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Abstract

In the stream of research that aims to speed up prac�
tical planners� we propose a new approach to task plan�
ning based on Probabilistic Roadmap Methods �PRM��
Our contribution is twofold� The �rst issue concerns
the development of ShaPer� a task planner that is able
to deal e�ciently with large problems� Shaper �cap�
tures� the structure of the task space� The second
contribution involves promising results on robot task
planning� This is obtained through an analysis of the
task space structure that exhibits the relation between
task and geometric reasoning for a given robot task�
To illustrate such an approach� we solve a complex
problem where motion and task planning are closely
interleaved�

� Motivations

Task planning has often used examples borrowed
from robotics like� for instance� Pick�Place scenarii�
However� the e�ective use of practical task planners in
robotics has always been limited to domains where it
was possible to establish a clear and impermeable hi�
erarchy between a high�level task planner and a lower
level where geometric problems are dealt with� This
is clearly insu�cient if one wants to tackle realistic
robotics problems� For instance� a plan for build�
ing a stack of objects may be substantially modi�ed
if one adds an obstacle or changes the shape of the
robot��	� 
��

We have proposed in the early nineties a geomet�
rical formulation of the manipulation problem���� We
formulated the problem as a series of motion planning
problems in presence of movable obstacles� We showed
that it was possible to compute regions in the global
con�guration of the system where a grasp or a release
action may cause a qualitative change in the topology
of the free space allowing to access new states in the
task space of a given manipulation problem� Such re�

gions correspond to links between various 
slices
 of
the global con�guration space����

While the formulation was satisfactory and gave a
deep understanding of the manipulation problem� its
e�ective application has been limited to environments
with a small number of degrees of freedom����

Indeed� we faced three problems� The �rst one was
due to the limitations of the motion planners of that
�old� times� It was unrealistic to try to solve mo�
tion problems with more than � degrees of freedom�
The second problem was the absence of an operational
link between task planning and motion planning� The
third problem which was also discouraging was the
slowness of task planners�

We are convinced that the recent and independent
advances in motion and task planning have reached a
level where it becomes realistic and fruitful to investi�
gate the links between them and to devise paradigms
that e�ectively involve the two aspects in close rela�
tion and not simply through a gross and somewhat
arti�cial hierarchical decomposition� This paper is a
�rst step toward this goal�

Even though task planners have made very sub�
stantial progress ��� over the last years� they are still
limited in their use� There are also domains� like in
robotics which heavily in�uence the structure of the
task space� learning such a structure will certainly
help in building an e�cient planner in a given do�
main� However� the structure of the environment �at
least the �useful� one� heavily depends not only on
the environment but also on the actions that can be
performed� Our aim is to develop a generic planner
that will exhibit and learn the �structure� of a given
domain� This is the reason why we propose to in�
vestigate approaches based on Probabilistic Roadmap
�PRM�� PRM basically �captures� the space �topol�
ogy� through random con�guration generation and
connectivity tests between states using a local plan�
ner� PRM obtains good results in robot path planning
because it is relatively easy to test the validity of a



randomly generated con�guration and because there
exist good metrics and numerous very e�cient local
planners� PRM can even obtain excellent results when
careful techniques are devised in order to construct a
compact graph and to �direct� the search toward non�
explored regions����

Our contribution is twofold� The �rst issue con�
cerns ShaPer�� a task planner that is able to deal e��
ciently with large problems� We will show that� even
if problems are modeled in �rst�order logic� there ex�
ists a topology for task planning domains� With a
PRM like algorithm� we show how we can devise a
task planner which builds a graph of the task space�

The second contribution involves promising pre�
liminary results on joining task and geometrical rea�
soning� Indeed the environment de�nition and the
robot con�gurations can be modeled in �rst�order
logic� ShaPer�s expressiveness coupling with a PRM
like algorithm is also able to deal with geometrical
constraints�

Both contributions are illustrated through a pro�
totype implementation presented on a problem where
motion and task planning are closely interleaved�

� ShaPer� An e�cient task planner

In this section� we brie�y present ShaPer� a new
version of the task planner proposed in ���� Shaper
is based on STRIPS formalism ����� It performs in
two steps� �rst an accessibility graph is generated o	�
line� and then the planner solves online task planning
problems by extracting a plan from the learned graph�
Even though usual task planners are limited by a com�
binatorial explosion� ShaPer is able to learn the acces�
sibility graph for substantially large domains� this is
possible because this graph only contains �relevant�
states with respect to the state space �tolopology��

��� Relevant states

A new state is declared �relevant� if it allows to
access to an unknown state �i�e� there is no other state
in the current graph G with the same shape�� We say
that two states S and g have the same shape i� there
exists a substitution � such that S � ��g�� Consider
for instance the two block�world states g and S�

�ShaPer� Shape based Planner�
�An action o consists of three parts� Po represents the pre�

conditions�Ao the add�list �new facts � Ao�Po � �� andDo the
Del�list �facts� not true when o is applied � Do � Po� represent
the e�ects� o is applicable to a state S if and only if Po � S� In
this case o�S� � �S �Do�� Ao�

Relevant�S�� G� Max Trials�� Boolean
ForEach g � G
If ��g�S� Then
Return false ��S� shape already in G ��

trial� �
found� true

While trial � Max Trials Do
Randomly choose � a local plan ��P� � S���
ForEach S�� � G Do
If L�S�����S��� Then
found � false ��Already in G��
trial� trial� �
Break

If found Then
Return true ��S� adds information��

Return false

Table �� Relevance of a state�

A
B Cstate S:

A
B Cstate g:

with g � fClear�A�� On�A�B��OnTable�B�� Clear�C��

OnTable�C�g and S � fClear�A�� OnTable�B��

Clear�B�� OnTable�C�� On�A�C�g� The state g�
when A is substituted by A� B by C and C by B is
equal to S �� � fA�A�C�B�B�Cg�� Thus� if P is
a sequence of actions applicable to g� then ��P � is
applicable to S and ���P ���S� � ��P �g��� Such a
graph G also contains all accessible shapes �of a given
connexity�� Table � presents an algorithm to test the
relevance of a state�

��� An accessibility graph learning

In motion planning� PRM generates a random con�
�guration� checks its validity �if it is in Cfree� and
tries to connect it to the current graph� In task plan�
ning� there is no general way to check the validity of
a state� This is the reason why we do not generate
states randomly� Instead of that� we generate random
valid plans starting from a given initial valid state �see
table � ���

�We develop a graph with only one connected component
including the initial state Sbegin by applying valid local plans�
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Figure �� Is S� a relevant state for the graph G�
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Figure �� Solution extraction in block�world domain� a� The graph is generated o��line 	 Initial and goal states are de
ned

online� b� Create Ginit and Ggoal from the substitutions of Sinit and Sgoal in G 	 connect Ginit to Ggoal� c� Search a path in the

graph�

After each random generation of a state S� by ap�
plying a random valid plan �� we must check the rel�
evance of the new node S� � ��S�� To do so� we �rst
look for a substitution � between S� and G� If it is
not the case� S� is potentially relevant� we must then
verify that S� allows to access to to a new state S��

that is not directly accessible from the current G �i�e�
�g � G��L�S��� g� � see Table � and �gure ���

Owing to the accessibility property of shapes �i�e�
if S � ��g� and P a plan such that S� � P �S� then
��S�� � ���P ���g��� even if the graph is limited to one
substitution� we are able to extract sound plans�

��� Solution extraction

Note that the planner can not directly use the graph
G to extract a solution� Indeed� the initial state Sinit�
the goal state Sgoal and the graph G may correspond to
�di�erent substitutions� �see� for instance� �gure ��a��

So� the solution extraction� consists in four steps�
�� Build the graphs Ginit and Ggoal using Sinit and
Sgoal substitutions� �� Connect� Ginit and Ggoal with
a local planner� �� Connect Sinit to Ginit �Si� and
Sgoal to Ggoal �Sg�� �� Search for a path between Si
and Sg�

This new algorithmanswers the problemof randomlygenerating
a valid state in the method presented in ��
�

�Note that two states S� and S� with the same shape are
not necessary in the same connexity �i�e� there exists no path
between G� and G��� In such case� we can say that there exists
no solutions�

�Note that although connection is always possible �if a plan
exists�� in restricted domains� to connect Ginit and Ggoal� the
planner may need to 
nd intermediate substitutions�

��� Results for classical planning domains

Table � presents some problem resolutions for the
block�world and the gripper domain� We compare
ShaPer to IPP�v��	 ��� one of the fastest task planners�
The problems that have been used in the block�world
domain are de�ned by� the initial state corresponds
to the highest possible tower and the goal state to the
same tower except for the top block that is put at the
bottom� In the gripper domain� the problem consists
in moving all balls from a table to another with a robot
which can pick two balls at a time�

� Predicate independence

While the previous section presented the general
framework of our planner� there are still e�orts to
be dedicated in order to reduce the graph size� For
instance� one can take advantage of predicate inde�
pendence� Indeed� given two independent predicates
f and h� and F �resp� H� the accessibility graphs
constructed from f �resp� h�� we would have� with
the algorithm described above� Card�G� � Card�F � �
Card�H�� whereas the construction of Card�G� �
Card�F � �Card�H� would have been su�cient�

��� When�

Two predicates f and h are said to be independent�
in a given domain� i� �o � O�f � Ao � Do � h ��
Ao � Do� Similarly� we de�ne classes of independent
operators� two operators o� and o� are independent i�
�Do� �Ao��� �Do� �Ao� � � � Note that even if o� and



o� are independent� we can have Po���Ao��Do�� �� ��
This means that o� may need preconditions from other
predicate classes� For instance� in a domain where the
robot moves blocks from a table to another� block�
position is independent of robot�position� but to pick a
block �operator of the block�position class� the robot
needs to be near the table�

��� How�

The algorithm presented in table � builds a more
compact accessibility graph by taking into account
predicate independence�

To better understand this algorithm� we run� it on
a very simple domain� The environment is composed
of three locations �L��L� and L� with Table�L�� and
Table�L�� �� two blocks �B� andB�� and a robot which
can move� pick or place a block �the Pick 
 Place
actions are symmetric��

Move�X�Location� Y�Location�
Pre� At�X�� Connect�X�Y�
Add� At�Y�
Del� At�X�

Pick�X�Block� Y�Location�
Pre� At�Y�� On�X�Y�� HandEmpty� Table�Y�
Add� Hold�X�
Del� On�X�Y�� HandEmpty

After predicate decomposition� we obtain two
classes� E� � fOn�HandEmpty�Holdg and E� �
fAtg��

Let us �rst decompose the initial state into E� and
E�� e�

�
� fOn�B�� L��� On�B�� L���HandEmptygE�

�
e�
�

� fAt�L��gE�
and c � fTable�L��� Table�L���

Connect�L�� L��� Connect�L�� L��� Connect�L�� L���
Connect�L�� L��gConst� Now we apply the algorithm
step by step �see �gure � for the state description��

�To simplify explanations� we present a deterministic ver�
sion of table �� The deterministic version develops all possible
actions in all possible classes�

�Note that the predicates Table and Connect are not in any
classes because no operator modi
es them�

Learn�Graph�Sinit� Coverage�
G � fSinitg
cover � �
While cover � Coverage Do
Randomly choose S � G
Randomly choose � a valid local plan
Given S� � ��S� ��P� � S ��
If Relevant�S��G�Max Trials� Then
G � G � fS�g
cover � �

Else cover � cover � �

Table �� Learn the shape graph�
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Figure �� Algorithm with independent predicates ex�
planation �dashed arrows represent preconditions��

�� No action is applicable to e�
�
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�� Apply Pick�B�� L�� to e�
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� c� create e�

�
with

precondition e�
�
�

�� Don�t apply Pick�B�� L�� to e�� � e�
�
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�
�

�� Apply Move�L�� L�� to e�� � c� create e�
�
�

�� No action is applicable to e�
�
� c�

�� Don�t apply P lace�B�� L�� to e�� � e
�

�
� c because of
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�
�

�� Apply Move�L�� L�� to e
�

�
� c� create e�

�
�


� No action is applicable to e�
�
� c�

�� Apply P lace�B�� L�� to e�
�
� e�

�
� c� create e�

�
with

precondition e�
�
�

�	� No Move applicable because of substitutions�
��� No action is applicable to e�

�
� c�

��� Don�t apply Pick�B�� L�� to e�� � e
�

�
� c because of

the substitution with e�
�
�

��� Don�t apply Pick�B�� L�� to e�� � e
�

�
� c because of

the substitution with e�
�
�

��� No more action is applicable� The graph is
complete�

The graph built with independent predicates �Ta�
ble �� is equivalent to the �rst one �Table ��� Con�
sequently the solution extraction can be made as de�

ShaPer
Problem IPP Graph learning Extraction

CPU nbnode CPU CPU
�� blocks ����� �� ���
 	�	�
�� blocks � ��� ����� 	�	�
�	 blocks � ��� ������ 	���

�	 balls ���� �	 	�	� 	�	�
�	 balls � �	 	��� 	�	�
�	 balls � ��	 ���	� 	���

Table �� Graph learning and solution extraction for
some classical domains



Learn�Graph�Sinit� Coverage�
cover � �
E� � � � �� En � Decompose Predicates�Sinit�
While cover � Coverage Do
ForEach Ei Do
Randomly choose e � Ei

Randomly choose o � Oi with Po � e

If ��� Then
Add �e�Do� �Ao to Ei

cover � �
Else cover � cover � �
ForEach e in completion E of Ei Do
Randomly choose o � Oi with Po � e

If ��� Then
Add �e�Do�� Ao to Ei with precondition on E

cover � �
Else cover � cover � �

Table �� Learning the shape graph with predicate in�
dependence�

scribed previously �with the independence transforma�
tion��

� A step toward geometric reasoning

Now we show how we use the accessibility graph
learning algorithm to integrate abstract reasoning
�task planning� and geometrical constraints �motion
planning�� This is illustrated through an example�

��� Introduction of motion planning

In order to model numerical facts �e�g� Cartesian
coordinates of the robot�� we extend STRIPS formal�
ism as following�

� numerical facts� At����� ���� models the
robot position in Cartesian coordinates and
Size�Tank� 	�
� models the fact that the robot
width is ��	 when it holds the Tank�

� intersection and inequality in preconditions�

Move�X�� Real�Y�� Real�X�� Real�Y�� Real� S� Real�
Pre� At�X�� Y��� Robot�Size�S��

	d � Env�d �Disc���X�� Y��� �X�� Y���� S� � �

Add� At�X�� Y��
Del� At�X�� Y��

Pick�X�Real� Y�Real� Z�Block� T�Table� S�Real � S��Real �
Pre� At�X�Y�� HandEmpty� On�Z�T�� Size�Z�S��

Robot�Size�S��� Dist��X�Y��T� 
 Armlenght

Add� Hold�Z�� Robot�Size�S�
Del� On�Z�T�� HandEmpty � Robot�Size�S��

Owing to the interaction between predicates of the
di�erent classes �e�g� On and At�� Shaper is able to
build a graph for the robot position �and accessibility

Table3

Table2

Table1

O
bs

ta
cl

e

Obsta
cle

1

6

5

2

4

3

Figure �� Environment description and �Grasp�
classes explanations

via motion� that depends on the robot width� instead
of generating one graph per robot width� In this case�
edges are labeled by the Robot�Size predicate �see the
previous section��

Figure � presents a learned graph for the tank of
water example �a �D representation of the environ�
ment is presented in �gure ��� The goal is to have a
glass of water on Table� �initial position of the robot��
To do this� the robot must move a tank of water �ini�
tially on Table�� and a glass �initially there is one on
Table� and another one on Table�� to Table� where a
pump allows to �ll the glass from the tank�

What is of interest here is the capability of this
scheme to provide an e�ective way to deal with intri�
cate links between the logics of the task and its geo�
metric counterpart�

First� because there is a narrow passage which pre�
vents the robot to go from one side to the other while
holding a big object �the tank�� ShaPer maintains two
classes of robot positions for picking objects on Table��
This fact has drastic consequences on robot plans that
need to transfer the tank� This is the reason why a
STRIPS plan fails �i�e� it deals with a too high level
environment model��

Figure � compares a plan obtained by using a clas�
sical two�level task planner and motion planner with
a plan produced by ShaPer� Even if one interleaves
a task planner and a motion planner �to avoid fail�
ure during execution�� ShaPer�s expressiveness allows
to �nd the shortest plan �e�g� pick the Glass from
Table� instead of Table���

��� Object grasping

In the geometric context� we must de�ne the fact
that the robot is able to pick or place an object� In�
deed� Move action does not allow to know the table



Task
predicate

class

Motion
predicate

class

Table2

Table1

Table3

Obstacles

Narrow
passage

STRIPS’s Plan:

Fill(Glass,Tank,T3)
Place(Glass,T3)
Move(T1,T3)
Pick(Glass,T1)
Move(T3,T1)
Place(Tank,T3)
Move(T1,T3)
Pick(Tank,T1)

during

ShaPer’s Plan:

Pick(Tank,T1)
Move(T1,T2)
Place(Tank,T2)

Fail

execution Pick(Glass,T2)
Move(T2,T3)
Place(Glass,T3)
Move(T3,T2’)
Pick(Tank,T2’)
Move(T2’,T3)
Place(Tank,T3)
Fill(Glass,Tank,T3)

- b -- a - - c -

Move(T3,T1)
Move(T3,T1)

Figure �� Tank of water problem� a� Learned graph with predicate independence� b� Plan in classical STRIPS model� c� Plan

when the planner takes into account geometrical constraints�

proximity� A near precondition can� for instance� be
de�ned based on robot�table distance�

Such a method allows in�nite grasp positions�
ShaPer allows to group them into several �grasp�
classes �if necessary�� Note that their number depends
on the local planner �L� capabilities� Figure � shows
two distinct cases� i� L is a straight�line� The node
n� is locally accessible from n�� so n� is in the same
class as n�� it is not added� In the same way n� and
n� de�ne two classes� n� and n� de�ne two classes� ii�
L is a more powerful motion planner� n� is accessible
from n�� so there is only one class� However n� and
n� de�ne two classes because the robot width does
not allow to pass through the narrow passage� Con�
sequently the two nodes are necessary to capture the
task topology�

� Conclusion and future work

We have proposed a new planning algorithm based
on an accessibility graph learning� ShaPer allows to
demonstrate promising capabilities of such a method�
Indeed� it is able to deal e�ciently with complex
task problems and geometric constraints� An exam�
ple� where task and motion planning are closely inter�
leaved� shows that ShaPer is more expressive than a
hierarchical decomposition in a high level where task
planning is performed and a lower level where geomet�
ric problems are dealt with�

Our future work will concern further investigations
on the following aspects� i� improvement of the rea�
soning on robot manipulation ��� and ii� extension to
deal with uncertainty especially by including percep�
tion actions ����
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