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Abstract

The main goal of the experimental study reported in
this paper is to investigate to what extent distinct
fault injection techniques lead to similar consequences
(errors and failures). The target system we are using
to carry out our investigation is the Linux kernel as it
provides a representative operating system. It is
featuring full controllability and observability thanks
to its open source status. Three types of software-
implemented fault injection techniques are considered,
namely: i) provision of invalid values to the
parameters of the kernel calls, ii) corruption of the
parameters of the kernel calls, and iii) corruption of
the input parameters of the internal functions of the
kernel. The workload being used for the experiments
is tailored to activate selectively each functional
component. The observations encompass typical
kernel failure modes (e.g., exceptions and kernel
hangs) as well as a detailed analysis of the reported
error codes.

1. Introduction

Many supporting tools and techniques exist today that
facilitate and automate the conduct of fault injection
experiments [1]. In particular, due to its wide range of
applicability and ease of implementation, the
software-implemented fault injection technique
(SWIFI) is now very popular. Nevertheless, although
several studies have shown the wide range of faults
that SWIFI can simulate (e.g., see [2-4]), more work
is needed to better understand the actual behaviors that
are induced by this technique. Indeed, such an
understanding and characterization of the erroneous
behaviors is mandatory so that fault injection
experiments can turn into well-established
dependability benchmarks. Previous work on
robustness testing techniques where the target
operating system is subjected to erroneous and/or
stressful kernel calls offers a promising contribution
for characterizing operating system behavior in the
presence of faults [5-7]. Nevertheless, in order to
facilitate the acceptance and the portability of such
benchmarks, we have also to rely as much as possible
on well-identified Application Programming

Interfaces (APIs) to precisely specify how to perturb
the operating system and enhance our understanding
of the erroneous behaviors caused by the various
injection possibilities that can be supported by
SWIFI.
The ultimate aim of this work is the identification of
techniques for generating faultloads that are
representative of software faults that may impact
operating systems. Indeed, operating systems (OS) are
critical components of any computer system. Their
malfunctions have a strong impact on the
dependability of the global system. As a pragramatic
approach we investigate to what extent distinct fault
injection techniques lead to similar consequences.
Indeed, in such case, it is worthwhile to select the
technique that is easier to apply.
Even though perturbations affecting the operating
system depend on the application domain (for
example, space- systems are more exposed to
hardware errors caused by radiations), all software
systems are under the threat of software faults. This
paper focuses on software faults.
The Linux kernel was selected as a target for our
experiments as it provides a representative OS. It is
featuring high level of controllability and
observability thanks to its open source status. Fault
model equivalence is established through the
observations made after each experiment. We rely on
the error detection mechanisms of Linux to draw our
conclusions. We focus our analysis on the scheduling
component.
The results presented in this paper reveal i) differences
in the system behavior in the presence of either
internal faults or faults applied at the API level and ii)
some similarities for the two injection techniques
used at the API level, from the point of view of the
errors provoked, with a slight advantage for the bit-
flip technique since it was able to provoke more
distinct erroneous behaviors. Nevertheless, the set of
invalid parameters used in these experiments could be
enriched to include additional invalid cases. The first
results corroborate the insights obtained in [5] for the
Chorus microkernel, for which the failure modes
induced by injecting bit-flips in the memory
containing the code and data of the microkernel and at
the API were different.



The rest of the paper is organized as follows. Section
2 presents the target system model. The experimental
framework is presented in Section 3. Result analyses
and comparison between the three injection techniques
are presented in Section 4. Concluding remarks are
drawn in Section 5.

2. Target system model

The target of our study is the Linux kernel. Four
main entry points can be identified, through which
Linux kernel functions are executed. Indeed, a switch
to kernel mode can be triggered by: i) an interrupt
issued to the CPU by a hardware device to indicate
that it requires attention, ii) an exception signaled by
a CPU because of an error, iii) a kernel call (or
system call) issued by an application or iv) a kernel
thread. The activation of kernel internal functions
depends on these entry points but also on the current
state of the kernel. In this paper, we concentrate on
the third entry point: kernel calls issued via the API.
Based on the work presented in [8], and to facilitate
the analysis of the Linux kernel, we decomposed it
into five functional components: scheduling, memory
management, synchronization, file system(s)
management and communication. Each functional
component is composed of elementary functions.
It is worthwhile to distinguish the elementary
functions that are reachable from the API (kernel
calls) from those that are not (internal functions). By
modifying the gcc compiler, we were able to
generate at kernel compilation a call graph for each
kernel call. A call graph is composed of the
elementary functions called by the considered kernel
call. For each kernel call, we define depth levels. As
an example, Figure 1 describes the call graph for the
kernel call sched_setscheduler that has three depth
levels. The “system_call” node is present in all call
graphs associated with any kernel call. It represents
the kernel call entry point.
The goal is to analyze the degree of similarities of the
erroneous behaviors reported for the kernel as a
consequence of fault injection at the first level (API)
and in lower levels. The dots at the end of arrows
represent the fault injection locations. The injection
at the first level corresponds to external  faults,
whereas fault injection in the lower levels
(i.e., inside the kernel) maps to internal  faults.
The injection techniques used are detailed in the next
section. We detail in section 4 the results related to
some scheduling kernel calls.

3. Experimental framework

In this study, three fault models are considered. A
fault model is defined with respect to the fault type
and to the fault location. The fault types used are b i t -
f l ips  and invalid parameters. We consider two
locations, either the parameters of the targeted kernel
call (i.e., external faults) or the parameters of the
underlying kernel functions (i.e., internal faults).
External faults mimic faults from the application
level and they test the robustness of the kernel.
Internal faults emulate various classes of faults such
as those classified in the Orthogonal Defect
Classification [9] (e.g., assignment, checking,
interface, etc). In this paper, we consider only the
interface class as indicated in Figure 1.
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setscheduler
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sched_setscheduler

system_call

Figure 1- Call graph for
sched_setscheduler kernel call

We associate a fault injection technique model to each
fault model. The three considered injection techniques
are thus: i) provision of API invalid parameters,
ii) bit-flip in API parameters, and iii) bit-flip in
internal function parameters.
The goal is to inject various faults and to observe and
compare the resulting error sets. We have developed a
versatile tool supporting the application of the three
injection techniques. Each technique requires four
main steps:
1) The kernel calls issued by the processes that the

tool is tracing are intercepted. The tool uses
Linux ptrace() interface and intercepts kernel
calls in user mode as in [10] and [11]. The kernel
call that is targeted by the fault injection
experiment is thus interrupted.

2) A fault is injected according to the associated
model (i.e., technique). The injection process
ensures the synchronization between the fault and
the workload and thus allows for result
comparison for the three techniques.

3) The execution of the interrupted kernel call is
resumed.

4) The system behavior is observed.



Table 1- Data type classes used by the scheduling component

Permission flag -1 0 ULONG_MAX
(all bits to 1)

Integer INT_MIN 0 INT_MAX
Process identifier -1 0 INT_MAX
Read pointer Empty -1 NULL Non NULL Freed Random
Write pointer Small (1 Byte) Far (p + 4 MB) NULL Low (0x00000010) Negative Random
Time pointer Negative NULL Random INT_MAX

Figure 2 illustrates the experimental framework,
which is based on a target and a host separate
machines. The target kernel is installed on the target
machine along with the injection tool. The hardware
platform of the target machine is based on a
Pentium III processor.
Both transient and permanent faults can be injected. A
transient fault is automatically removed after its first
activation, while it is only removed at the end of the
experiment, if it is permanent. Two specific modules
(invalid parameters database and internal sabotage
controller) provide the capabilities that are specific to
each kind of injection technique described in the next
sections. The aim of the host machine (that is
connected to the target machine through an Ethernet
link) is to monitor the target machine and to reboot it
with the adequate options in case of an application
hang.
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Figure 2- Experimental framework

3.1. Injection of external faults
We compare error sets caused by bit-flips (as for
MAFALDA [12]) into system call parameters with
those caused by invalid parameters (as for Ballista
[6]). Only one parameter is corrupted per experiment,
by either a single bit-flip or an invalid value. The
injector module, shown in Figure 2, injects faults
into the parameter values by either issuing exhaustive
bit-flips (32 per parameter) or replacing them with
invalid values. A set of invalid values for each data-
type used in the Linux API is specified in a separate
file (Invalid Parameters in Figure 2). Based on the
work related to Ballista, and especially its online
demonstration site, eight classes of invalid parameters
are defined. Only six of these classes, presented in
Table 1, are used to target the scheduling component.
These values are either invalid or close to the limit of

the valid domain; indeed, the goal is to stress the
system as much as possible.

3.2. Injection of internal faults
This set of experiments targets the kernel internal
functions that are not reachable from the API. The
selected fault model consists in randomly injecting
bit-flips in the input parameters of the considered
function. According to the Orthogonal Defect
Classification, these faults correspond to interface
faults.
We distinguish the fault insertion phase from the
fault-enabling phase. The fault insertion phase
instruments the kernel code and is semi-automated.
Code instrumentation is achieved in two steps:
1) Since all internal functions of the kernel are not

relevant to our study, the first step consists in
choosing the target functions according to the call
graph generated for each kernel call. These
functions are delimited by inserting comments at
the beginning and at the end.

2) The second step consists in inserting, before
compilation, blocks of code, called saboteur, at
the input point of an elementary function.

We have developed an injection controller module,
called sabotage controller in Figure 2, to enable
faults within the kernel. Although several saboteurs
can be inserted, only one is activated per experiment.
Each insertion is associated with a flag. The set of
flags introduced permits the sabotage controller to
control the injections. The injector in Figure 2
enables the activation of a fault by issuing an ioctl()
to the sabotage controller module.
It is worth noting that such an injection technique is
intrusive and can only be applied if the source code is
available. But this is not at all a problem in the type
of controlled experiments we are conducting here.
This kind of injection provide very accurate
corruptions [13].

3.3 Observation strategy
The classification of failure modes is a crucial issue
to draw out relevant insights. We distinguish five
outcomes split into the detection and the non-
detection classes. The kernel signals an error by either
returning an error code or by handling a processor
exception.  
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Figure 4- Failure mode rates for the three injection techniques

As the accuracy of the error reports is not the main
objective of our study, we do not discriminate the
cases where the kernel returns inadequate error code.
The non-detection class encompasses the three
following outcomes: i) kernel hang, ii) application
hang and iii) no signaling. As we concentrate on the
analysis of the operating system reaction, we do not
detail application fails. We recall that the idea is to
rely on the error detection mechanisms of the kernel
to study whether the errors provoked by using
different techniques are statistically equivalent. Due to
the non-determinism attached to the behavior of the
target system and the different faults that are
considered, looking for an exact matching of
experiments would be irrelevant. Peripheral cards and
the scheduling of kernel threads are the major causes
of non-determinism. To minimize the system non-
determinism, we execute the experiments just after
the system ends booting. Also, we try to disable the
corresponding drivers and some kernel threads for each
campaign, though this is not always possible in
practice as this could divert the system from its
nominal configuration. A specifically designed tracing
tool inserts break points into the kernel to monitor
various events (system call trap, interrupt handling,
context switch…), and allows us to detect various
causes of system non-determinism.

4. Results and analysis
The above framework applies to all kernel functional
components. However, in this paper, we focus the
analysis on the scheduling component. The
experimentation has been achieved on version 2.4.0
of the Linux kernel. The developed workload activates
the elementary functions associated with this
component in a simple way. We have selected six
kernel calls to be activated by the scheduling
component related workload: i) setpriority,
sched_setscheduler and wait4 for the
process scheduling and ii) setitimer,
nanosleep and gettimeofday for the timer

management. Other system calls associated with the
scheduling component are used by the workload but
are not relevant to our study since they have no
parameters, such as the fork system call.
The workload is composed of three processes: a main
one that creates two children. The main process
changes its priority (setpriority) and creates two
other processes before yielding the processor and
waiting for the end of the other processes (wait).
One of them changes its scheduling policy to FIFO
(sched_setscheduler), while the other one
sleeps for 5 ms (nanosleep). The sleeping process
wakes up and issues various calls (setitimer) to
update its timers. All the processes issue, along the
execution of the workload, the gettimeofday call.
The results of the 2949 experiments are given in
Figure 4. The dominant observation in the kernel API
injection experiments (Figure 4a and 4b) is returning
error codes (66% and 65% respectively). This shows
the effectiveness of the checks implemented at the
Linux kernel API level. Note the difference in the
generated failure modes between the injections at the
kernel API level and in its internal functions (Figure
4c). There are two additional failure modes that do not
appear when injecting at the API level. The error code
rate when injecting inside the kernel is low (4%). On
the other hand, 13% of faults are detected by hardware-
generated exceptions, which means that 17% of faults
lead to detected errors. 12% of the injected faults lead
to kernel hang.
Let us analyze the reasons of the difference between
the injections at the kernel API level and in its
internal functions. Generally, the kernel calls in
Linux consist in up calls to internal functions as for
sched_setscheduler in Figure 1 for. It calls
one function (setscheduler), which fulfills the
required service.  One may assume that injections at
the second depth level of this kind of kernel calls
(sched_setscheduler, gettimeofday and
setitimer) lead to the same error code. This is
true for the sched_setscheduler kernel call



where  “Invalid Argument” and  “Non Existent
Process” error codes are generated even when injecting
in the third level of the kernel function call graph.
However, injections in the second level of the
setitimer kernel call do not provoke “Bad
Address” error code and provoke only an “Invalid
Argument” error code. This means that the error
detection mechanisms for this function are
implemented only in the first level. The analysis of
the source code of the underlying function supports
this statement. In fact only the value of the first
parameter is verified in the underlying elementary
function, which explains the presence of the “Invalid
Argument” error code alone.
Figures 5a and 5b refine the results of Figures 4a and
4b respectively and show that, for a given kernel call,
except for the nanosleep case, all error codes
generated by the two injection techniques at the API
level are of the same nature. Even though, the overall
error code rate is almost similar and the generated
error codes are the same, they are not always
statistically equivalent, except for certain cases such
as setpriority, gettimeofday and wait4.
Thus, more refinement is needed to derive relevant
insights. The dominant error code is “Bad Address”. It
is present in the same five kernel calls out of six, for
the two techniques. These five kernel calls use either
a read pointer data type or a write pointer data type.
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Figure 5- Returned error codes provoked by
injection at the API level

A more detailed analysis further supports this
statement. Figure 6 provides an example of the type
of in depth insight that can be obtained from the
experiments. This figure shows that two kinds of
error codes (“Non Existent Process” and “Invalid
Argument”) were observed when flipping bits in the
first parameter of the Permission flag class of the
setpriority kernel call. The “Non Existent

Process” error code was provoked by flipping one of
the two first bits (0 and 1). The “Invalid Argument”
was provoked by flipping any of the remaining bits
(2-31). Only two invalid values [-1 and
ULONG_MAX] injected in this parameter provoked
the “Invalid Argument” and none of them provoked
the “Non Existent process” error code. Indeed, the
setpriority kernel call defines the scheduling
priority of either a process, a process group or a user
processes. The first parameter defines which
scheduling priority will be modified by setting one of
these flags: PRIO_PROCESS (0), PRIO_PGRP (1)
or PRIO_USER (2), which are coded in the two first
bits. The second parameter is interpreted with respect
to the value of the first one, thus it could be: a
process identifier, a process group identifier or a user
identifier for which the scheduling priority of its
processes is to be change. The workload uses the
setpriority kernel call to modify the scheduling
priority of one process (PRIO_PROCESS). So, by
flipping one of the two first bits of the first parameter
(that are the most significant bits), we obtain either
PRIO_PGRP or PRIO_USER instead. The second
parameter no longer matches the resulting values of
the first parameter. Also, it is important to note the
impact of the system state. In fact, if the second
parameter contains a valid process group after
corrupting the value of PRIO_PROCESS to
PRIO_PGRP, the kernel will not be able to detect the
error, and the application result, if not the entire
system state, will surely be corrupted.

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 31

-1, ULONG_MAX

Non Existent Process Invalid Argument

Figure 6- Bit-flip / invalid parameter
mapping (setpriority first parameter case)

The above observations further support the view that
flipping single bits in kernel call parameters at the
API level produces more erroneous behaviors than
applying invalid parameters.

5. Conclusion
This work compares the impact of three types of
SWIFI techniques. Two of them target the kernel call
parameters with two different fault models, namely: i)
bit-flip and ii) invalid parameters, and the third one
targets the parameters of the kernel calls underlying
functions. We have developed an injection
environment that supports the three injection
techniques. The results presented in this paper target
the Linux-kernel scheduling component. They
concern six kernel calls invoked by this component.



The comparison of the results relies on typical kernel
failure modes (e.g., exceptions and kernel hangs) and
on the error detection mechanisms provided by the
kernel.
The bit-flip in internal function injection
technique showed different erroneous behaviors
compared to the two other techniques. Many hardware
exceptions were triggered by this technique, and the
rate of the generated error codes was lower than for the
other techniques. This tends to indicate that it is
unlikely that internal software faults (residual design
faults or device drivers caused faults) could be easily
emulated by injecting only at the API level, at least
for the Linux kernel. Further work is in progress to
better study this issue.
The bit-flip in kernel call parameter
injection technique is an easy task and does not
need any a priori analysis of the parameter data types.
However, it requires a lot of time, as it needs 32
injections per parameter.
The invalid parameter injection technique
takes less time for a complete campaign compared to
a complete bit-flip one. But is a difficult issue, since
it needs a priori analysis, though this analysis could
be done only once such as the Ballista based POSIX
test suite, which could be applied to all the POSIX
compliant systems. From the efficiency point of
view, the single bit-flip injections provoked more
erroneous behaviors than the invalid parameter
injection technique. We presented a detailed case
where the invalid parameter injections were unable to
reproduce an error code that was provoked by bit-flips.
This might indicates that we have to enrich the set of
invalid parameters.
We plan to implement more error detection
mechanisms such as assertions into the kernel to
enrich the erroneous behavior observation and to
obtain more detailed traces allowing analysis of error
propagation channels. Finally, we intend to analyze
errors produced by real faults, already activated in
Linux, that have been published. Our ultimate aim is
to compare the set of errors produced by injected
faults to the set of errors produced by real faults to
identify a set of representative faults to be injected in
order to characterize the OS behavior in presence of
faults, i.e., benchmark the OS dependability.
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