START_REF] Gu | An accessibility graph learning approach for task planning in large domains[END_REF] Note that the predicates 1. No action is applicable to e 1 1 c.

2. Apply P i c k (B 1 L 1) to e 1 1 e 1 2 c: create e 2 1 with precondition e 1 2 .

3. Don't apply Pick(B 2 L 1) to e 1 1 e 1 2 c because of the substitution with e 2 1 .

4. Apply Mo v e (L 1 L 2) to e 1 2 c: create e 2 2 . 5. No action is applicable to e 2 1 c. 6. Don't apply P lace(B 1 L 1) to e 2 1 e 1 2 c because of the substitution with e 1 1 .

7. Apply Mo v e (L 2 L 3) to e 2 2 c: create e 3 2 . 8. No action is applicable to e 2 1 c. 9. Apply Place(B 1 L 3) to e 2 1 e 3 2 c: create e 3 1 with precondition e 3 2 . 10. No Mo v eapplicable because of substitutions. 11. No action is applicable to e 3 1 c. 12. Don't apply P i c k (B 2 L 1) to e 3 1 e 1 2 c because of the substitution with e 2 1 .

13. Don't apply P i c k (B 1 L 3) to e 3 1 e 3 2 c because of the substitution with e 3 1 . 14. No more action is applicable. The graph is complete.

The graph built with independent predicates (Table 4) is equivalent to the rst one (scribed previously (with the independence transformation).

A step toward geometric reasoning

Now w e show h o w w e use the accessibility graph learning algorithm to integrate abstract reasoning (task planning) and geometrical constraints (motion planning). This is illustrated through an example.

Introduction of motion planning

In order to model numerical facts (e.g. Cartesian coordinates of the robot), we extend STRIPS formalism as following: numerical facts: At(7:5 1:3) models the robot position in Cartesian coordinates and Size(Tank 2:0) models the fact that the robot width is 2.0 when it holds the Tank intersection and inequality in preconditions. Move(X 1 : Real,Y 1 : Real,X 2 : Real,Y 2 : Real, S: Real) Pre: At(X 1 Y 1), Robot_Size(S), via motion) that depends on the robot width, instead of generating one graph per robot width. In this case, edges are labeled by t h e Robot_Size predicate (see the previous section). Figure 5 presents a learned graph for the tank of water example (a 2D representation of the environment i s p r e s e n ted in gure 4). The goal is to have a glass of water on T able 3 (initial position of the robot). To do this, the robot must move a tank of water (initially on Table 1) and a glass (initially there is one on T able 1 and another one on Table 2) t o Table 3 where a pump allows to ll the glass from the tank.

8d 2 E nv :d \ Disc((X 1 Y 1) (X 2 Y 2)] S) = Add: At(X 2 Y 2) Del: At(X 1 Y 1) Pick(X:Real
What is of interest here is the capability of this scheme to provide an e ective w ay to deal with intricate links between the logics of the task and its geometric counterpart.

First, because there is a narrow passage which prevents the robot to go from one side to the other while holding a big object (the tank), ShaPer maintains two classes of robot positions for picking objects on T a b l e 2 . This fact has drastic consequences on robot plans that need to transfer the tank. This is the reason why a STRIPS plan fails (i.e. it deals with a too high level environment m o d e l) .

Figure 5 compares a plan obtained by using a classical two-level task planner and motion planner with a plan produced by ShaPer. Even if one interleaves a task planner and a motion planner (to avoid failure during execution), ShaPer's expressiveness allows to nd the shortest plan (e.g. pick t h e Glass from T able 2 instead of T able 1).

Object grasping

In the geometric context, we m ust de ne the fact that the robot is able to pick or place an object. Indeed, Move action does not allow t o k n o w the table proximity. A near precondition can, for instance, be de ned based on robot-table distance. Such a method allows in nite grasp positions ShaPer allows to group them into several grasp classes (if necessary). Note that their number depends on the local planner (L) capabilities. Figure 4 shows two distinct cases: i) L is a straight-line. The node n 2 is locally accessible from n 1 , s o n 2 is in the same class as n 1 , it is not added. In the same way n 3 and n 4 de ne two classes n 5 and n 6 de ne two classes. ii) L is a more powerful motion planner. n 4 is accessible from n 3 , so there is only one class. However n 5 and n 6 de ne two classes because the robot width does not allow to pass through the narrow passage. Consequently the two nodes are necessary to capture the task topology.

Conclusion and future work

We h a ve proposed a new planning algorithm based on an accessibility graph learning. ShaPer allows to demonstrate promising capabilities of such a method. Indeed, it is able to deal e ciently with complex task problems and geometric constraints. An example, where task and motion planning are closely interleaved, shows that ShaPer is more expressive t h a n a hierarchical decomposition in a high level where task planning is performed and a lower level where geometric problems are dealt with.

Our future work will concern further investigations on the following aspects: i) improvement of the reasoning on robot manipulation 1] and ii) extension to deal with uncertainty especially by including perception actions 5].

 for instance the two b l o c k-world states g and S: Relevant(S 0 , G, Ma xTrials): Boolean ForEach g 2 G If 9 g S 0 Then Return false /*S 0 shape already in G */ trial 0 fo u n d true While trial < Max Trials Do Randomly choose ; a local plan /*P ; S 0 */ ForEach S 00 2 G Do If L(S 00 ;(S 0)) Then fo u n d fa l s e/*Already in G*/ trial trial + 1 Break If fo u n dThen Return true /*S 0 adds information*/ Return false

 with g = fClear(A) O n (A B) O n T a b l e (B) Clear(C) OnTable(C)g and S = fCl ear(A) O n T a b l e (B) Clear(B) OnTable(C) O n (A C)g. The state g, when A is substituted by A, B by C and C by B is

Figure 1 :

 1 Figure 1: Is S 0 a r e l e v ant state for the graph G?

Figure 2 :

 2 Figure 2: Solution extraction in block-world domain. a. The graph is generated o -line Initial and goal states are de ned online. b. Create G init and G goal from the substitutions of S init and S goal in G connect G init to G goal . c. Search a path in the graph.

Learn_Graph

 Randomly choose ; a v alid local plan Given S 0 = ; (S) /*P ; S */ If Relevant(S 0 ,G,Ma xT r i a l s) Then G G f S 0 g cover 0 Else cover cover + 1

Figure 3 :

 3 Figure 3: Algorithm with independent predicates explanation (dashed arrows represent preconditions).

Figure 4 :

 4 Figure 4: Environment description and Grasp classes explanations

Figure 5 :

 5 Figure 5: Tank of water problem. a. Learned graph with predicate independence. b. Plan in classical STRIPS model. c. Plan when the planner takes into account geometrical constraints.

Table 1 :

 1 Relevance of a state.

		A		A
	state g:	B C	state S:	B C

Table (

 (

	L 3)), two blocks (B 1 and B 2) and a robot which can move, pick or place a block (the Pick & Place actions are symmetric):
	Move(X:Location, Y:Location) Pre: At(X), Connect(X,Y) Add: At(Y) Del: At(X)
	Pick(X:Block, Y:Location) Pre: At(Y), On(X,Y), HandEmpty, T able(Y) Add: Hold(X) Del: On(X,Y), HandEmpty After predicate decomposition, we obtain two classes: E 1 = fOn HandEmpty Holdg and E 2 = fAtg 7 .

 Table and Connect are not in any classes because no operator modi es them.

Table 2 :

 2 Learn the shape graph.

Table 2

 2

). Con-sequently the solution extraction can be made as de-
	ShaPer Problem IPP Graph learning Extraction CPU nb node CPU CPU 12 blocks 171.9 77 1.58 0.01 15 blocks -176 16.73 0.06 20 blocks -627 173.79 0.51 10 balls 56.9 30 0.07 0.01 20 balls -60 0.55 0.01 50 balls -150 14.04 0.15
	Table 3: Graph learning and solution extraction for some classical domains

Table 4 :

 4 Learning the shape graph with predicate independence.

ShaPer: Shape based Planner.

An action o consists of three parts: Po represents the preconditions, Ao the add-list (new facts -Ao\Po =) and Do the Del-list (facts: not true when o is applied -Do Po) represent the e ects. o is applicable to a state S if and only if Po S. I n this case o(S) = (S ; Do) Ao.