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Introduction

It is now well known that while symbolic task planners have been drastically improved to solve more and more complex symbolic problems the difficulty of successfully applying such planners to robotics problems still remains. Indeed, in such planners, actions such as "navigate" or "grasp" use abstracted applicability situations that might result in finding plans that cannot be refined at the geometrical level. This is due to the gap between the representation they are based on and the physical environment (see the pioneering paper [START_REF] Lozano-Perez | Handey: A robot system that recognizes, plans and manipulates[END_REF]).

We have proposed in [START_REF] Cambon | A robot task planner that merges symbolic and geometric reasoning[END_REF][START_REF] Cambon | A hybrid approach to intricate motion, manipulation and task planning[END_REF] a general framework, called AsyMov, for intricate motion, manipulation and task planning problems. This planner was based on the link between a symbolic planner running Metric FF [START_REF] Hoffmann | The metric-ff planning system: Translating "ignoring delete lists" to numeric state variables[END_REF] with a sophisticated geometric planner that was able to synthesize manipulation planning problems [START_REF] Alami | A Geometrical approach to planning manipulation tasks. the case of Discrete placements and Grasps[END_REF][START_REF] Siméon | Manipulation planning with probabilistic roadmaps[END_REF]. The second contribution of AsyMov was the ability to conduct a coordinated search of the symbolic task planner and its geometric counterpart.

In this paper, we extend this approach and apply it to the challenging context of human-robot cooperative manipulation. We propose a scheme that is still based on the coalition of a symbolic planner [START_REF] Alili | Planning and plan-execution for human-robot cooperative task achievement[END_REF]) and a geometric planner [START_REF] Pandey | Mightability maps: A perceptual level decisional framework for co-operative and competitive human-robot interaction[END_REF][START_REF] Sisbot | Spatial reasoning for human robot interaction[END_REF][START_REF] Marin Urias | Geometric tools for perspective taking for human-robot interaction[END_REF] but which provides a more elaborate interaction between the two planning environments. The overall planning system starts from a goal or a situation to achieve, and builds a so-called cooperative plan which is based on planned actions for the robot and estimation of feasibility of actions for the human.

The task planner builds incrementally the cooperative plan, a tree task structure -thanks to a HTN refinement process -whose leaves correspond to actions to be performed by the robot or by its human partner.

We describe here below the two components, the geometric and the symbolic planners, how they are invoked in a

The Geometric Planner

The geometric reasoning and planning system considers a geometric environment (see figure 4) composed of furniture (fixed obstacles), agents (robots and humans, represented as kinematic structures with manipulation and perception abilities) and objects that can be manipulated by the agents.

The geometric planner is able to plan feasible motions for agents (robot or human) as well as to reason on their accessibilities and their visibilities towards other agents or towards the features in the environment.

Layers of Geometric Planner

As illustrated in figure 1, the geometric planner consists of 3 main layers:

Geometric Tools Layer: This layer consists of a set of geometrical tools which provides the robot with the following geometrical analysis capabilities:

• A place in 3D space is reachable or visible from the perspective of an agent or not by applying a set of virtual actions e.g making the agent virtually to sit, to turn around, to lean forward, to standup etc. • An object is visible or not as well as visibility % of the object from the perspective of an agent. • The spatial relations of an object, e.g on the table, in the box, left of human etc.

Geometric Reasoning Layer: At the top of the basic layer, we have the geometrical reasoning layer, which geometrically finds out a set of points for performing various basic actions, few of them are:

• Put an object for human to take.

• Show an object to human.

• Hide an object from human.

This layer also does various other analyses, computations and planning, few of them are:

• Planning a path to navigate for an agent. Geometric Planner Geometric Reasoning

Geometric Validation and Refinement

Set of Geometric Tools • Planning a path to manipulate an object by an agent.

• Computing where to place a robot for performing a particular task. • Analyzing geometrical level of comfort of agents .

Validation and Refinement Layer: At the top layer of geometric planner we have a geometric validation and refinement interface, which communicates with external modules (symbolic planner in our case) and handles external requests, about geometric feasibility of a particular basic task. It maintains and updates the plan, as well as contains logics for backtracking at geometric level. As shown in figure 2, in our current implementation, the symbolic planner sends a request to geometric planner with following information:

• Name of the action, put, pick, move etc.

• The parameters of the action, on table, bottle, by robot, by human etc. • The set of constraints, for example a particular object should be visible, or should be put on a particular table etc.

Types of constraints

We have three types of constraints at geometric level:

• Internal constraints known to the geometric reasoning system for performing a particular basic task. • External/additional constraints provided by the symbolic planner for the same basic task. • Discovered constraints by geometric planner due to failure at later stages of validating another task in the sequence.

In fact, the beauty of our whole system is, the geometric planner will already have a basic set of constraints for reasoning to perform a particular action without need of any external constraint. Hence, additional constraints from symbolic planner will refine the solution space for better converging towards the final task to achieve.

! Solution Space Atomic Action ! ! ! ! ! ! ! ! ! Geometric
Another novelty of our system is that, in case of nonavailability of a solution for a particular action in the sequence, instead of directly sending the fail message to the symbolic planner, it will first try to backtrack at geometric level to find the possible cause of failure and refine the solution space of a particular action. In that sense robot will have a third set of geometric constraints, which it has discovered due to failure during validating the sequence of actions. This third set of discovered geometric constraints together with the set of constraints already known to the robot at geometric planner level and the set of additional constraints provided by the symbolic planner, will serve as the new set of constraints for avoiding failure at future steps while reiterating for validation of the plan after backtracking.

The Symbolic Planner

HATP (Human-Aware Task Planner) is a hierarchical task planner [START_REF] Alili | Planning and plan-execution for human-robot cooperative task achievement[END_REF]) designed to synthesize plans for a robot that might have to achieve goals in an environment where other "agents" are present (essentially humans). The robot will have to produce a plan by taking into account its capacities and the current state of the environment. What makes HATP different is that it allows the robot to take into account also the state and the capacities of the other agents and even their preferences. The result of a planning is a plan with several synchronized streams, the stream of the robot as well as a set of streams that are devoted to anticipate the future potential actions of the other agents [START_REF] Alili | Planning and plan-execution for human-robot cooperative task achievement[END_REF]). Besides complying with standard constraints, HATP plans are bound to additional properties like the satisfaction of "social rules" [START_REF] Alili | A task planner for an autonomous social robot[END_REF].

In order to consider geometric feasibility of symbolic plans, we have adapted HATP plan search process and ex-tended its world and task representation in order to provide a systematic link between the symbolic descriptions manipulated by HATP and their geometric counterpart.

The geometry enhances the symbolic reasoning by allowing it to use facts that depend exclusively on the geometry like "visibility" and "accessibility", also it allows to reject plans that are feasible at symbolic level, but do not have a valid geometric refinement. 

World states representation

The world state is defined by the pair W s =< Ent, Spacial F acts > where

• Ent =< En 1 , En 2 , ..., En n > is set of entities. An entity is unique and it is represented by the pair En i =< SAtt i , Sc i > where SAtt i is a set of symbolic attributes and where Sc i is a reference to its geometric description. We make a difference between passive entities and active entities, called "Agents" which can perform actions and modify the state of the world. • Spacial F acts represent the spatial relations that could exist between entities. This facts are assumed to be computed by the geometric planner. An example of spacial fact is the "visibility" relation between an "agent" and an "object" in a given context.

The state of an entity is given by the current value of its symbolic attributes and of the spatial relations in which it is involved. In HATP, similarly to HTNs, we can distinguish two types of tasks: Actions and Methods. An action (also called operator) is an atomic task. A method is a higher level task that must be decomposed.

Actions

Actions are defined as a tuple A =< N ame, P ar, P rec, Ef f, C, D, Const, GF > where

• N ame defines the action name.

• P ar represents the action parameters, a non-ordered list of entities and agents. • P rec represents the action preconditions.

• Ef f represents the effects of the action on the current world state. In this model we specify two kinds of effects. The "expected effects" and the "side effects". The former ones are the effects as defined in classical HTN planning [START_REF] Ghallab | Automated Planning -theory and practice[END_REF][START_REF] Nau | Shop2: An htn planning system[END_REF] or in previous version of HATP [START_REF] Alili | A task planner for an autonomous social robot[END_REF]. The latter effects, called "side effects", are the effects that depend on the geometry of the world. For example, the motion of an agent has as expected effect on the agent's position, but, as a side effect, it can also have impact on the agent's visibility on objects and other agents in the world. • C and D represent respectively the action cost, which is computed at geometric level and the duration, which is an estimation of action duration. • Const represents a set of additional constraints on the world state that could be used to refine the action at geometric level. • GF is a Boolean flag which indicates if the action is a purely symbolic action like "speak", or if its has a geometric counterpart like "move" or "pick".

Methods

Methods are defined as a tuple M =< N ame, P ar, Goal, D, Const > where

• N ame and P ar represent respectively the name and the parameters of the method. • Goal is the goal of the method. It is condition which is associated to the method. If it holds in the current world state, the method is reduced to an empty set. • D represents a set of pairs < P i , T l i , Const i >, which define all possible decompositions for the method. For each i, if preconditions P i are verified then the partially ordered list of tasks T l i is a possible way to achieve the method. As in action Const i represents a set of constraints associated to task present in T l i . • Const: As for actions, Const represents a set of constraints associated to the current method. These constraints will propagate on the valid decompositions of the method.

The Hybrid Planning Scheme

The symbolic planner (Algorithm .1) has the world state s and the planning problem Tree as input. The algorithm starts by initializing actions' temporal projection Prj to an empty set (line 1). The main loop of the algorithm (line 2 to 13) runs until all the tree is explored. The refinement function at line 3 is responsible for the tree refinement. It decomposes all high level tasks present in the tree until the reach of a sequence of action. When an action appears in the tree, the algorithm checks its precondition (line 5). If the precondition does not hold, the algorithm makes a backtrack to the refinement step (line 3) to continue the exploration of other branches. If the precondition holds in the current world state, the algorithm calls the geometric refinement procedure to query the geometric validation of the action (line 6). If geometric refinement procedure validates the action, the algorithm updates the plan and applies the effects of the action on the current world state. On the other hand, if the geometry fails, the algorithm needs to backtrack to explore other tree branches.

Algorithm .2 describes the geometric refinement procedure. With a given world state and an action, this procedure is in charge of planning a motion to achieve the action while maintaining a continuous geometric motion plan. The algorithm first tests if there is a solution to achieve the given action with the given symbolic world state and its "internal geometric state". In case of a successful validation, the cost and facts are sent to the algorithm .1 and the geometric state is saved. In case of a failure in this step, the geometry looks for a point, in its previously planned motion plan, which will have an effect to the achievement of the current action by backtracking (line 6). If the current action can be achieved by modifying properties of the previously planned motions, the algorithm returns true and updates costs and facts. 

Example

Let us consider a scenario where the Robot HRP-2 and the Human in a sitting face-to-face situation across the table (figure 4). On the table there is a bottle (B), cup (C) and coffee box (CB). It also shows the reachability of the Human and HRP2 from their current sitting positions. The yellow and blue circles show the reachabilities exclusively by left and right hands of the agent and green circle shows the regions reachable by both hands of the agent. Clearly there is a common reachability region on the table, but the cup, bottle and coffee box is not reachable to the human. The goal is to have a coffee for the human. The robot's role is to assist the human partner by making the objects accessible. 

Backtracking at Geometric Level

Figure 5 shows one of the sequences of actions planned by the symbolic planner for the task of making coffee. For each node, which is basic action, the symbolic planner queries to the geometric planner about the feasibility of the action. To show the need of backtracking at the very beginning, let us assume that for validating the 2nd node, which is to put the cup on the table, geometric planner has chosen a place, which is visible and reachable for human. At this stage, it has also maintained other solutions to put the cup, while maintaining the constraints. And when it reached at 4th node to validate the action of putting the bottle, the geometric planner found that there exists no such place on the table, which is visible and reachable to human, to put the bottle. At this stage, instead of communicating the non-feasibility of the solution to the symbolic level, it will first try other possible solutions at geometric level itself. Here it will store additional constraint that the bottle should be put at a visible and reachable place to the human, and then it backtracks to previous nodes to try with other stored solutions. In the cur-rent scenario, it will backtrack to 3rd node, but there is no other pickup configuration of bottle, which could facilitate the putting of the bottle. Then it backtracks to 2nd node and it found a set of other stored solutions to put the cup. So, it selects a new solution to put the cup, so that the discovered constraint about putting the bottle also satisfied. Then it again starts validating from that node onwards. Similarly, on the later stage of validation, at node 6, human has to pick the cup, but let us assume that unaware of this task during the first iteration, the robot has decided to put the cup and bottle in such a way that human could not take the cup. In this case also a similar backtracking will occur with additional discovered constraint, that human should be able to pick the cup.

Backtracking at Symbolic level

It may be the case that even after backtracking and exploring all the possible solution at geometric level, the feasibility of a particular node of symbolic plan could not be validated. In that case, the geometric planner would inform to the symbolic planner about non-availability of solution. Then the symbolic planner could decide to explore another (sub)branch of its plan.

In our example of coffee making, if the geometry fails because of the absence of a stable position to put the bottle down, the symbolic planner may switch to an alternative solution where the robot "gives" the object directly to the human. If all actions are valid at both levels, symbolic and geometric, we can say that we have a valid plan.

Conclusion

We have devised a new and more elaborate task planning scheme, which extends the Asymov scheme and which exhibits the following features:

• The HTN planning scheme opens the possibility to provide more information about the context to the geometric planner through a set of constraints that should be taken into account at geometric level.

• A geometric reasoning systems that is able to deal with elaborate requests concerning the achievement of situations that are generally expressed at symbolic level. This has been made possible thanks to its ability to deal not only with path planning but also with spatial perspective taking, and human-robot cooperative object manipulation actions.

• A task planning scheme which provides a context for backtracking at symbolic as well as at geometric level and for various cost-based plan enhancement strategies.
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