
HAL Id: hal-01976143
https://laas.hal.science/hal-01976143

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Combining HTN Planning and Geometric Task
Planning

Lavindra de Silva, Amit Kumar Pandey, Mamoun Gharbi, Rachid Alami

To cite this version:
Lavindra de Silva, Amit Kumar Pandey, Mamoun Gharbi, Rachid Alami. Towards Combining HTN
Planning and Geometric Task Planning. RSS Workshop on Combined Robot Motion Planning and
AI Planning for Practical Applications, 2013, Berlin, Germany. �hal-01976143�

https://laas.hal.science/hal-01976143
https://hal.archives-ouvertes.fr

Towards Combining HTN Planning and Geometric
Task Planning

Lavindra de Silva Amit Kumar Pandey Mamoun Gharbi Rachid Alami

Abstract—In this paper we present an interface between a

symbolic planner and a geometric task planner, which is different

to a standard trajectory planner in that the former is able

to perform geometric reasoning on abstract entities—tasks. We

believe that this approach facilitates a more principled interface

to symbolic planning, while also leaving more room for the

geometric planner to make independent decisions. We show how

the two planners could be interfaced, and how their planning and

backtracking could be interleaved. We also provide insights for

a methodology for using the combined system, and experimental

results to use as a benchmark with future extensions to both the

combined system, as well as to the geometric task planner.

I. INTRODUCTION

The past few years have seen a great deal of interest in inter-
facing symbolic and geometric reasoning. A common theme
has been to define how geometric entities and capabilities
should be meaningfully used within symbolic planning, and
how symbolic information can be used, perhaps as heuristics,
in geometric planning. In this paper we follow this trend.
Broadly, we are interested in the link between a geometric
task/action and a symbolic action, what geometric information
we should publicise to the symbolic (resp. geometric) planner,
and how can we include them in symbolic (resp. geometric)
states and actions. An unavoidable issue that arises when
combining the two planning approaches is “backtracking”—
trying alternative options for choices that were already made
during planning. Both approaches are capable of backtracking
at their own levels when a plan being pursued turns out to not
work: the symbolic planner when some precondition is not
met, and the geometric planner when a path/trajectory being
planned cannot avoid a collision. It is therefore important
to decide how we can effectively interleave geometric and
symbolic backtracking [1], [2], and how we should switch
between them.

In [2], [3] the authors discuss algorithms for geometric
backtracking by extending the Justin robot with symbolic-
geometric planning capabilities: they use the JSHOP2 [4] HTN
planner for the symbolic planning component and a specialised
path planner for the geometric one. Unlike our approach, the
authors keep the symbolic state orthogonal to the geometric
state: changing, for instance, the pose of an object on a
table has no consequence on the symbolic state. We require
symbolic and geometric states to be intertwined, which is
natural in some domains. To this end, we derive symbolic facts
from the geometric state and use these in symbolic planning.

*This work was conducted within the EU SAPHARI project
(www.saphari.eu) funded by the E.C. division FP7-IST under contract
ICT-287513.

**LAAS/CNRS, 7, Av. du Colonel Roche, 31077 Toulouse, France.
{ldesilva,akpandey,magharbi,rachid}@laas.fr

To interface symbolic and geometric planning, the authors
in [5], [6] introduce “semantic attachments,” which associate
selected predicates in the planning domain to external pro-
cedures called at runtime to evaluate the predicates. In [7],
the semantic attachments are implemented using a trajectory
planner that computes collision free trajectories; if one exists,
then the corresponding semantic attachment evaluates to true ,
and false otherwise. Likewise, we use “evaluable predicates,”
with a minor difference where we link them to more abstract
entities called geometric tasks, which may or may not invoke
a trajectory planner. The authors also introduce “effect appli-
cators” in effects of actions that consult the geometric planner
to set certain state variables (e.g. position and orientation of
a moved object) in the symbolic domain. Effect applicators,
however, cannot make decisions between different outcomes,
such as choosing where to place an object. In our work we
do want to give the geometric planner some leeway to make
such choices.

In some works there is a tight integration between symbolic
and geometric planning. In [8], for instance, a hierarchical
planner plans all the way down to the level of geometric
actions. Similarly, [9] describes a special purpose hierarchi-
cal planner combined with a geometric motion planner for
planning, and then executing the most basic actions while the
plan is still being constructed. This is different to the work
described above which formulate a complete plan first, before
executing it. The Asymov [10] system is a combined task
and motion planner for problems that are difficult to solve
when the symbolic planner is in control of the geometric
search, e.g. in the geometric Towers of Hanoi problem that the
authors present. Compared to other approaches, in Asymov
the geometric planner uses the symbolic planner—as well
as the symblic model of the domain—as a heuristic when
choosing roadmaps during geometric search. Similarly, in [11]
a symbolic planner guides a sampling-based motion planner,
which in turn sends back utility estimates to improve the guide
in the next iteration.

Unlike previous approaches, our work concerns the use of a
geometric task planner instead of a typical trajectory planner;
the former lets us define the interface to symbolic planning
in a more meaningful way—by providing a higher level of
abstraction to low level geometric actions like picking and
placing—and also gives more leeway to the geometric level to
make decisions. Unlike past work we are also interested here in
a principled methodology for developing symbolic-geometric
planning domains: this paper provides useful insights in this
direction. We present an initial prototype implementation of
the combined planning framework including basic interleaved
backtracking, and an analysis of its runtime performance;

we intend to use these results as a benchmark for future
experiments with different backtracking strategies currently
being developed, and to develop better heuristics for the
geometric task planning component itself.

II. BACKGROUND

In this paper we refer to the popular STRIPS classical
planning language [12]. More importantly, we make use of the
Hierarchical Task Network (HTN) planning formalism. While
classical planners focus on bringing about states of affairs
or “goals-to-be,” HTN planners focus on solving abstract
tasks or “goals-to-do.” In this paper we use a popular type
of HTN planning called “totally-ordered” HTN (henceforth
simply referred to as HTN) planning, which has proven to be
efficient in certain domains [13]. An HTN planning problem
is the 3-tuple �d, S0,D�, where d is the sequence of (primitive
or abstract) tasks to solve, S0 is an initial state as in classical
planning, and D is an HTN planning domain. Specifically, an
HTN planning domain is the pair D = �A,M� where A—the
primitives of the domain—is a finite set of operators as before,
andM is a finite set of methods. A method is a tuple consisting
of the name of the method, the abstract task that the method
is used to solve, a precondition specifying when the method
is applicable (like an operator’s precondition), and a body
indicating which tasks are used to solve the task associated
with the method. The method-body is a sequence of primitive
and/or abstract tasks. The planning process works by selecting
applicable reduction methods from M and applying them to
abstract tasks in d in a depth-first manner. In each iteration
this will typically result in d becoming a “more primitive”
sequence of tasks. The process continues until d has only
primitive tasks left. At any stage in the planning process,
if no applicable method can be found for an abstract task,
the planner essentially “backtracks” and tries an alternative
method for an abstract task refined earlier.

For the geometric counterpart, we adopt the approach of
finding a solution in a discrete space of candidate grasps
and placements [3], [14] for tasks involving picking and
placing. Basically, our geometric task planner (GTP)1 iterates
in a four dimensional search space, consisting of a set of
agent “effort” levels, a set of discrete grasps, a set of object
placement positions, and a set of object placement orientations
(see Figure 1). For each object, sets of possible grasps are
pre-computed and stored for the anthropomorphic hands and
the robot’s gripper, which are later filtered based on task
requirements and the environment. The amount of “effort
units” required to perform certain tasks like moving the head,
extending an arm, and standing up are predefined; to this end,
we have made simplifying assumptions about which tasks (e.g.
head movements) require less effort than others (e.g. standing
up). At runtime, sets of placement positions and possible
orientations of objects are dynamically extracted, based on
the environment, the task, and restrictions on how much effort
should be put into the task. These sets are then weighted based
on the environment and situation, with criteria such as grasp
and placement stability, feasibility of simultaneous grasps by

1We also use GTP as an abbreviation for geometric task planning.

Fig. 1: An overview of the geometric task planner (GTP).

two agents, the agent’s visibility of the object, and estimated
effort to see and reach it.

The advantage of the GTP framework is that a variety of
day-to-day tasks like showing, giving, hiding, and making
accessible can be represented in terms of different constraints,
based on factors like reachability, visibility, desired effort
level, and the ability to grasp. A geometric solution is found
using a constraint hierarchy based approach, by carefully
introducing these constraints successively at different stages
of planning. This facilitates the reduction of the search space
successively, before introducing relatively more computation-
ally expensive constraints.

We shall now briefly highlight the GTP algorithm. The
outermost loop starts from the lowest estimated effort required
(to view and reach objects) for the task and incrementally
moves to the highest. For each such effort estimate, the
algorithm iterates on the candidate points where the task could
be performed, excluding those that did not work with lower
effort estimates. For each such point, the algorithm iterates on
the possible object grasps if it is not already in the gripper,
excluding those that already failed for lower effort estimates.
For each such grasp, if a collision-free pick is possible—i.e.
there is a path to a configuration associated with the grasp—
the algorithm tries the different possible object orientations,
excluding those that are in collision (e.g. with a surface), and
those that do not satisfy the visibility threshold and other task
oriented symbolic constraints, such as maintaining the object
facing front. Finally, the planner obtains a tuple consisting
of a grasp, a placement position and a placement orientation,
which is then used to find a collision free trajectory.

III. A SYMBOLIC-GEOMETRIC PLANNING EXAMPLE

In this section we detail a concrete domain that illustrates
how symbolic and geometric planning is interfaced and com-
bined. We also highlight our approach to interleaving HTN
and GTP backtracking, but leave the detailed algorithms for a
separate paper. Suppose a PR2 robot is working as a library
receptionist. Library members reserve books online with their
membership ID, which is also used to top up their library
credit. The ID can be used to look up membership details like
email address and books reserved and borrowed. Reserved
books are collected in person from the library. Once an
online reservation is made, (human) librarians make the books
accessible (i.e. reachable without navigating from the current
position, and visible) to the PR2 on an adjacent table.

MANAGEORDER(M)

m1

AND

LEND(M)

OR

m2

�

m3

AND

PICK(B) SAY(T) MAKEBKACC(B,M) ADD(B,M) m4

AND

DISPLAY(B, T,M)

m5

AND

PICK(B) SHOW(B,M) SAY(T)

GIVEBK(B,M)
WAITTAKE(B,M) ADD(B, M)

TAKEPAYMENT(M)

OR

m6

DEBITACC(M,N ∗ cost)

m7

AND

PLACEPOSM(M)

OR

m8

AND

PICK(mac) SAY(swipe) PUTON(mac, stnd)

m9

ANDNAVTO(mac)
PICK(mac) NAVTO(desk) SAY(swipe)

PUTON(mac, stnd)

PUTAWAYPOSM(M)

m10

AND

SAY(thank) PICK(mac) PUTAWAY(mac, M)

EMAIL(M)

Fig. 2: The part of the HTN domain that handles online book reservations. Solid rectangles are HTN abstract tasks, rounded rectangles
are methods (where the incoming vertex is the task that the method solves, and outgoing vertices are the tasks in the method’s body), and
dashed rectangles are actions. Standard HTN actions are in bold and GS actions are underlined.

ACTION/HTN TASK M PRECONDITION METHOD-BODY/ACTION-EFFECTS
MANAGEORDER(M) m1 held(B, M) LEND(M) · TAKEPAYMENT(M)
LEND(M) m2 ∀B,¬held(B, M) �

m3 held(B, M) ∧ title(B, T) PICK(B) · SAY(T) · MAKEBKACC(B, M) · ADD(B, M) · LEND(M)
m4 held(B, M) ∧ title(B, T) ∧ ¬hvy(B) DISPLAY(B, T, M) · GIVEBK(B, M) · WAITTAKE(B, M) ·

ADD(B, M) · LEND(M)
DISPLAY(B, T, M) m5 true PICK(B) · SHOW(B, M) · SAY(T)
TAKEPAYMENT(M) m6 numLent(M, N) DEBITACC(M, N ∗ cost)

m7 numLent(M, N) ∧
cred(M, C) ∧ (C < N ∗ cost) PLACEPOSM() · PUTAWAYPOSM(M) · EMAIL(M)

PLACEPOSM() m8 reachable(mac, pr2) PICK(mac) · SAY(swipe) · PUTON(mac, stnd)
m9 true NAVTO(mac) · PICK(mac) · NAVTO(desk) · SAY(swipe) · PUTON(mac, stnd)

PUTAWAYPOSM(M) m10 true SAY(thank) · PICK(mac) · PUTAWAY(mac, M)
SAY(T) true {spoke(T)}
MAKEBKACC(B, M) held(B, M) ∧makeAcc(B, M)? {¬held(B, M), lent(B, M)}, makeAcc(B, M)−, makeAcc(B, M)+

WAITTAKE(B, M) held(B, M) ∧ gave(B, M) {¬held(B, M) ∧ ¬gave(B, M) ∧ lent(B, M)}
ADD(B, M) lent(B, M) ∧ numLent(M, N) {¬numLent(M, N), numLent(M, N + 1)}
GIVEBK(B, M) held(B, M) ∧ give(B, M)? ∧ ¬hvy(B) {gave(B, M)}, give(B, M)−, give(B, M)+

PICK(O) pick(O)? pick(O)−, pick(O)+

SHOW(O, M) show(O, M)? show(O, M)−, show(O, M)+

DEBITACC(M, Cost) cred(M, C) ∧ (C ≥ Cost) {¬cred(M, C), cred(M, C − Cost)}
EMAIL(M) lent(B, M) {emailed(M)}
PUTON(O1, O2) putOn(O1, O2)

?
putOn(O1, O2)

−
, putOn(O1, O2)

+

PUTAWAY(O, M) putAway(O, M)? putAway(O, M)−, putAway(O, M)+

NAVTO(Obj) navTo(Obj)? navTo(Obj)−, navTo(Obj)+

TABLE I: The table for Figure 2. The top half (above the thick line) are methods (M) and the bottom half are operators. For legibility,
empty sets have been ommitted from the table.

The HTN domain is illustrated graphically in Fig-
ure 2 and detailed in Table I. The top-level HTN
task is MANAGEORDER(M) for member M . It has one
method (named m1) with two subtasks: LEND(M) and
TAKEPAYMENT(M). The first is associated with three
methods—m2, m3, m4—which are tried in that order. Method
m2 trivially succeeds if there are no (more) books held by
the member and hence no more books to give. If it is not
applicable, m3 is tried, which has the following actions: pick
(via GTP) from the adjacent shelf a book reserved by the
member, speak out the title, make it accessible to the member
on the desk, perform some bookkeeping—e.g. send the current
total to the Point-of-Sale (POS) machine—and then recursively
call LEND(M).

Method m4 starts with an HTN abstract task to display a
book, which refines into the three steps focussed on showing a
book to the person. The abstract task is followed by giving the

book to the person,2 waiting for it to be taken—which relies
on the gripper angle and force sensors to check if the book has
successfully been taken—and then the bookkeeping action as
before, ending with a recursive call to LEND(M). Note that a
book is given only if it is deemed light enough to be directly
taken from the gripper, and that by forcing an ordering on m3

and m4 we are encoding a preference for placing a book on
the table over handing it (directly) to the member, allowing
the member to pick up the book and put it in a bag/handbag
at his/her own pace.

The TAKEPAYMENT(M) task of m1 has methods m6 and
m7. Method m6 has a single action to debit the account
corresponding to the member ID according to the number of
books lent (all books have the same cost), if there is enough

2We could also imagine more generic GIVEBK(B, M) and
MAKEBKACC(B, M) actions that can handle any object type or give
and make books accessible for reasons other than lending.

credit C in the member’s account. If not, the member must
pay by credit card (m7). The PLACEPOSM(M) task refines
into two methods for giving the POS machine: if the machine
is (likely) reachable it is simply picked up, but if not—
presumably because the (shared) machine is with the recep-
tionist at an adjacent desk—the PR2 navigates to the machine,
picks it up, and navigates back; the PR2 then asks the user to
swipe the card and enter the PIN, and then puts the machine
on the POS machine stand. The PUTAWAYPOSM(M) task
includes actions to thank the person and to put the machine
somewhere that is away from the person’s reach and visibility,
and EMAIL(M) emails the member an invoice.

This HTN domain serves to highlight some key features.
First, the HTN developer interfaces with the GTP using
evaluable predicates. To this end, every (relevant) GTP task
t is associated with an evaluable predicate—denoted t?—in
the HTN domain (e.g. GTP task SHOW(O,H) has evaluable
predicate show(O,H)? for some object O and human H),
which evaluates to true if t has a GTP solution and false
otherwise. Whenever such an evaluable predicate is mentioned
in the precondition of an operator (resp. action), we call it
a Geometric-Symbolic (GS) operator (resp. action). A GTP
task t is also associated with an add list function—denoted
t+—and a delete list function—denoted t−—which are the
(possibly empty) add and delete lists for t computed by the
GTP, based basically on the world resulting from the solution
that was found for t on calling evaluable predicate t?. Add
list function show(o1, h1)+ might, for instance, return the set
{visible(o1, h1), accessible(o1, h1)} and show(o1, h1)− the
set {visible(o3, h1), accessible(o3, h1)}: that is, after making
object o1 visible to human h1, the object is also accessible to
h1, but object o3 is no longer visible nor accessible to h1. The
effects of a GS operator is the combination of its “static” add
and delete lists with those obtained via the add and delete list
functions.

An important concept we exploit is that of a “shared
predicate” (or “shared literal”), which is a standard literal that
is based on geometrical properties and hence modelled more
accurately by the GTP. For example, predicate reachable(o, h)
in the HTN domain (see method m8), which specifies that
object o is reachable to human h, is derived from the 3D
world with a heuristic based on the area covered on extending
the robot’s arm with respect to all its degrees of freedom [1].

We highlight some interesting interleaving of GTP and
HTN planning—backtracking in particular—possible with the
domain described. Suppose the library reception desk is small
and somewhat cluttered, and that a member has reserved two
big books b1 and b2. Assume there is enough space on the
table to make one of them accessible (to the member), but not
enough space to make them both accessible, nor to make one
accessible but give the other (directly), as the books are so
big that they block the robot-arm’s path to the person. Figure
3 shows a part of a possible combined HTN-GTP planning
scenario. In the figure, b1 is successfully picked and made
accessible—i.e. the GTP tasks (third column) corresponding
to the PICK(b1) and MAKEBKACC(b1, m) GS actions (second
column) are successfully planned. Then, LEND(M) is recur-

sively called during HTN planning. However, according to
our scenario, the attempt to make book b2 accessible (after
picking it up) will fail. At this point the GTP will backtrack
all the way up to PICK(b1) (third column) but not find a way to
reposition the first book so as to make the second accessible.
The system will then resort to HTN bactracking, which will
choose the alternative method m4 to give b2 directly to the
person.3 According to our initial scenario, this will also fail
even after the GTP backtracks to reposition b1 (not shown in
the figure). The HTN planner will then backtrack once again
up the hierarchy and perhaps choose method m4 to give b1

directly to the person, after which it should be possible to
make b2 accessible and continue planning.

The last column of Figure 3 shows the mapping of the
four “compound” GTP tasks in the third column into grasp
and placement actions. A more interesting domain would
be where these actions are encapsulated into one compound
PICKMAKEACCESSIBLE(O,H) task (for object O and human
H), instead of the two tasks PICK(O) and MAKEACC(O,H).
This will allow the GTP to backtrack from PLACE(O)
to GRASP(O), allowing failure to be detected early in
HTN planning—when PICKMAKEACCESSIBLE(O,H) fails
because a (future) GTP task/action (PLACE(O) in our exam-
ple), due to be tried later by the HTN planner, is predicted
by the GTP to be impossible. Such encapsulation can also
minimise GTP backtracking by, from the outset, planning with
respect to definite future GTP actions (e.g. planning the grasp
with respect to the placement).

!"#

!$# !"#

%&'()*+,#

-./)0*+,#

!.(12(3'')*+4!,#

.55)*+4!,#

%&'()*6,#

-789)*64!,#

-./)0*6,#

:&;1)*64!,#

%&'()*6,#

-./)0*6,#

!.(12(3'')*64!,#

%&'()*+,#

%&'()*6,#

!.(13'')*64!,#

:<.-%)*+,#

%=.'1)*+,#

%=.'1)*6,#

:<.-%)*6,#

!"#

%&'()*+,#

-./)0*+,#

!.(12(3'')*+4!,#

.55)*+4!,#

><8?1'@8A#

B1CD1A'1#

2.'(0<.'(&A:#

!.(13'')*+4!,#

Fig. 3: Combined backtracking scenario for Figure 2.

IV. IMPLEMENTATION

As mentioned in Section II, we have adapted an HTN
planner and implemented a GTP. We have also sufficiently
implemented the algorithms presented in this paper to gain
some valuable insights. In our setup, the (real) PR2 is in a

3We assume that the book is light enough to be handed to the person.

room with objects like tables, shelves, and chairs, and the
same is modelled in 3D, onto which humans and objects (e.g.
books) are dynamically projected whenever they are detected
in the real room by respectively a Kinect (Microsoft) sensor,
and PR2’s stereo cameras coupled with a pattern-based marker
detection module. For 3D visualization and planning we use
the Move3D software [15].

Our current GTP implementation has some of the func-
tionality depicted in Figure 3, including: (i) storing the se-
quence of GTP tasks pursued so far; (ii) basic backtrack-
ing to find an alternative solution for a chosen GTP task
in the sequence; and (iii) computing predicates such as
visible(O,A), reachable(O,A), on(O,O2), inside(O,O2)
and coveredBy(O,O2) for an agent A and objects O,O2,
where the first two are computed based on the concept of
mightability maps presented in [1]—which the authors showed
to be computed and updated fast enough for online HRI—and
the other facts using techniques from the geometric analysis
of the 3D world model, and domain specific heuristics.4

We demonstrate our implementation in figures 4 and
5, where the second is essentially a screen dump of the
visible(O,H) and reachable(O,H) shared literals computed.
Figure 4 (a) is the initial state with two books on the table
next to the PR2, and a small white platform in front of it to
exchange objects. Planning starts with the PR2 picking (b) the
grey book and making it accessible (c) to the human on the
platform. The same is done for the white book in (d) and (e).
The position of the white book, however, makes the grey one
no longer visible to the human, which later makes it impossible
to give the POS machine to him—in the current example this
requires that all books be visible to him. Consequently, the
GTP backtracks and finds a slightly different way to place the
white book (f) so that both books are then visible.

Figure 5 (a) shows that at the start, the grey book (Grey)
and the white book (White) are not visible (Vis) nor reachable
(Reach) to the human, as they both require an effort (E)
of either 3 or 4, instead of 1. Figure 5 (d) shows how
after backtracking and moving the white book, the grey one
becomes visible once again. Note that something is deemed
visible to a human based on a threshold on the percentage
of pixels visible, using the approach presented in [16]. Our
threshold here is that at least 50% of an object should be
visible to the human for the fact to hold.

V. EXPERIMENTAL RESULTS

To analyse the runtime performance of the combined HTN-
GTP system we implemented and ran the domain depicted
in Figure 2. Specifically, we implemented most HTN and
GTP tasks in the domain except for NAVTO(Obj) (which
requires further work), and we modified the HTN domain
slightly by replacing PUTON(O1, O2) with MAKEACC(O,H),
and grouping PICK(O) together with the 4 other GTP tasks for
reasons explained in Section III.

We ran the experiments on the PR2, which has two quad-
core i7 Xeon processors (8 cores), 24 GB of memory, and

4Note that by deriving and using geometric states as shared literals we need
to address the ramifications of geometric backtracking on already pursued
symbolic actions. Due to space limits we leave our solution for another paper.

(a) (b) (c)

(d) (e) (f)

Fig. 4: A Move3D scenario for the domain in Figure 2: making two
books accessible by backtracking.

For HUMAN:
Grey is Vis with E=3, Reach with E=4
White is Vis with E=4, Reach with E=4
For PR2:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=1, Reach with E=1

(a) Shared literals for Figure 4(a).

For HUMAN:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=4, Reach with E=4
For PR2:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=1, Reach with E=1

(b) Shared literals for Figure 4(d).

For HUMAN:
Grey is Vis with E=2, Reach with E=1
White is Vis with E=1, Reach with E=1
For PR2:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=1, Reach with E=1

(c) Shared literals for Figure 4(e).

For HUMAN:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=1, Reach with E=1
For PR2:
Grey is Vis with E=1, Reach with E=1
White is Vis with E=1, Reach with E=1

(d) Shared literals for Figure 4(f).

Fig. 5: Symbolic facts computed for Figure 4.

a 500 GB hard drive.5 We only analysed the performance of
the HTN-GTP system with HTN backtracking alone—we did
not exploit geometric backtracking; we intend to use these
results as a baseline to compare against an extended HTN-
GTP system being developed, which interleaves backtracking
as shown in Figure 3. We ran the experiment 100 times,
where each run started by calling the MANAGEORDER(M)
task in Figure 2. The initial state of the GTP was similar to
that in Figure 4 except that there was also a POS machine.
We kept the GTP initial state fixed: automatically generating
initial states with different positions and orientations for books
is left as future work. We do note, however, that manual
adjustments to the GTP initial state did not seem to change
the experimental results. The HTN initial state was such that
the member had to always pay by credit card, which forced
method m7 to be selected—the one that relies on the GTP.6

The results are summarised in Table II. We note that
HTN planning (alone) took negligible time. Observe that
PUTAWAY(O,H) was the most “difficult” task to plan: the

5Running the HTN-GTP system on the PR2 allowed using real object
and human locations for constructing the initial states for planning, and also
directly executing plans found.

6We invite the reader to view a video of a single run of the experiment at
www.tinyurl.com/pr2-exp; it has been edited for easier viewing.

ACTION TIME SUCC % PTS GRASPS ORTS CALLS

MAKEACC 18.8 99.5 11 93.3 644.7 16.2
SHOW 13.3 93 1 20.3 406.6 7.8
GIVE 10.1 100 1 4.2 94 7.9
PUTAWAY 51 48 13 110.3 569.2 17.9

TABLE II: The table summarises, for each GTP task: the time taken
to find a solution (time); what percentage of its planning attempts
were successful (succ %); the total number of points tested in 3D
space (pts); the total number of grasps tried (grasps); the total number
of orientations tried (orts); and the total number of times the trajectory
planner was called (calls).

GTP could not find a solution 52% of the time, and it took 51
seconds on average, making it also the most computationally
expensive task. On the contrary, the GTP always found a solu-
tion for GIVE(O,H), which was also the least computationally
expensive task.

Although, intuitively, it should be possible to find so-
lutions less often for GIVE(O,H) than for SHOW(O,H),
this was not the case because GIVE(O,H) is followed by
SHOW(O,H) in our HTN domain: hence if there is no solution
for SHOW(O,H) then GIVE(O,H) will not be attempted, and
if SHOW(O,H) does have a solution then it is quite likely
that GIVE(O,H) will also have one, as they both rely on the
ability to make an object visible.7

Interestingly, MAKEACC(O,H) and PUTAWAY(O,H) have
similar results in their respective columns in the table, but
the latter takes much longer to plan. This is due to different
thresholds on visibility: for an object to be deemed accessible
it is sufficient if (along with reachability requirements) at least
50% of the object’s pixels are visible to the person, whereas
for an object to be considered successfully put away, we have
set that value to 0%. Since our GTP approach is constraint
hierarchy based, the computation time is greatly affected by
what stage in the planning process the planner fails. As pixel
based visibility computation is relatively computationally ex-
pensive, it is left for the final stages of planning. It appears that
with PUTAWAY(O,H), checking the feasibility of visibility
constraints fails more times than with MAKEACC(O,H), as
in most cases objects were not completely hidden—in fact,
they were sufficiently visible.

The experiments revealed that our combined HTN-GTP
domain was, in some sense, “complete”—the combination
was almost always able to find HTN-GTP solutions for
MANAGEORDER(M), without frequent backtracking. There
was only one HTN-GTP planning attempt that failed com-
pletely (with 8 backtracks), when the GTP could not put/hide
away the POS machine—within the 60-second time limit we
had set for GTP—despite all symbolic backtracking attempts.
On average the symbolic planner backtracked about once
(actually, 0.86 times) per run before finding a solution, with
slightly under 10% of the total runs backtracking more than
3 times per run. This suggests that GTP backtracking should,
perhaps, be done sparingly—rather than every time a GTP task
being pursued has no solution—by relying more on HTN back-
tracking, albeit at the expense of completeness. Another trade-
off between completeness and efficiency is to significantly

7While GIVE(O, H) also needs O to be reachable to H in free space, in
our scenario this is easy to achieve.

reduce the grasps and orientations tested by GTP tasks like
MAKEACC(O,M) to a few “good” ones that generally work
well; the number of pixels tested when determining object
visibility could also be reduced in a similar way. We believe
that these improvements will make the combined system more
practical for real-world applications.

VI. CONCLUSION

We have presented an approach to combining HTN and
geometric task planning, which allows more sophisticated
reasoning than possible with standard trajectory planning. The
combination makes way for rich backtracking at multiple
levels, and also interleaved backtracking. We showed how the
two planners could be interfaced, and gave insights into a
methodology for developing HTN-GTP domains. Our proto-
type implementation is able to do basic GTP backtracking,
and to compute and share symbolic facts, which the HTN
developer can use in preconditions. Finally, we presented
experimental results that we intend to use as a benchmark
to test future extensions, and for developing heuristics for the
GTP.

REFERENCES

[1] A. K. Pandey and R. Alami, “Mightability maps: A perceptual level
decisional framework for co-operative and competitive human-robot
interaction,” in IROS, 2010, pp. 5842–5848.

[2] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand, and
F. Schmidt, “Combining task and path planning for a humanoid two-
arm robotic system,” in ICAPS Workshop on Combining Task and Motion
Planning for Real-World Applications, 2012, pp. 13–20.

[3] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint
propagation on interval bounds for dealing with geometric backtracking,”
in IROS, 2012, pp. 957–964.

[4] D. Nau, H. Muñoz Avila, Y. Cao, A. Lotem, and S. Mitchell, “Total-order
planning with partially ordered subtasks,” in IJCAI, 2001, pp. 425–430.

[5] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, “Integrating
symbolic and geometric planning for mobile manipulation,” in IEEE
International Workshop on Safety, Security and Rescue Robotics, 2009.

[6] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
ICAPS, 2009.

[7] C. Dornhege, P. Eyerich, T. Keller, M. Brenner, and B. Nebel, “Integrat-
ing task and motion planning using semantic attachments,” in Bridging
the Gap Between Task and Motion Planning, 2010.

[8] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation,” in ICAPS, 2010, pp. 254–258.

[9] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[10] S. Cambon, F. Gravot, and R. Alami, “A robot task planner that merges
symbolic and geometric reasoning,” in ECAI, 2004, pp. 895–899.

[11] E. Plaku and G. Hager, “Sampling-based motion and symbolic action
planning with geometric and differential constraints,” in ICRA, 2010,
pp. 5002–5008.

[12] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial Intelligence, vol. 2,
no. 3-4, pp. 189–208, 1971.

[13] D. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila, “SHOP: Simple
hierarchical ordered planner,” in IJCAI, 1999, pp. 968–973.

[14] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards plan-
ning human-robot interactive manipulation tasks: Task dependent and
human oriented autonomous selection of grasp and placement,” in IEEE
RAS/EMBS BioRob, 2012, pp. 1371–1376.

[15] T. Simeon, J.-P. Laumond, and F. Lamiraux, “Move3d: a generic
platform for path planning,” in 4th Int. Symp. on Assembly and Task
Planning, 2001, pp. 25–30.

[16] L. Marin-Urias, E. Sisbot, A. Pandey, R. Tadakuma, and R. Alami,
“Towards shared attention through geometric reasoning for human
robot interaction,” in IEEE-RAS International Conference on Humanoid
Robots, 2009, pp. 331 –336.

