
HAL Id: hal-01975910
https://laas.hal.science/hal-01975910

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability Evaluation: a Survey
Karama Kanoun

To cite this version:
Karama Kanoun. Dependability Evaluation: a Survey. 2nd IARP/IEEE-RAS Joint Workshop on
Technical Challenge for Dependable Robots in Human Environments, Oct 2002, Toulouse, France.
pp.209 - 216. �hal-01975910�

https://laas.hal.science/hal-01975910
https://hal.archives-ouvertes.fr

Invited paper - 2nd IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable Robots in Human
Environments, Toulouse (France), Octobre 7-8 2002, pp.209-216

Dependability Evaluation: a Survey

Karama Kanoun

LAAS-CNRS, 7 Avenue du Colonel Roche — 31077 Toulouse Cedex 4 — France
Karama. Kanoun @laas.fr

Introduction
Dependability evaluation of computer systems is

intended to estimate the presence, creation and
consequences of faults on dependability and to
facilitate whenever possible, their removal or
tolerance. It is usually implemented by means of
ordinal or probabilistic evaluation techniques.

Ordinal evaluation consists in analyzing the link
between faults (i.e., failure causes) and their effects
on system behavior. Its aim is to identify possible
system design weaknesses.

Probabilistic evaluation of dependability encom-
passes both model-based and measurement-based
techniques. Model-based evaluation includes both
analytical and simulation models. The difference
between the two approaches concerns mainly: i) the
abstraction level usually considered for describing
(modeling) the behavior of the system and ii) the
assumptions attached to the distributions of the
stochastic processes governing the parameters of the
model. In this paper we will primarily refer to
analytical modeling. Measurement encompasses both
the observation of a real-life system in operation
(termed as field measurement here) and controlled
experimentation where faults are deliberately injected
into the target system so as to accelerate the
characterization of its faulty behavior, usually referred
to as fault injection experiments.

Numerous proven methods and techniques have
been successfully developed and used. These
techniques are complementary and are well-suited for
various life-cycle phases of computer systems:
• Ordinal evaluation techniques constitute a powerful

tool for qualitative system analysis. They are
recommended for the early design phases to
minimize the cost of design modifications (if any).

• Analytical modeling is very useful and popular to
support the selection of a dependable architecture
for a computer system during the design phase.

Also, once the system architecture is selected,
detailed modeling provides a powerful tool for the
evaluation of the dependability measures
(availability, reliability, etc.) of the system under
consideration (in development or in operation). In
the latter case, modeling needs the support of fault
injection and field measurement.

• Field measurements provide helpful support for
understanding real phenomena (information on
actual error/failure behavior and on possible system
bottlenecks) and for quantifying dependability
measures. Even if there is no better way to
understand the system dependability than by field
measurement, analysis of field data can be
performed only when the system is already in
operation, which could be considered as too late as
only little improvements can be performed at this
stage in case of identification of any problem.
Indeed, feedback from field data from previous
systems is very helpful for the development of
current products. Measurements provide good
support for system reliability improvement.

• Fault injection on a prototype system is usually
performed during system validation. It provides
valuable information on specific behaviors of the
system (or components of the system) in presence of
faults. In particular, it allows understanding of the
effects of injected faults on the target system and the
evaluation of the efficiency of fault-tolerance
mechanisms (see e.g., [Arlat et al 1993]. Fault
injection is recommended for newly developed
systems or for Commercial-Of-The-Shelf (COTS)
components for which no (or not enough)
dependability information is available from the field.
This paper elaborates on the work presented in

[Laprie et al. 1998] and [Arlat et al. 2001]. Emphasis
is put on the first three sets of techniques, namely
ordinal evaluation, analytical modeling and field
measurements, whose main features are outlined in
the next three sections.

1. Ordinal evaluation
Ordinal evaluation methods can be broadly divided

into two main categories constructed either from the
causes to reach the effects, so as to determine the
consequences on the system of component failures or
— from the effects to the causes —, to identify causes
at the component level of system failures. The two
main approaches representative of these two families
are respectively: i) Failure Mode, Effects (and
Criticality) Analysis — referred to as FME(C)A, and
the Fault Tree method, equally known as Cause or
Defect Trees.

The exact meaning of "criticality of a failure mode"
is context dependent. Indeed, the criticality of a
failure mode depends on numerous parameters:
severity (or gravity) of the failures considered,
probability of the latter's occurrence, possibility of
detecting early signs, urgency of the conservatory
measures needed, etc. Of these parameters, the first
two have become very popular as they allow
criticality levels to be defined as couples (e.g.,
gravity, probability of occurrence). Note as well that
the product — or any similar operation — between
these two magnitudes to "compute" criticality should
not be effected: indeed, gravity is an ordinal
magnitude whose values only make sense relative to
each other, while a probability is a quantitative
magnitude endowed with absolute meaning. System
criticality is then defined as the highest criticality
level of its failure modes: for each failure mode listed
in accordance with severity levels, the maximum
permitted probability of occurrence of a failure
corresponds, therefore, to a criticality less than or
equal to that of the system, equality being usually
secured for the most severe failure modes (and even
systematically secured, when the most severe failure
mode corresponds to the occurrence of catastrophic
failures whose consequences are in no way
commensurate with less severe failures).

The rest of this section describes the FME(C)A and
Fault Tree techniques.

1.1 FME(C)A
FME(C)A [CEI 1985, Leveson 1991] is an

inductive approach whose basic principle is to
analyze, for each component, the consequences of
possible errors so as to identity systematically all the
component failure modes as well as the consequences
of these failures for the system.

Usually, FMECA relies on the functional structure
of the system and makes it possible to highlight

design weaknesses "if any" in the system with respect
to safety. It can address all design stages, or even an
operational system but it is often preferable to apply it
as soon as possible during the life cycle to minimize
the costs of design modifications. However, its use at
an early stage in the development process is rather
delicate, as the lack of precise knowledge of the real
structure of the system and of the failure modes, etc.
becomes a major hurdle.

The general principle used for the application of
the method consists in including the following items
in a table — after listing the various failure modes
based on the functional or structural description of the
system—, and for each failure mode of each
component:
• its possible causes;
• its effect: it can only act on the behavior of the

component itself (local effect), or propagate up to
system level (global effect);

• the means of detection that can be employed;
• corrective actions to be implemented, more

particularly, when dealing with a catastrophic failure
mode;

• criticality of the failure mode: this aspect is not
always taken into account yet, being simply referred
to as FMEA.
When iterating the application of the method on a

subcomponent, the omission of certain failure modes
of the component to which it belongs may be
revealed. Indeed, the failure modes of the higher-level
component appear as combinations of subcomponents'
failure modes. In particular, the latter having global
effects must necessarily correspond to failure modes
of the higher-level component.

The tables summarizing FMECA are useful for the
design, as they support certain choices and permit the
early detection (and modification) of several
drawbacks. They equally provide a valuable medium
during system validation because they highlight the
salient features to be tested and allow a cause, an
elementary failure mode of the component to be
associated with an effect when a system failure is
reported. Nevertheless, the FMECA-based approach
features three main limitations:
• it addresses the failure modes one after the other (to

avoid the combinatorial explosion of the analysis),
thereby failing to factor in multiple failures (whose
importance is no longer in need of a demonstration);

• it supposes that all failure modes of the system
components have been determined (which may be
problematic in practice);

• it calls for a great deal of information to be handled,
particularly in the case of complex systems (which
are precisely those for which safety is required); the
latter point has become less cumbersome thanks to
process computerization.
FMECA applied to the software primarily tries to

plan the effects of design faults. A software FMECA
established on the basis of the specification and
preliminary design may turn out to be very fruitful
and at various levels of the life cycle:
• during software development by guiding online

error detection or even fault tolerance strategy which
has to be selected;

• during software validation, by focusing the tests on
certain modules or critical failure modes;

• during software operation and maintenance by
facilitating on the one hand, the definition of
monitoring procedures and on the other, the
understanding of the origin of a failure observed in
operation.
Although applications of FMECA to the software

are difficult to estimate in practice because only a
limited number of papers have been published on this
subject, these methods are potentially interesting
given their relative cost with respect to software
development cost, and the lessons that can be drawn
as to the attention which will have to be paid, during
validation, to components identified as critical or to
the online error detection or even fault tolerance
strategy.

1.2 Fault trees
This is a deductive technique that allows

combinations of events likely to lead to an undesirable
event, such as a catastrophic failure, to be traced.
Fault Trees frequently complement the FMECA.
Thus, combinations of failures that had been
overlooked by FMECA can be considered. Fault Tree
may also be easier to run in the early phases of the
development process and can be implemented as soon
as the requirement analysis has been completed to
represent, at a high level of abstraction, the different
scenarios of occurrence of an undesirable event likely
to affect dependability.

A Fault Tree consists in two successive levels of
events connected by gates ("AND", "OR" logic
operators). Each event at the output of a given gate is
obtained by combining the events located at the input
to this gate. The undesirable event analyzed is the tree
root. The Fault Tree construction principle relies on
breaking down each event encountered, starting from
the root event, up to events considered elementary. An

event can be regarded as elementary when it is either
independent of the others or when its probability of
occurrence can be estimated, or simply when one does
not intend to, or cannot, break it down further.

The Fault Tree computes the minimum "cuts:" for
its operation: a cut is a set of events that can lead to
the undesirable event at the tree root; a cut is said to
be minimal when it contains no other. The study of
these minimal cuts permits to highlight the critical
events relative to the occurrence of the undesirable
event.

With respect to software design fault, Fault Trees
have been employed in the first phases of software
development [Hourtolle 1987], to detect critical
software functions, avoid specification faults and
guide the implementation of fault tolerance techniques
[Leveson 1991]. Thus, a Fault Tree is constructed for
each catastrophic failure. It allows identification of
the software critical functions and its critical failure
modes (events contained in minimal cuts) for which
software fault tolerance techniques have to be
implemented.

2. Analytical Modeling
Analytical modeling relies on the description of the

system behavior taking into account failure and repair
of hardware and software system components and
interactions between them. Measures of dependability
are assessed by allocating stochastic probabilities or
rates to model parameters. Analytical models have
long been recognized as a determining factor for
rational decision making when considering different
possible architectures or maintenance policies during
the design of hardware fault-tolerant systems.

Given the ease of modeling they provide,
particularly with respect to stochastic dependencies
between system components, state-space models
constitute the prevailing type of model for evaluating
dependability measures. Markov chains are the most
commonly used state-space models to model system
dependability as they also allow evaluation of various
measures related to dependability and performance
(i.e., performability measures) based on the same
model, when a reward structure is associated to them.
The resulting model is referred to as Reward Markov
model

To facilitate the generation of large state-space
models, high-level specification languages such as
Generalized Stochastic Petri Nets (GSPN) and their
off-springs are generally used. In particular, the
association of a reward structure leads to Generalized
Stochastic Reward Petri Net (GSRPN) that can be

automatically converted to Reward Markov models
[Trivedi et al. 1994]. GSRPNs allow a compact
representation of the behavior of systems involving
synchronization, concurrency and conflict
phenomena. Also, they provide means for structural
verification of the model.

Evaluation is achieved in three main closely related
phases:
• The choice of the dependability measures to be

evaluated.
• The construction of one (or several) model(s)

describing the behavior of the system.
• The processing of the model(s) to evaluate

dependability measures.
In the following, the most salient trends related to

the choice of dependability measures and to model
construction are briefly described as numerous
software packages have been devised over the last
twenty years to assist model processing (e.g., see
[Trivedi et al. 1994]). Surveys of the problems related
to techniques and tools for dependability and
performance evaluation can be found for example in
[Reibman & Veeraraghavan 1991] and [Trivedi et al.
1994].

2.1 Dependability Measures to be Evaluated
Dependability covers a wide range of measures:

reliability, availability, maintainability, safety, etc..
The measures to be evaluated greatly depend on the
field of application of the computing system
considered (for example: availability for a
telecommunication system, reliability for a space
probe, safety for the on-board control in a
transportation system, etc.). To identify dependability
measures, the behavior of a computing system can be
schematically depicted by taking into consideration
two states of the service delivered: proper and
improper. Transitions between these states are
governed by the failure processes (from a proper
service to an improper one) and the restoration
processes (from an improper service to a proper one).

The main measures are aimed at characterizing the
time of proper service delivery. Two main categories
of measures are distinguished [Laprie 1995]:
• Measures that characterize the sojourn time in the

state where the proper service is being delivered
(before reaching the improper service state): these
correspond for example to reliability and MTTF that
measure the time of proper service delivery prior to
a failure.

• Measures that characterize the delivery of proper
service with respect to the alternation of proper and

improper services: these encompass the various
forms used to measure availability (time instant,
interval-of-time, or asymptotic).
Most current computing systems feature several

performance levels and thus, several modes of
services (proper and improper) can be distinguished.
According to the viewpoints considered to evaluate
dependability, there exist two main (extreme) cases
for which the system features:
• several modes of proper service completion and a

single mode of improper service;
• a single mode of proper service delivery and several

modes of improper service.
A particularly interesting case pertaining to the

second category of systems is that of systems
exhibiting two modes of improper service following
failures with different levels of severity (benign and
catastrophic). This allows the measures linked to the
evaluation of safety of these systems to be obtained
within the very same framework. Thus, safety
represents the measurement of time in the safe states
(proper service delivery and benign failure) prior to a
catastrophic failure. A hybrid measure can be defined
that measures the delivery of a proper service relative
to the alternation “proper service-improper service”
following a benign failure. The advantage of this
measure lies in that it allows for the system
availability prior to the occurrence of a catastrophic
failure to be quantified, and hence, supports the
assessment of the usual trade-off between reliability
(or availability) and safety [Essamé et al. 1997].

2.2. Model Construction
Modeling requires the knowledge of the system

architecture (i.e., system composition and interactions
between the various components), error detection and
fault-tolerance mechanisms (if any) and maintenance
policies. At the model level, the associated
phenomena are represented by their occurrence rates
(failure, repair, error propagation) or conditional
probabilities (error detection coverage, recovery
coverage, maintenance efficacy).

The main problem posed by the establishment of a
Markov chain truly representative of the behavior of a
complex system is that of controlling the explosion in
number of states. Several techniques have been
published to address this problem; they can be
grouped into two categories: “largeness avoidance”
and “largeness tolerance” techniques [Trivedi et al.
1994].

Largeness Avoidance Techniques try to circumvent
the generation of very large models. The basic idea is

to construct small sub-models that can be processed in
isolation. The results of the sub-models are integrated
in a single overall model that is small enough to be
processed. From a practical point of view and to the
best of our knowledge, most of these techniques are
efficient when the sub-models are loosely coupled and
become hard to implement when interactions are too
complex. Also, largeness avoidance by means of
truncation of the least important states (i. e., states
with very small probabilities) can be used to
complement efficiently largeness tolerance techniques
as in [Muppala et al. 1992].

The main objective of Largeness Tolerance
Techniques is to master the complexity of the
generation of the global system model through the use
of concise specification methods and automated
generation of the model. The specification consists of
a set of rules allowing an easy construction of the
Markov chain. These rules are based on either a) in-
house formalisms or b) well-known formalisms such
as GSPNs or their off-springs.

GSPNs and their off-springs appear as a general-
purpose approach to the specification and construction
of a complex system in a modular way. The basic idea
is to generate the model of a modular system by
composition of the sub-models of its components;
they are referred to as model composition techniques.
In addition to the GSNP formalism, these techniques
make use of composition rules for sub-model
interfacing and integration to facilitate model
generation, master the complexity and preserve the
formalism properties. Several model composition
techniques have been published (e.g., see [Meyer &
Sanders 1993], [Rojas 1996], [Kanoun & Borrel
1996], [Fota et al. 1999b], [Bondavalli et al. 1999],
[Rabah & Kanoun 1999]) and numerous evaluation
tools using GSPNs and their offsprings have been
developed.

GSPNs and their off-springs have been used to
model real-life systems such as air traffic control
systems [Fota et al. 1999a, Kanoun et al. 1999], space
applications [Bondavalli et al. 1997] and RAID
storage system [Santonja et al. 1996].

The evaluation of real-life systems requires the
knowledge of numerical values of the model
parameters that can be provided either from field data
(i.e., failure and repair rates) or from controlled
experiments (i.e., coverage factor, various proportions
of failure modes). Sensitivity analyses allow
identification of the most significant parameters to be
estimated from the field or from controlled
experiments.

3. Experimental Evaluation
Measuring a real-life system means recording

naturally occurring errors and failures in the system
while it is running under user workloads. Analysis of
such field data can provide valuable information on
actual error/failure behavior, quantify dependability
measures and identify system bottlenecks. Field
measurement involves three main steps: data
collection, data validation and data processing.

Data collection consists in the definition of what to
collect and how to collect the data. The kind of data to
be collected is directly linked to the kind of behavior
to be analyzed and to the quantitative measures to be
evaluated to characterize such behavior.

Data validation consists in analyzing the collected
data for correctness, consistency, and completeness.
This consists in particular in filtering-out invalid data
and in coalescing redundant or equivalent data.
Usually, the collected data contains a large amount of
redundant and irrelevant information, as well as
incorrect or incomplete information. Such problems
have been observed in several studies, e.g. see
[Kaâniche et al. 1990, Levendel 1990, Buckley &
Siewiorek 1995, Thakur & Iyer 1996]. Thus,
preliminary investigation of the data must be
performed to classify this information and to facilitate
subsequent analyses. Once invalid data is filtered-out
and data is coalesced, the basic dependability
characteristics of the target system can be identified
through data processing.

Data processing consists in performing statistical
analyses on the validated data to identify and analyze
trends and to evaluate quantitative measures that
characterize dependability. Descriptive statistics can
be derived from the data to analyze the location of
faults, errors and failures among system components,
the severity of failures, the time to failure or time to
repair distribution, the impact of the workload on the
system behavior, the coverage of error detection and
recovery mechanisms, etc. Commonly used statistical
measures in the analysis include frequency,
percentage, probability distribution, and hazard rate
function. Basic statistical techniques can be applied to
estimate the mean, variance, and confidence intervals
of the parameters characterizing these measures (e.g.,
see [Kendall 1977] for comprehensive statistical
methods). More sophisticated analyses can also be
performed using trend tests [Kanoun & Laprie 1996]
and analytical modeling.

Software faults, and more generally design faults,
have become the major dependability bottleneck. This

is confirmed by field data collected on largely
deployed systems,, e.g., see [Gray 1990, Moran et al.
1990, Cramp et al. 1992, Wood 1995]. For example,
the analysis of field failures in Tandem computer
systems between 1985 and 1990 [Gray 1990] revealed
that more than 60% of system failures reported in
1989 were due to software. Accordingly, many
experimental studies focused at the analysis of
software-related errors. The analysis and modeling of
software errors to provide feedback to the
development process have been addressed in several
papers, e.g., [Musa et al. 1987, Lyu 1995, Kanoun et
al. 1997, Murphy & Levidow 2000]. Several
experimental studies have been published to support
the analysis of software error characteristics and the
modeling of the impact of software failures on
dependability, e.g. [Levendel 1990, Kenney & Vouk
1992, Kaâniche et al. 1994, Chillarege et al. 1995].
The issues addressed in the above mentioned work
include: i) categorization of software errors;
ii) monitoring of software processes and products
through the use of trend tests and statistical quality
control, and iii) evaluation of quantitative measures
characterizing the software failure intensity and time
to failure using reliability growth models.

Analyses of the software behavior, based on the
observed failure data, allow identification of possible
weakness. Once identified, these weaknesses can be
adduced. Reliability analyses help the manager to
anticipate the software behavior. Using results drawn
to past experience, (s)he can plan more efficiently the
development process. In this context, a program of
software reliability improvement is an element of a
more general software process maturity effort.

In addition to specific experiences, several papers
and books have already been published advocating
and defining methods for improving software process
based, among other things, on data collection (see
e.g., [Musa 1998; Kanoun 2001]).

One of the most common objections to software
reliability programs is their cost. The relationship
between the level of dependability required and the
associated cost is a complicated one as it includes
such factors as the supplier's rework cost, the
maintenance cost and the failure consequences to the
user. However, past experience has shown the cost of
fixing a fault uncovered during operation to be at least
one order of magnitude higher than the cost of the
same fault detected during development. When the
costs to the user and the negative impacts to the
producer reputation are included the effect is
magnified.

The benefits from a reliability improvement
program sometimes cannot be perceived in a single
product lifecycle. In that case, the cost of a reliability
program has to be regarded as an investment for
subsequent systems rather than as an overhead for a
single system. Usually the gains are substantial —
even if they are not always immediately felt. It is
worth noting that all the companies that have followed
a well-defined program for improving software
process and quality agree on the fact that the benefits
are worthwhile. However, it is very difficult to
partition the gains according to the methods used
(e.g., the relative impact of fault prevention and fault
removal techniques is very difficult to be assessed).

By way of example, the results obtained through
the quality program started at AT&T's International
DEFINITY PBX [Donnelly et al. 1992], based,
among other things, on software reliability evaluation
show reduction factors of:
• 10, in customer-reported problems.
• 10, in maintenance cost.
• 2, in the test interval.
• 3, in new product introduction interval.

It can be argued that the reported examples concern
large and well-established companies working most of
the time on large software projects. This is true.
However, more recently published experiences show
that following well-organized measurement programs
is also worthwhile for small organizations (see e. g.,
[Kautz 1999] or [Grable et al. 1999]). Nevertheless,
the data collection program should be adjusted to
small companies to suit the company products, goals
and means.

4. Conclusion
This paper presented the state-of the-art in

dependability evaluation based on ordinal analyses,
analytical modeling and field measurements. We have
focused on salient trends for each technique
considered alone. Indeed, system dependability is
usually evaluated based on the combined use of all the
presented methods that are advantageously
complemented by fault injection techniques.

References
[Arlat et al. 1993] J. Arlat, A. Costes, Y. Crouzet, J.-C.

Laprie and D. Powell, “Fault Injection and
Dependability Evaluation of Fault-Tolerant Systems”,
IEEE Trans. on Computers, 42 (8), pp.913-23, 1993.

[Arlat et al. 2001] J. Arlat, K. Kanoun, H. Madeira, J. V.
Busquets, T. Jarboui, A. Johansson and R. Lindström,
“State of the Art”, Available at
http://www.laas.fr/dbench/delivrables.html, DBench
Project IST 2000-25425 Deliverable, N°CF1,
September 2001 (Also LAAS Report 01-605).

[Bondavalli et al. 1997] A. Bondavalli, I. Mura and M.
Nelli, “Analytical Modeling and Evaluation of Phased
Mission Systems in space Applications”, 2nd IEEE
High Assurance System Engineering Workshop
(HASE), (Bethesda, MD, USA), pp.85-91, 1997.

[Bondavalli et al. 1999] A. Bondavalli, I. Mura and K. S.
Trivedi, “Dependability Modeling and Sensitivity
Analysis of Scheduled Maintenance Systems”, in 3rd
European Dependable Computing Conference
(EDCC-3), (Prague, Czech Republic), pp.7-23,
Springer, 1999.

[Buckley & Siewiorek 1995] M. F. Buckley and D. P.
Siewiorek, “VAX/VMS Event Monitoring and
Analysis”, in Proc. 25th Int’l Symposium on Fault-
Tolerant Computing (FTCS-25), (Pasadena, CA,
USA), pp.414-23, 1995.

[CEI 1985] Techniques d'analyse de la fiabilité des
systèmes - Procédure d'Analyse des Modes de
Défaillance et de leurs Effets (AMDE), Commission
Électrotechnique Internationale (CEI), Rapport de
Normalisation N°812, 1985. In French.

[Chillarege et al. 1995] R. Chillarege, S. Biyani and J.
Rosenthal, “Measurement of Failure Rate in Widely
Distributed Software”, in 25th IEEE International
Symposium On Fault Tolerant Computing (FTCS-
25), (Pasadena, CA, USA), pp.424-33, 1995.

[Cramp et al. 1992] R. Cramp, M. A. Vouk and W. Jones,
“An Operational Availability of a Large Software-
Based Telecommunications System”, in 3rd Int.
Symp. on Software Reliability Engineering, (RTP,
NC, USA), pp.358-66, 1992.

[Donnelly et al. 1992] M. M. Donnelly, J. D. Musa, W. W.
Everett and G. Wilson, Best Current Practice:
Software Reliability Engineering, AT&T Bell
Laboratories Software Quality and Productivity
Cabinet, N°45370B-930326-01TM, October 1992.

[Essamé et al. 1997] D. Essamé, J. Arlat and D. Powell,
“Available Fail-Safe Systems”, in 7th Workshop on
Future Trends of Distributed Computing Systems
(FTDCS'97), (Tunis, Tunisia), pp.176-82, 1997.

[Fota et al. 1999a] N. Fota, M. Kâaniche and K. Kanoun,
“Dependability Evaluation of an Air Traffic Control
Computing System”, Performance Evaluation, 35 (3-
4), pp.553-73, 1999.

[Fota et al. 1999b] N. Fota, M. Kâaniche and K. Kanoun,
“Incremental Approach for Building Stochastic Petri

Nets for Dependability Modeling”, in Statistical and
Probabilistic Models in Reliability pp.321-35,
Birkhäuser, 1999.

[Grable et al. 1999] R. Grable, J. Jernigan, C. Pogue and D.
Divis, “Metrics for Small Projects: Experiences at the
SED”, IEEE Software, March/April, pp.21-9, 1999.

[Gray 1990] J. Gray, “A Census of Tandem System
Availability Between 1985 and 1990”, IEEE Trans.
on Reliability, R-39 (4), pp.409-18, 1990.

[Hourtolle 1987] C. Hourtolle, Conception de logiciels surs
de fonctionnement : analyse de la sureté des logiciels
- mécanismes de décision pour la programmation en
N-versions, Thèse de Docteur-Ingénieur, INP,
Toulouse, October 1987.

[Kaâniche et al. 1990] M. Kaâniche, K. Kanoun and S.
Metge, “Failure Analysis and Validation of a
Telecommunication Equipment Software System”,
Annales des Telecommunications, 45 (11-12),
pp.657-70, 1990.

[Kaâniche et al. 1994] M. Kaâniche, K. Kanoun, M. Cukier
and M. Bastos Martini, “Software Reliability
Analysis of Three Successive Generations of a
Switching System”, in First European Conference on
Dependable Computing (EDCC-1), (Berlin,
Germany), LNCS, 852, pp.473-90, Springer, 1994.

[Kanoun & Borrel 1996] K. Kanoun and M. Borrel,
“Dependability of Fault-Tolerant Systems - Explicit
Modeling of the Interactions between Hardware and
Software Components”, in IEEE Inter. Computer
Performance & Dependability Symposium (IPDS'96),
(Urbana-Champaign, IL, USA), pp.252-61, 1996.

[Kanoun & Laprie 1996] K. Kanoun and J.-C. Laprie,
“Trend Analysis”, in Handbook of Software
Reliability Engineering (M. Lyu, Ed.), pp. 401-37
(Chapter 10), McGraw Hill, 1996.

[Kanoun 2001] K. Kanoun, “A Measurement-Based
Framework for Software Reliability Improvement”,
Annals of Software Engineering, 11 (1), pp.89-106,
November 2001.

[Kanoun et al. 1997] K. Kanoun, M. Kaâniche and J.-C.
Laprie, “Qualitative and Quantitative Reliability
Assessment”, IEEE Software, 14 (2), pp.77-86, 1997.

[Kanoun et al. 1999] K. Kanoun, M. Borrel, T.
Moreteveille and A. Peytavin, “Modeling the
Dependability of CAUTRA, a Subset of the French
Air Traffic Control System”, IEEE Transactions on
Computers, 48 (5), pp.528-35, 1999.

[Kautz 1999] K. Kautz, “Making Sense of Measurement for
Small organizations”, IEEE Software, March/April,
pp.14-20, 1999.

[Kendall 1977] M. G. Kendall, The Advanced Theory of
Statistics, Oxford University Press, 1977.

[Kenney & Vouk 1992] G. Q. Kenney and M. A. Vouk,
“Measuring the Field Quality of Wide-Distribution
Commercial Software”, in 3rd IEEE Int. Symposium
on Software Reliability Engineering (ISSRE'92),
(Raleigh, NC, USA), pp.351-7, 1992.

[Laprie 1995] J.-C. Laprie, “Dependable Computing:
Concepts, Limits, Chalenges”, in 25th International
Symposium on Fault-Tolerant Computing, (Pasadena,
CA, USA), pp.42-53, 1995.

[Laprie et al. 1998] J.-C. Laprie, J. Arlat, J.-P Blanquart, A.
Costes, Y. Crouzet, Y. Deswarte, J.-C. Fabre, H.
Guillermain, M. Kaâniche, K. Kanoun, J.-C. Laprie,
C. Mazet, D. Powell, C. Rabejac and P. Thévenot,
“Dependability Handbook”, LAAS report No 98346,
August 1998. English version of “Guide de la sûreté
de fonctionnement”, Cépaduès Editions, Second
edition, 1996.

[Levendel 1990] Y. Levendel, “Reliability Analysis of
Large Software Systems: Defects Data Modeling”,
IEEE Transactions on Software Engineering, SE-16
(2), pp.141-52, 1990.

[Leveson et al. 1991] N. G. Leveson, S. S. Cha and T. J.
Shimeall, “Safety Verification of ADA Programs
Using Software Fault Trees”, IEEE Software (7),
pp.48-59, 1991.

[Lyu 1995] M. R. Lyu (Ed.), Handbook of Software
Reliability Engineering, McGraw-Hill, 1995.

[Meyer & Sanders 1993] J. F. Meyer and W. H. Sanders,
“Specification and Construction of Performability
Models”, in Int. Workshop on Performability
Modeling of Computer and Communication Systems,
(Mont Saint Michel, France), pp.1-32, 1993.

[Moran et al. 1990] P. Moran, P. Gaffney, J. Melody, M.
Condon and M. Hayden, “System Availability Moni-
toring”, IEEE Trans. on Reliability, R-39 (4), pp.480-
5, 1990.

[Muppala et al. 1992] J. K. Muppala, A. Sathaye, R. Howe,
C and K. S. Trivedi, “Dependability Modeling of a
Heterogeneous VAX-cluster System Using Stochastic
Reward Nets”, in Hardware and Software Fault
Tolerance in Parallel Computing Systems (D. R.
Avresky, Ed.), pp.33-59, 1992.

[Murphy & Levidow 2000] B. Murphy and B. Levidow,
“Windows 2000 Dependability”, in Workshop on
Dependable Networks and Operating Systems, at the
Int’l Conference on Dependable Systems and
Networks (DSN-2000), (New York, NY, USA),
pp.D20-D8, 2000.

[Musa 1998] J. Musa, Software Reliability Engineering,
391p., Computing McGraw-Hill, 1998.

[Musa et al. 1987] J. Musa, A. Iannino and K. Okumoto,
Software Reliability: Measurement, Prediction,
Application, Computer Science Series, 621p.,
McGraw-Hill, New-York, 1987.

[Rabah & Kanoun 1999] M. Rabah and K. Kanoun, “De-
pendability Evaluation of a Distributed Shared
Memory Multiprocessor System”, in 3rd European
Dependable Computing Conference (EDCC-3),
(Prague, Czech Republic), pp.42-59, Springer, 1999.

[Reibman & Veeraraghavan 1991] A. Reibman and M.
Veeraraghavan, “Reliability Modeling: An Overview
for System Designers”, IEEE Computer, April, pp.49-
57, 1991.

[Rojas 1996] I. Rojas, “Compositional Construction of
SWN Models”, The Computer Journal, 38 (7),
pp.612-21, 1996.

[Santonja et al. 1996] V. Santonja, M. Alonso, J. Molero, J.
J. Serrano, P. Gil and R. Ors, “Dependability Models
of RAID Using Stochastic Activity Networks”, in 2nd
European Dependable Computing Conference
(EDCC-2), (Taormina, Italy), pp.141-58, Springer,
1996.

[Thakur & Iyer 1996] A. Thakur and R. K. Iyer, “Analyze-
NOW — An Environment for Collection & Analysis
of Failures in a Network of Workstations”, IEEE
Transactions on Reliability, 45 (4), pp.561-70, 1996.

[Trivedi et al. 1994] K. S. Trivedi, B. R. Haverkort, A.
Rindos and V. Mainkar, “Methods and Tools for Re-
liability and Performability: Problems and
Perspectives”, in Proc. 7th Int'l Conf. on Techniques
and Tools for Computer Performance Evaluation (G.
Kotsis, Ed.), LNCS, 794, pp.1-24, Springer, 1994.

[Wood 1995] A. Wood, “Predicting Client/Server
Availability”, Computer (April), pp.41-8, 1995.

