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Abstract

The main goal of the experimentaktudy reportedin
this paperis to investigateto what extent distinct
fault injection techniques lead gimilar consequences
(errors and failures). The target systemwe are using
to carry out our investigation is the Linux kernelias
provides a representativeoperating system. It is
featuringfull controllability and observabilitythanks
to its open sourcestatus. Three types of software-
implemented fault injectiotechniquesare considered,
namely: i) provision of invalid values to the
parametersof the kernel calls, ii) corruption of the
parametersof the kernel calls, and iii) corruption of
the input parametersof the internal functions of the
kernel. The workload being usedfor the experiments
is tailored to activate selectively each functional
component. The observations encompasstypical
kernel failure modes (e.g., exceptionsand kernel
hangs)as well as a detailed analysisof the reported
error codes.

1. Introduction

Many supporting tools and techniques exist tothet
facilitate and automatethe conductof fault injection
experiments [1]. In particular, due to its witsngeof
applicability and ease of implementation, the
software-implemented fault injection technique
(SWIFI) is nowvery popular.Neverthelessalthough
severalstudieshave shown the wide rangeof faults
that SWIFI cansimulate(e.g., see[2-4]), more work
is needed to better understand the adbedlaviorsthat
are induced by this technique. Indeed, such an
understandingand characterizationof the erroneous
behaviors is mandatory so that fault injection
experiments can turn into  well-established
dependability benchmarks. Previous work on
robustness testing techniques where the target
operating system is subjectedto erroneousand/or
stressfulkernel calls offers a promising contribution
for characterizingoperatingsystem behaviorin the
presenceof faults [5-7]. Neverthelessjn order to
facilitate the acceptanceand the portability of such
benchmarks, we have also to rely as muchassible
on well-identified Application  Programming

Interfaces(APIs) to preciselyspecifyhow to perturb
the operatingsystem and enhanceour understanding
of the erroneousbehaviorscausedby the various
injection possibilities that can be supported by
SWIFI.

The ultimate aim of thisvork is the identification of
techniques for generating faultloads that are
representativeof software faults that may impact
operating systems. Indeed, operating systems é&S)
critical componentsof any computersystem. Their
malfunctions have a strong impact on the
dependabilityof the global system.As a pragramatic
approachwe investigateto what extent distinct fault
injection techniqueslead to similar consequences.
Indeed,in such case,it is worthwhile to selectthe
technique that is easier to apply.

Even though perturbationsaffecting the operating
system depend on the application domain (for
example, space- systems are more exposed to
hardwareerrors causedby radiations), all software
systemsare underthe threatof softwarefaults. This
paper focuses on software faults.

The Linux kernel was selectedas a target for our
experimentsasit providesa representativeOsS. It is
featuring high level of controllability and
observabilitythanksto its opensourcestatus. Fault
model equivalence is established through the
observationgnadeafter eachexperimentWe rely on
the error detectionmechanism®f Linux to draw our
conclusions. We focus our analysis the scheduling
component.

The results presented in this paper revealfferences
in the system behaviorin the presenceof either
internal faults or faults applied at the API level and
some similarities for the two injection techniques
usedat the API level, from the point of view of the
errorsprovoked,with a slight advantagefor the bit-
flip techniguesince it was able to provoke more
distinct erroneoushehaviors Neverthelessthe set of
invalid parameters used theseexperimentould be
enrichedto include additionalinvalid cases.The first
results corroborate the insights obtaired5] for the
Chorus microkernel, for which the failure modes
induced by injecting bit-flips in the memory
containing the code and datatbé microkerneland at
the API were different.



The rest of the papés organizedas follows. Section
2 presents the targeystemmodel. The experimental
framework ispresentedn Section3. Resultanalyses
and comparison between the three injectaghniques
are presentedn Section4. Concludingremarks are
drawn in Section 5.

2. Target system model

The targetof our study is the Linux kernel. Four
main entry points can be identified, through which
Linux kernelfunctionsare executedlndeed,a switch
to kernel mode can be triggeredby: i) an interrupt
issuedto the CPU by a hardwaredevice to indicate
that it requires attentioni) an exceptionsignaledby
a CPU becauseof an error, iii) a kernel call (or
systemcall) issuedby an applicationor iv) a kernel
thread. The activation of kernel internal functions
depends on thesntry points but also on the current
stateof the kernel.In this paper,we concentrateon

the third entry point: kernel calls issued via the API.

Basedon the work presentedn [8], andto facilitate
the analysisof the Linux kernel, we decomposedt
into five functional componentschedulingmemory
management, synchronization, file  system(s)
managementand communication. Each functional
component is composed of elementary functions.
It is worthwhile to distinguish the elementary
functions that are reachablefrom the API (kernel
calls) from thosehat are not (internal functions). By
modifying the gcc compiler, we were able to
generateat kernel compilation a call graph for each
kernel call. A call graph is composed of the
elementanyfunctions called by the consideredkernel
call. For eachkernelcall, we define depthlevels. As
an exampleFigure 1 describeghe call graphfor the
kernel callsched_set schedul er thathasthreedepth
levels. The “system_call’nodeis presentin all call
graphsassociatedvith any kernel call. It represents
the kernel call entry point.

The goal is to analyze the degree of similaritéshe
erroneousbehaviors reported for the kernel as a
consequencef fault injection at the first level (API)
andin lower levels. The dots at the end of arrows
representhe fault injection locations. The injection
at the first level correspondsto external faults,
whereas fault injection in the lower levels
(i.e., inside the kernel) mapsto internal faults.
The injection techniqueausedare detailedin the next
section.We detail in section4 the resultsrelatedto
some scheduling kernel calls.

3. Experimental framework

In this study, three fault models are considered.A
fault modelis definedwith respectto the fault type
and to the fault location. The fault types usedlire
flips andinvalid parameters. We considertwo
locations,eitherthe parameter®f the targetedkernel
call (i.e., external faults) or the parametersof the
underlying kernel functions (i.e., internal faults).
External faults mimic faults from the application
level and they test the robustnessof the kernel.
Internalfaults emulatevariousclasseof faults such
as those classified in the Orthogonal Defect
Classification [9] (e.g., assignment, checking,
interface, etc). In this paper, we consideronly the
interface class as indicated in Figure 1.

L
sched_setscheduler

Level 1

setscheduler Level 2

find_process_by_pid ‘move_first_runqueue) Level 3

@ Fault injection location
Figure 1- Call graph for
sched_setscheduler kernel call

We associate a fault injection technique mddedach

fault model. Thethree considerednjection techniques

are thus: i) provision of API invalid parameters,

ii) bit-flip in API parametersand iii) bit-flip in

internal function parameters.

The goal is to inject various faults atml observeand

compare the resulting error set¥e havedevelopeca

versatiletool supportingthe applicationof the three
injection techniques.Each technique requires four
main steps:

1) Thekernelcallsissuedby the processeghat the
tool is tracing are intercepted. The tool uses
Linux ptrace() interface and interceptskernel
calls in user modasin [10] and[11]. The kernel
call that is targeted by the fault injection
experiment is thus interrupted.

2) A fault is injected accordingto the associated
model (i.e., technique). The injection process
ensureghe synchronizatiorbetweenthe fault and
the workload and thus allows for result
comparison for the three techniques.

3) The executionof the interrupted kernel call is
resumed.

4) The system behavior is observed.



Table 1- Data type classes used by the scheduling component

Permission flag -1 0 ULONG_MAX

(all bits to 1)
Integer INT MIN 0 INT MAX
Process identifier -1 0 INT MAX
Read pointer Empty -1 NULL Non NULL Freed Random
Write pointer Small (1 Byte) | Far (p + 4 MB) NULL Low (0x00000010)| Negative | Random
Time pointer Negative NULL Random INT MAX

Figure 2 illustrates the experimental framework,
which is basedon a target and a host separate
machinesThe targetkernelis installedon the target
machinealong with the injection tool. The hardware
platform of the target machine is based on a

Pentium Il processor.

Both transient and permanent faults canrfjected.A

transientfault is automaticallyremovedatfter its first

activation, while it isonly removedat the endof the

experiment, if itis permanentTwo specific modules
(invalid parametersdatabaseand internal sabotage
controller) provide theapabilitiesthat are specificto

each kindof injection techniquedescribedn the next
sections. The aim of the host machine (that is

connectedo the targetmachinethrough an Ethernet
link) is to monitor the target machine andrébootit

with the adequateoptions in caseof an application
hang.

Intercept

Workload .
H Injector

g Daemon

=0

Host machine

Ehternet W

Figure 2- Experimental framework

3.1. Injection of external faults

We compareerror sets causedby bit-flips (as for
MAFALDA [12]) into systemcall parameterswith
those causedby invalid parameters(as for Ballista
[6]). Only oneparameteis corruptedper experiment,
by either a single bit-flip or an invalid value. The
injector module, shownin Figure 2, injects faults
into the parameter values by eithgsuing exhaustive
bit-flips (32 per parameter)or replacing them with
invalid values.A setof invalid valuesfor eachdata-
type usedn the Linux API is specifiedin a separate
file (Invalid Parametersn Figure 2). Basedon the
work related to Ballista, and especially its online
demonstration site, eight classesmfalid parameters
are defined. Only six of theseclasses,presentedin
Table 1, are used targetthe schedulingcomponent.
These values are either invalid or closehte limit of

the valid domain;indeed,the goal is to stressthe
system as much as possible.

3.2. Injection of internal faults

This set of experimentstargetsthe kernel internal

functions that are not reachablefrom the API. The

selectedfault model consistsin randomly injecting
bit-flips in the input parametersof the considered
function. According to the Orthogonal Defect

Classification, thesefaults correspondo interface

faults.

We distinguish the fault insertion phasefrom the

fault-enabling phase. The fault insertion phase

instrumentsthe kernel code and is semi-automated.

Code instrumentation is achieved in two steps:

1) Sinceall internalfunctionsof the kernel are not
relevantto our study, the first step consistsin
choosing the target functior@ecordingto the call
graph generated for each kernel call. These
functionsare delimited by inserting commentsat
the beginning and at the end.

2) The second step consists in inserting, before
compilation, blocks of code, called saboteur,at
the input point of an elementary function.

We have developedan injection controller module,

calledsabotage controller in Figure2, to enable

faults within the kernel. Although severalsaboteurs
can be insertedhnly oneis activatedper experiment.

Eachinsertionis associatedvith a flag. The set of

flags introduced permits the sabotagecontroller to

control the injections. The injector in Figure 2

enables thectivationof a fault by issuinganioctl()

to the sabotage controller module.

It is worth noting that suchan injection techniqueis

intrusive and can only be appliedtife sourcecodeis

available. But this is not atll a problemin the type
of controlled experimentswe are conducting here.

This kind of injection provide very accurate

corruptions [13].

3.3 Observation strategy

The classificationof failure modesis a crucial issue
to draw out relevantinsights. We distinguish five

outcomessplit into the detection and the non-

detection classes. The kernel signals an dayoeither
returning an error code or by handling a processor
exception.
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(552 experiments)

Figure 4- Failure mode rates for the three injection techniques

As the accuracyof the error reportsis not the main
objective of our study, we do not discriminate the

cases where the kernel returns inadequate error code.

The non-detection class encompassesthe three
following outcomes:i) kernel hang ii) application
hangandiii) no signaling As we concentraten the

analysisof the operatingsystemreaction,we do not

detail applicationfails. We recall that the ideais to

rely on the error detectionmechanism®f the kernel
to study whether the errors provoked by using
different techniques are statistically equivaldhe to

the non-determinisrmattachedto the behaviorof the

target system and the different faults that are
considered, looking for an exact matching of

experimentsvould be irrelevant. Peripheralcardsand
the schedulingof kernelthreadsare the major causes
of non-determinismTo minimize the system non-

determinism,we executethe experimentsjust after
the systenendsbooting. Also, we try to disablethe

corresponding drivers and some kernel thrdadeach
campaign,though this is not always possible in

practice as this could divert the system from its

nominal configuration. A specifically designéacing
tool insertsbreakpoints into the kernelto monitor
variousevents(systemcall trap, interrupt handling,
context switch...), and allows us to detect various
causes of system non-determinism.

4. Results and analysis

The aboverameworkappliesto all kernelfunctional
componentsHowever, in this paper,we focus the
analysis on the scheduling component. The
experimentatiorhas beenachievedon version 2.4.0
of the Linux kernel. The developeudbrkload activates
the elementary functions associated with this
componentin a simple way. We have selectedsix
kernel calls to be activated by the scheduling
component related workload: i) setpriority,
sched_setschedul er and wait4 for the
process scheduling and i) setitinmer,
nanosl eep and getti nmeof day for the timer

managementOther systemcalls associatedvith the
schedulingcomponentare usedby the workload but
are not relevantto our study since they have no

parameters, such as ther k system call.

The workload is composeaf threeprocessesa main
one that createstwo children. The main process
changes its prioritysiet pri ori t y) andcreateswo

other processesbefore yielding the processorand
waiting for the end of the other processeqwai t ).

One of them changests schedulingpolicy to FIFO

(sched_set schedul er), while the other one
sleeps for 5 mgnanos! eep). The sleepingprocess
wakesup andissuesvarious calls (setiti ner) to

updateits timers. All the processesssue, along the
execution of the workload, thget t i neof day call.

The results of the 2949 experimentsare given in

Figure 4. The dominant observation in the kerkel

injection experimentgFigure 4a and4b) is returning
error codes(66% and 65% respectively).This shows
the effectivenessf the checksimplementedat the
Linux kernel API level. Note the differencein the
generatedailure modesbetweenthe injectionsat the
kernel APllevel andin its internalfunctions (Figure
4c). There are two additional failure modes thanot
appear when injecting at the API level. Téreor code
rate when injecting inside tHeernelis low (4%). On

the other hand, 13% of faults are detectedhdrgware-
generated exceptions, which means o of faults
lead to detectedrrors.12% of the injectedfaults lead
to kernel hang.

Let us analyzethe reasonsof the difference between
the injections at the kernel API level and in its

internal functions. Generally, the kernel calls in

Linux consistin up calls to internalfunctionsas for

sched_set schedul er in Figure 1 for. It calls
one function (set schedul er), which fulfills the
requiredservice. One may assumethat injections at
the seconddepth level of this kind of kernel calls
(sched_set schedul er, getti neofday and
setitiner) leadto the sameerror code. This is

true for the sched_set schedul er kernel call



where “Invalid Argument” and “Non Existent
Process” error codes are generated eviean injecting

in the third level of the kernel function call graph.
However, injections in the second level of the
setitimer kernel call do not provoke “Bad

Address” error code and provoke only an “Invalid

Argument” error code. This meansthat the error
detection mechanisms for this function are
implementedonly in the first level. The analysisof

the sourcecode of the underlying function supports
this statement.In fact only the value of the first

parameteris verified in the underlying elementary
function, which explainsthe presenceof the “Invalid

Argument” error code alone.

Figures 5a and 5b refine thesultsof Figures4a and

4b respectively and show that, fogeven kernel call,

exceptfor the nanosl eep case, all error codes
generatedy the two injection techniquesat the API

level are of the same nature. Ewbough, the overall

error code rate is almost similar and the generated
error codes are the same, they are not always
statistically equivalent,exceptfor certain casessuch
assetpriority, getti neofday and wait 4.

Thus, more refinementis neededto derive relevant
insights. The dominant error code'&ad Address”. It

is present in the same five kerraglls out of six, for

the twotechniquesThesefive kernelcalls useeither

a read pointer data type or a write pointer data type.

a- API Invalid parameters 100% 100%

83% 81%

50% 50%

Invaid Argument %
Bad Address
9
1=O 0% Non Existent Process
Interrupted kemel Call 85%

No Child Process

17%

b- Bit-flip in API parameters

9 58%
57% o 520

47% 48%

setmmerscmqsemmmlergettlmeufday

Figure 5- Returned error codes provoked by
injection at the API level

A more detailed analysis further supports this
statementFigure 6 providesan exampleof the type
of in depthinsight that can be obtained from the
experimentsThis figure shows that two kinds of
error codes (“Non Existent Process” and “Invalid
Argument”) were observedvhenflipping bits in the
first parameterof the Permissionflag class of the
setpriority kernel call. The “Non Existent

sepriority

nanosleep wait4

Process’error codewas provokedby flipping one of

the two first bits (0 and1). The “Invalid Argument”
was provokedby flipping any of the remainingbits

(2-31). Only two invalid values [-1 and
ULONG_MAX] injectedin this parametemprovoked
the “Invalid Argument” and none of them provoked
the “Non Existent process” error code. Indeed, the

setpriority kernel call defines the scheduling
priority of either aprocessa processgroup or a user
processes. The first parameter defines which

scheduling priority will be modified bgetting one of

theseflags: PRIO_PROCESS0), PRIO_PGRP(1)

or PRIO_USER (2)which arecodedin the two first

bits. Thesecondparameteis interpretedwith respect
to the value of the first one, thus it could be: a

process identifiera processgroup identifier or a user
identifier for which the scheduling priority of its

processess to be change.The workload uses the

set priority kernelcall to modify the scheduling
priority of one process(PRIO_PROCESS)So, by

flipping one of the two first bits of the firgtarameter
(that arethe most significantbits), we obtain either
PRIO_PGRPor PRIO_USERinstead.The second
parameteno longer matchesthe resulting values of

the first parameterAlso, it is importantto note the

impact of the system state. In fact, if the second
parameter contains a valid process group after

corrupting the value of PRIO_PROCESS to

PRIO_PGRP, the kernel will not be able to detbet
error, and the application result, if not the entire

system state, will surely be corrupted.

44— LUONGMAX —

01234567 8 910111213141516171819 20 2122232425 2627 282930 31

| EEEEEEEEEEEEEEEEEEEENENEREEEEN
- Non Existent Process

Figure 6- Bit-flip / invalid parameter
mapping (setpriority first parameter case)

The aboveobservationdurther supportthe view that
flipping single bits in kernel call parameters athe
API level producesmore erroneousbehaviorsthan
applying invalid parameters.

5. Conclusion

This work comparesthe impact of three types of

SWIFI techniques. Two of themargetthe kernel call

parameters with two different fault modetgamely:i)

bit-flip andii) invalid parametersand the third one
targetsthe parameterof the kernel calls underlying
functions. We have developed an injection
environment that supports the three injection
techniquesThe resultspresentedn this papertarget
the Linux-kernel scheduling component. They
concernsix kernelcalls invokedby this component.

Invalid Argument



The comparison of the resultslies on typical kernel
failure modes(e.g., exceptionsand kernel hangs)and
on the error detectionmechanismsprovided by the
kernel.

The bit-flip in internal function injection
technique showed different erroneous behaviors
compared to the two othéechniquesMany hardware
exceptionsweretriggeredby this technique,and the
rate of the generated error codes was lower thathéor
other techniques.This tendsto indicate that it is
unlikely that internal softwarefaults (residual design
faults or devicedrivers causedfaults) could be easily
emulatedby injecting only at the API level, at least
for the Linux kernel. Furtherwork is in progressto
better study this issue.

The bit-flip in kernel call parameter
injection technique is an easytask and doesnot
need any a priori analysis tife parametedatatypes.
However, it requiresa lot of time, as it needs32
injections per parameter.

The invalid parameter injection technique
takes less timdor a completecampaigncomparedo
a complete bit-flip oneBut is a difficult issue,since
it needsa priori analysis,thoughthis analysiscould
be doneonly oncesuchas the Ballista basedPOSIX
test suite, which could be appliedto all the POSIX
compliant systems. From the efficiency point of
view, the single bit-flip injections provoked more
erroneous behaviors than the invalid parameter
injection technique. We presenteda detailed case
where the invalidharameteinjectionswere unableto
reproduce an error code that was provokedibylips.
This might indicates that we have earichthe set of
invalid parameters.

We plan to implement more error detection
mechanismssuch as assertionsinto the kernel to
enrich the erroneousbehavior observationand to
obtain more detailedtracesallowing analysisof error
propagationchannels.Finally, we intend to analyze
errors producedby real faults, already activated in
Linux, that have been publishe@ur ultimate aim is
to comparethe set of errors producedby injected
faults to the setof errors producedby real faults to
identify a set ofrepresentativéaults to be injectedin
orderto characterizéhe OS behaviorin presenceof
faults, i.e., benchmark the OS dependability.
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