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Playing with Several Roadmaps to Solve Manipulation Problems
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LAAS-CNRS, 7, Avenue du Colonel Roche,
31077 Toulouse CEDEX 04, France.

Abstract

We propose in this paper a resolution scheme that is
aimed to be relevant for a large class of manipula-
tion planning problems. This endeavor complements
our efforts in developing manipulation planning al-
gorithms [2, 14, 13]. Indeed, we are convinced that a
higher level of problems complexity, and particularly
those involving multiple robots and multiple objects,
will be accessible thanks to the introduction of a sym-
bolic reasoning level.

The resolution scheme relies on Probabilistic
Roadmap Methods (PRMs) and on a reasoning level
that adaptatively controls the construction and exten-
sion of a number of roadmaps.

We consider this symbolic level as a step towards a
systematic approach to integrate task planning and
geometric planning in better conditions than trough
a gross, and somewhat, artificial hierarchical decom-
position.

This paper describes the main ingredients of the pro-
posed framework, and its first results.

1 Introduction

The Problem. We address the manipulation plan-
ning problem[1]. We have developed a resolution
scheme that is able to build plans for a wide range
of manipulation problems and that is aimed to be
the basis for future work on multi-robot manipula-
tion. The current implementation is already able to
deal with manipulation problems involving one robot
(holonomic or not) with one movable object and con-
tinuous grasps and placements[14, 13]. The presence
of objects that can only be moved by the robot leads
to complex instances of the motion planning prob-
lem. Indeed, the robot may be forced because of
kinematic constraints or because of collision avoid-
ance to find intermediate positions and re-grasping
steps for the movable object.

Motion planning [10] is a challenging problem that
involves dealing with elaborate physical constraints
and high-dimensional configuration spaces. The
fastest existing deterministic planner has a complex-
ity exponential in the number of degrees of freedom

of the robot. On the other hand, a class of random-
ized planners, in particular, Probabilistic Roadmap
Methods (PRMs) [8, 12], have been used successfully
in high-dimensional configuration spaces. More re-
cently, the use of several roadmaps to solve motion
planning with kinematic constraints [6, 11] or ma-
nipulation tasks [14, 13], have been proposed. In
our approach, we develop a resolution scheme based
on a number of methods for reasoning on roadmaps
construction and handling.

The Key Ideas. The planner will be based on
an “adaptative” search on various roadmaps. Each
roadmap type is built with specific random and local
path functions.

Planning generally involves several distinct elemen-
tary tasks. In the manipulation context, perform-
ing an object transfer or a transit motion between
two grasps, are two distinct task types that must
be treated separately and combined in a precise
way[1, 14, 13]. To deal with such types of tasks,
we propose to associate a roadmap to each one.

When dealing with closed kinematic chains, it has
been shown that it could be useful to deal separately
with different operations. For instance, closing a
kinematic chain and moving in the environment can
be done in two steps [6, 11]. Therefore, we also allo-
cate a specific roadmap to each operation.

The last type of roadmaps that we propose to de-
fine are purely heuristic ones. They will be used to
perform search in relaxed instances of problems. For
instance, one may decide to search for a certain type
of path that may be invalid, but that will serve as a
good basis for further refinement.

The planner is guided by a set of heuristics rules
that will allow it to choose which roadmap should
be extended and how to do so. These rules exploit
the specificities of the different roadmaps.

The roadmaps are not necessarily built to catch di-
rectly the topology of the configuration space of all
environment parameters but only of subsets of it.
The key idea is to work on several roadmaps of kine-
matics subset in order to be able to deal with their
composition without explicitly computing it.



In order to limit the size of the search space, the
search process will tend to give priority to the most
constrained roadmaps or to sub-manifolds involving
a small number of mobile objects.

To find a valid solution, we use a multi-roadmap
solver that can handle several roadmaps to ensure
the validity of all of the environment configurations.

2 Configurations Definition
A roadmap are specific to one robot, or more pre-
cisely to a sub-set of elementary kinematic chains
(noted EKC), associated with configuration defini-
tion.

Classically, a configuration is a set of parameters
which allows to specify the state of all objects in the
environment. With kinematic constraints[11, 6, 4]
the number of configuration parameters may be
greater than needed. Indeed, through the kinematic
constraints, several degrees of freedom must be re-
computed. Likewise, we have chosen, in our applica-
tion, to not to have a minimal representation.

Figure 1: Configuration definition through kine-
matic chains

Let us consider a manipulation environment with a
mobile manipulator and a movable object (besides
fixed obstacles). As shown in Figure 1, we consider a
set of EKC that define the state of all objects. In our
representation we split a configuration into a place-
ment part (6 degrees of freedom) and an actuator
part (degrees of freedom controlled by robots). For
example the arm configuration has 14 degrees of free-
dom: 6 for the placement part, 6 for a classical arm
configuration and 2 for the gripper.

Given a set of EKC, one can combine them in or-
der to describe more complex robots. For instance
a mobile arm (M-A) can be modeled with a mobile
base (M), an arm (A) and a fixed attachment be-
tween them. The model will then be completed by a
configuration which groups the two elementary con-

figuration sets and no other degree of freedom be-
cause of the fixed attachment: ((6, 3), (6, 8), 0). This
allows to take advantage of specific methods asso-
ciated to each EKC in order, for instance to com-
bine their local-path methods. We have defined a
set of methods that allow this combination, like us-
ing Reed and Sheep local-path for the mobile base
and straight-lines in the C-space for the arm.

In the same way, we define a chain (M-A-O) where
the robot holds the object. The resulting configura-
tion includes all the EKC configurations and 3 ad-
ditional degrees of freedom for the continuous set
of grasps: (((6, 3), (6, 8), 0), (6, 0)3). For a parallel
jaw gripper, this attachment depends on 3 param-
eters: two translations parallel to the grasped face
and one rotation around the axis perpendicular to
the faces[14, 13]. Using such combinations, the arm
forward kinematics can be used in order to generate
a transfer configuration (the robot holds the object),
and its inverse kinematics to obtain a grasp config-
uration (the robot grasps the object on a specific
placement).

In the next section we will show how these combi-
nations of EKC will be used to build roadmaps for
manipulation problems.

3 Roadmap Definition
As already mentioned, our approach is based on
the construction of a number of roadmaps. Each
roadmap is associated with a task and is used ac-
cording to it. It corresponds to one of the previously
defined combinations of EKC. In our representation,
the link between a roadmap and its semantics is done
through 4 attributes:

Roadmap type: see §3.1.
Edge method: defines the local-path used to con-

nect two nodes in the roadmap
Roadmap links: see §3.2.
Random sampling method: see §4.1.

This attributes allow to extend the roadmaps defini-
tions used in the manipulation problems, or in kine-
matics roadmap [6, 11]. They have been devised not
only to solve the class of problems presented here,
but also to model and solve multiple robots, multi-
ple objects manipulation problems.

3.1 Roadmap Type

A type is associated to each roadmap in order to
describe how to use it. Up to now, we have defined
four roadmap types: Cross, Refine, Heuristic,
Relative.

The first two types are used to extract the solution.
Cross: defines a roadmap where all the nodes

and edges are valid subset of configurations and
movements. The solution plan must be ex-
pressed with paths from such roadmaps.



Refine: defines a roadmap where all the nodes
are valid, but where the edges do not represent
a valid motion but satisfy the reduction prop-
erty [2]. This property allows to systematically
transform an edge of this graph into a finite
number of valid movement operations. There-
fore, a solution plan to a manipulation problem
can include those elementary paths. The final
plan will be obtained after the refinement of such
paths into valid action sequences.

The last two roadmap types are used for the sake of
increasing the speed of the planner. While a solution
cannot include edges borrowed from such graphs,
they can provide paths that can guide the search.

Heuristic: defines a roadmap where several con-
straints has been relaxed. They will generally
be domain specific.

Relative: defines a roadmap where the EKC con-
figuration is expressed relatively to a joint. Such
a roadmap does not take into account the static
environment. It allows the computation of com-
plex local configurations and motions. This
processing can be useful when the kinematic
chain becomes complex and/or when the auto-
collision checking or the kinematic computations
are time consuming [6, 11].

Table 1: Roadmap Definition
Kin. Roadmap Edge method Type

O Placement Po none Cross
O Movement Mo linear Heuristic
M-A Movement Ti local-path Cross

(Transit) holonomic or not
M-A-O Transfer Ta linear composition Cross

fixed attachment
M-A-O Grasp ∩ linear composition Refine

Placement GP with constraints
M-A-O Grasp G ” Relative
M-A-O Attachment A none Heuristic

In our example, we have defined the set of roadmaps
presented in Table 1. The objet alone has two
roadmaps. The first R(Po) represents the valid con-
figurations of the objet when it is not grasped (stable
positions globally named Placement). In this case,
no movement is allowed, so the roadmap contains
only unlinked nodes. In the second roadmap, the
configuration space is the same but movements are
allowed, resulting in links between nodes. As the ob-
ject cannot move by itself, this graph is a heuristic
one. It is aimed to catch the topology of the valid sta-
ble object positions. This will be useful when it will
be necessary to find intermediate objects positions
(see §4.3). The roadmaps R(Ti) and R(Ta) repre-
sent respectively the “standard” transit and transfer
paths.

As already mentioned, R(Ti) does not involve all the
EKC; hence, any valid path extracted from it should
be tested to be free of any collision with the object.
The Graspb ∩ Placement roadmap R(GP ) satisfies
(by construction) the reduction property[2]. So, any
path included in this graph can be transformed into a
finite set of alternate valid transit and transfer paths.
It is the most constrained roadmap with a closed
kinematic chain induced by the fact that any config-
uration corresponds to a stable object placement as
well as a grasp/ungrasp robot configuration[14, 13].
Note that R(G) can be used to store valid closed
kinematic chain relative configurations of the robot
and the object, and to reuse them in R(GP ).

Another heuristic roadmap, R(A), is intended to
store the gripper/object grasp transforms used. The
planner will try to re-use as much as possible the
same grasp transforms. This is done in order to sim-
plify the search for new transfer motions.

After this description of the various roadmaps that
can be used, we will now see the links between them
and how they allow to search for a plan through a
set of roadmaps.

3.2 Roadmap links

In order to be able to build a plan as a result of a
search through several roadmaps, the planner will in-
crementally build, explore and switch between them.
We define two types of links between those roadmaps:

Inheritance : This link connects a constrained
roadmap R1 to a less constrained roadmap R2.
All valid configurations in R1 are valid in R2.

Compose : Such a link connects one or more
roadmaps to a more complex roadmap to make
new configurations that are a composition of the
nodes of these roadmaps. These links are based
on the inheritance links.

Inheritance. As said before, the inheritance links
connects a constrained roadmap R1 to a less con-
strained roadmap R2. This link also defines a filter
used to derive a a valid sub-node in R2 from a node
in R1. Each time a node is added to R1, it is linked
to its sub-node in R2.

There are two conditions for the existence of such a
link. First, it cannot connect a Relative roadmap
to a not Relative one. Second, the EKC of R2 must
be included in R1. When R2 is Relative, a change
of reference frame is applied.

For example (Figure 2), R(GP ) is the most con-
strained roadmap, so all its nodes are linked to the
other roadmaps. Whenever a node N is created in
R(GP ), a corresponding node is added to R(Ta).
Such a node may serve as beginning or end of a trans-
fer path. Likewise, a node is created in R(Ti). Be-
sides, a closed kinematic chain and a relative grasp



transform are extracted from N and respectively
stored in R(G) and R(A).

Figure 2: Roadmap links

Compose Links. These links define how to make
a node in a complex roadmap Rc from nodes belong-
ing to other roadmaps R1 . . .Rn that inherit from
Rc. The node composition is based on the inverse
functions of the original inheritance link.

4 Roadmap Construction

The last roadmap attribute to consider is the random
sampling method. Now we study the not so classical
random sampling method.

4.1 Random Sampling
For random sampling we mainly use two methods
(and their combination): the Random Loop Gener-
ator (RLG)[4] and the creation of nodes based on
compose links between roadmaps.

The RLG allows to choose a new node with short
generation time. In fact the random space is reduced
to only allow configurations with the possibility to be
updated to satisfy a set of kinematic constraints.

The other possibility is the use of composed links. A
set of nodes in sub-roadmaps are chosen at random
(or not) to make a new node Nc. In fact this link
does not necessary define completely a configuration
of Nc. So, there is often a combination of node com-
position and RLG.

Let us recall that there is a third way to obtain nodes
in a roadmap through link inheritance.

Each roadmap can have several ways to make a new
node. We use a set of heuristic rules to determine
what are the nodes needed, and in which roadmap
the search should be performed.

4.2 Heuristic Rules
Recent progresses in task planning [3, 5, 7] have been
based on the development of new heuristics. The ma-
nipulation problem is both a geometrical and a task
problem. So it seems natural to borrow techniques
from these domains.

The heuristic rules are, for us, the first level of sym-
bolic control of the purely geometrical PRMs search
methods.

Rules Precondition. Rules preconditions enable
to compute the probability to select a rule. While in
task planning the best rule is always selected, with
PRMs, if we want to keep the property of probabilis-
tic completion, we must allow a non-null probability
to all applicable rules.

The preconditions are based on roadmaps analysis.
Several parameters can be used: the roadmaps nodes
number, the number of connected components, the
current mean computation time,. . .

For instance, it is interesting to increase the size of
R(GP ) and of R(Ti) at the beginning to avoid to
link not useful nodes of R(GP ) with transit or trans-
fer paths. Indeed, it is better to invest until we have
“sufficiently” captured the topology of R(GP ).

The preconditions can also be based on a more
detailed analysis of the roadmaps. For example:

∃N1 ∈ C(GP )1, N2 ∈ C(GP )2, No ∈ R(Po)
∃Ns ∈ R(Ti), Ne ∈ R(Ti)/
No ⊂ N1 and No ⊂ N2 and
Ns ⊂ N1 and Ne ⊂ N2

(1)

This precondition is used in a rule that tries to link
two connected components C(GP )1 and C(GP )2 of
R(GP ) with a transit path. The precondition tests
if a common object position exists in the two com-
ponents. The right part of the rule is discussed in
the next subsection.

4.3 Rules Specification

We have two levels of rules. The high level allows
to select a rules subset. For instance, the following
rule selects the set of rules that require to perform
an extension of GP roadmap.

Increase R(GP ) (2)

The low level rules specify (1) the roadmap that
must be increased (2) how it will extended (by choos-
ing a new node randomly or by trying to link two
nodes with a specific-search) and (3) the associated
method.

In R(GP ), random(), with RLG
In R(GP ), random(), with Compose(Po,G)

The first rule draws a new node in R(GP ) with the
Random Loop Generator method [4]. The second
uses the compose link (Figure 2) from the Grasp
roadmap and the Object position roadmap to build
a new random node, The interest of such a rule is
that all the closed kinematic and the auto-collision
computations have been already done; it is sufficient
to test only collision with the static environment to
validate the node.



Rules can also specify more specific actions. For ex-
ample, if two nodes Ns and Ne satisfy the precondi-
tion 1, then we can try to link them:

In R(Ti), specific search(Ns, Ne),
with RRT

5 Problem Solving
The heuristic rules explain how to build the
roadmaps, and now we must explain how to search
for a solution in the set of roadmaps.

5.1 Kinematic-Component
We define a topological structure across the different
roadmaps that will serve as a search space for the
planner. We call them the kinematic-components
(noted KC()).
A kinematic-component does not link roadmap
nodes but connected components of two different
roadmaps or of other kinematic-components.

They are defined on Cross and Refine roadmaps
and the edges are derived from roadmaps inheritance
links. Besides, each kinematic-component is defined
on a subset of elementary kinematic chains (EKC).
In our example, we have three types of kinematic-
components: the robot kinematic-component
(KC(M -A)) that stores C(Ti) components, the
object kinematic-component (KC(O)) that stores
C(Po) components, the grasp kinematic-component
(KC(M -A-O)) that stores C(Ta), C(GP ) and the
pairs of kinematic-components (KC(M -A), KC(O))
previously defined.

This hierarchical structure will be mainly used in
multiple robots problems.

To solve the problem, the planner must find a so-
lution in a kinematic-component in which all the
EKC are defined. In our case we need to link the
kinematic-components KC(M -A-O) of the initial and
goal configurations.

5.2 Validity of edges
To find a solution, the planner must incrementally
increase the roadmaps, under the control of the
heuristic rules until it is able to link the kinematic-
components of the initial and the goal configurations.
But even if a path is found, it may be not valid. The
edges of some roadmaps have not yet be fully tested.

With the mono-robot, mono-object manipulation
problem, the solution is found into the robot cross-
able roadmaps (R(Ta), (R(Ti),R(Po)), R(GP )).
All these roadmaps are valid but not the robot move-
ment roadmap R(Ti). The roadmap has been built
without the object, so the robot may collide the ob-
ject during its movement. The selected trajectories
must be checked with the current object position
(given by C(Po) coupled with C(Ti)). Like [14, 13],
we use RRT[9] to find a valid path based on non-valid

trajectory. If no valid path is found, we invalidate the
link between those kinematic-components and search
for another path in the set of components. This can
lead to re-grasping operations.

With multi-robot or with multi-object manipulation,
finding a path through valid edges could be much
more challenging. To solve this problem we foresee
the use of another level of symbolic methods much
closer to task planning.

6 First results

The manipulation planner has been implemented
within the software platform Move3D1 currently de-
veloped at LAAS-CNRS. Even if the preliminary ver-
sion of our implementation is not yet fully functional,
the first result (Figure 3) shows the roadmaps con-
struction for a simple manipulation task, and its so-
lution with a mean time of 1 minute with a SunBlade
100. In this example we have a non holonomic robot
with an arm which can grasp a bar under continuous
grasps and placements.

The problem is to change the position of the ob-
ject. The planner re-uses as much as possible
other roadmaps (Figure 3) . The Grasp∩Placement
roadmap has nodes composed on the initial and goal
position of the object. In the same way the transfer
roadmap is very close to the transit one.

7 Conclusion

We have presented a new approach to manipulation
planning that deals with a set of roadmaps and in-
troduces new heuristics with more symbolic speci-
fications. This approach has been tested on mono
manipulation problems but is intended to deal with
a much wider class of problems, even the multi-robot
and multi-object manipulation.

The first results are encouraging, but many improve-
ment could be done in order to have a fully functional
planner. The most important part will be the real-
ization of the multi-robot solver that could have good
performances for searching valid edges through the
set of roadmap and possibly take into account other
non-purely manipulation tasks . This new solver
must be a link between PRMs and tasks planning.
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Figure 3: Example of a manipulation problem with a non-holonomic mobile maniptlator: (a) the problem
consists in tranferring the bar from one table to another; (b) and (c) represent two different roadmaps that
have been incrementally built during the search (d) illustrates one solution
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