Karama Kanoun 
  
Marie Borrel 
  
Dependability of Fault-Tolerant Systems -Explicit Modeling of the Interactions Between Hardware and Software Components

This paper addresses the dependability modeling of ardware and software fault-tolerant systems taking into ccount explicitly the interactions between the various omponents. It presents a framework for modeling these teractions based on Generalized Stochastic Petri Nets GSPNs). The modeling approach is modular: the ehavior of each component and each interaction is epresented by its own GSPN, while the system model is btained by composition of these GSPNs. The omposition rules are defined and formalized through lear identification of the interfaces between the omponent and the dependency nets. In addition to odularity, the formalism brings flexibility and resability. This approach is applied to a simple, but still epresentative, example.

. Introduction

In the context of computer system dependability, the eed for addressing simultaneously both hardware and oftware dependability aspects has now been recognized. owever, even though a number of publications have een devoted to the dependability of combined hardware nd software systems (see e.g. [START_REF] Borrel | Interactions between Hardware and Software Components: Characterization, Formalization and Modeling -Application to CAUTRA Dependability[END_REF][START_REF] Costes | Reliability and Availability Models for Maintained Systems Featuring Hardware Failures and Design Faults[END_REF][START_REF] Laprie | X-ware Reliability and Availability Modeling[END_REF][START_REF] Laprie | The KAT (Knowledge-Action-Transformation) Approach to the Modeling and Evaluation of Reliability and Availability Growth[END_REF]), work on oth aspects dealt with at the same time is not prevalent. lso, it is noteworthy that, when they are considered gether for real-life systems, the interactions between the omponents are not usually modeled explicitly (see e.g. [START_REF] Muppala | Dependability Modeling of a Heterogeneous VAX-cluster System Using Stochastic Reward Nets[END_REF][START_REF] Avresky | An Analysis of Hardware and Software Availability Exemplified on the IBM-3725 Communication Controller[END_REF][START_REF] Stark | Dependability Evaluation of Integrated Hardware/Software Systems[END_REF]).

This paper addresses the dependability modeling of ardware and software fault-tolerant systems taking into ccount the interactions between the various components. hese interactions result for example from components ommunications for functional purposes (i.e., functional teractions), or from the structure of the system, mainly e distribution of software components onto the ardware components (i.e., structural interactions), or rom fault tolerance and maintenance strategies reconfiguration and maintenance interactions). They induce dependencies between at least two components that are usually stochastic in nature. As a result, system dependability cannot simply be obtained by combining the dependability of its components. An overall model accounting for these dependencies is thus needed. Our aim is to model explicitly these dependencies so as to quantify their influence on system dependability. This is of prime importance during the design of a new system or while upgrading an already existing one. The designer can make different assumptions about the interactions between the components and compare the dependability of the resulting alternative solutions through sensitivity studies. As the nature of interactions is strongly linked to the modeling level considered and the assumptions made at the considered level, it is not possible to model all the interactions that could take place for any fault-tolerant system. Rather, we define a framework for modeling these interactions in a systematic way and, more generally, we define a framework to build up the dependability model of a fault-tolerant system explicitly taking into account these interactions. To do this, we follow a modular approach based on Generalized Stochastic Petri Nets (GSPNs) due to their ability to handle modularity and hierarchy. Note that modular approaches using GSPNs or their offsprings are widely used (see e.g., [2,[START_REF] Sanders | Reduced Base Model Construction Methods for Stochastic Activity Networks[END_REF] ). Our contribution lies in modeling the interactions between hardware and software components and giving a formal description of these dependencies.

The paper is organized in five sections: Section 2 presents the framework for modeling interactions between hardware and software components. Section 3 gives a formal description of the various types of dependency nets while Section 4 illustrates the approach on a duplex system with several interactions. Section 5 concludes.

Modeling Framework

The modeling approach consists in identifying, based on the analysis of the system's behavior, dependencies between the components that could be induced by func-onal or structural interactions or by interactions due to ystem reconfiguration and maintenance. Some examples f dependencies due to these interactions are given in the ollowing. Error propagation between two software comonents is an example of stochastic dependency resulting rom functional interactions (exchange of data or transfer f intermediate results from one component to another). he halting of the software activities following a permaent failure of the hosting hardware is an example of tochastic dependency induced by a structural interaction. haring of a single repairman by the two hardware comuters leads to a maintenance dependency whereas witching from an active component (hardware or oftware) to a spare component following a permanent ailure of the active component leads to a reconfiguration ependency. In this paper, we consider interactions that re driven by events occurring in a component whose ccurrence may impact the behavior of other components.

A high level model of the system is first derived based n the previous analysis. It is made of blocks and arrows: block stands for the component model (component net) r a dependency model (dependency net), and an arrow hows the direction of the dependency. The system model thus obtained by composition of the component and ependency models. In a second step, each block is eplaced with its detailed GSPN. To allow for a ystematic build up of dependency nets, rules that will ave to be followed during model construction are efined. These rules manage the interfaces between the ependency and component nets and are prerequisite for odularity, hierarchical modeling and re-usability (resability is a valuable concept when it comes to doing ensitivity studies about certain assumptions regarding a ystem's behavior or when several alternative solutions re being considered). Also, these rules allow an easy alidation of the global model. In the rest of the section, e give the characteristics of the component and ependency nets and present the various types of ependency nets together with the rules that have to be ollowed to build up the GSPNs. omponents nets: A component net represents the ehavior of a component as resulting from the activation f faults in this component and the subsequent error rocessing, restart or repair actions. The assumptions ade and the degree of detail considered are usually uided by the interactions with other components one ants to exploit (such as the consequences of non etected errors or activation of temporary faults). A omponent net is designed to be a standalone net with its itial marking, it is live and bounded. It can be onnected with dependency nets only following well de-fined rules as explained hereafter; connections must not alter the initial structure of the component nets.

Dependency nets:

A dependency net is linked to at least two adjacent nets: an initializing and a target net that could be component or dependency nets. To formally describe dependency nets and to promote re-usability, we define as much common characteristics as possible. As a result, whatever is the kind of interaction modeled, all the dependency nets are initialized and interfaced with the adjacent nets following the same rules; they only differ in their effects on the target net. The common characteristics and the different effects on the target nets are introduced in figure 1 where a hypothetical dependency net with all types of effects is given (the notations are introduced with the formalism). They are summarized hereafter. 

Action Entry places

Internal transitions

Immediate or timed transition

Initializing

Dependency net initialization

• A dependency net is initialized through the marking of one or more entry places by the initializing net(s), following firing of initializing transitions in these initializing net(s) (as interactions are event driven). • The initial marking of the entry places is zero.

• When the initializing net is a component net, the consequences of initializing transition(s) firing on the component behavior are modeled within the component net (marking of one or several internal places) and an additional token is generated and deposited in the entry place of the dependency net to activate the interaction. • If the initializing net is a dependency net, the token deposited in the entry place could be either the one generated when entering the initializing dependency net (corresponding to a series of successive interactions) or an additional one newly generated (corresponding to the initialization in parallel of two or more interactions).

nternal transitions: The dependency net has internal ansitions (timed or instantaneous) whose firing may be dependent from the marking of the adjacent nets independent transitions) or conditioned by the marking f places in the adjacent nets. A condition is modeled by n inhibitor arc or an arc from and towards the tested lace: the marking of this place is not changed. The terfaces with the adjacent nets (excluding initializing rcs and effects on the target nets) are thus only onstituted by tests on the marking of specific places. An ternal transition could be absorbing (i.e., the tokens are bsorbed).

ffects on target nets: These effects are strongly related the type of interaction modeled. Thus, three such ffects have been identified:

If the interaction consists in changing the state of another component (the target net is necessarily a component), the effect at the GSPN level involves removal of a token from a stable place (i.e., a place followed by timed transitions, this condition stems from the fact that only stable places correspond to states of the components) in the target net and return of the token to the same place or to another stable place of the target net (immediately or after firing internal transitions in the dependency net). This is referred to as an action net.

If the interaction consists in performing or synchronizing reconfiguration or maintenance actions, the effects depend on the nature of the initializing net:

-if the initializing net is a component net, the interaction consists in coordinating the component restart (or repair) action with the restart (or repair) action of the components to which it is linked: it requests permission before undertaking internal actions, these actions are enabled by the dependency net (immediately or after firing of internal transitions). The target net is necessarily the same as the initializing net. At the GSPN level, the effect consists of enabling a transition in the component net through the marking of a place in the dependency net. Since the component net is a standalone net, this means that, in the component net, this transition has also to be enabled by the marking of at least an internal place. This is an authorization net, -if the initializing net is a dependency net, the interaction consists in activating another interaction with other linked components; at the GSPN level, this consists of initializing another dependency net by depositing a token in its entry place following the firing of an initializing transition in the initializing dependency net. As previously stated, depending on whether the token deposited in the target net is an additional one, both dependency nets run in parallel or in series. This is an activation net.

The previous rules are intended to manage the static links between dependency and adjacent nets. Further rules have to be considered to control the dynamic behavior of the nets (i.e., the tokens generation and their flow). They are given together with the formalism in the next section. Note that model construction is an iterative process with information flow in both directions from/to dependency nets to/from components nets: in the component models, care should be taken to include potential dependencies.

Interaction origin and dependency net type:

The interactions have been attributed to three possible origins: functional, structural and those due to system reconfiguration and maintenance. Functional and structural interactions are usually accompanied by a state change, the associated nets are thus action nets. Dependencies due to reconfiguration and maintenance may induce a state change and they could be any kind of dependency net.

Nets formalization and validation

The aim of this section is to give a formal description of the various rules introduced in the previous section and to address model validation. We first give the main notations, the other notations being defined in table 1.

General Notations pen k ∈ P d

Entry place (EP) of Nd. Let Ni, Nd and Ng denote respectively an initializing, a dependency, and a target net, and let Nx be any of these nets (x = i, d, g).

Nx = P x , T x , I x , O x , pr x , pa x (
) where:

• P x is the set of places of Nx ,.

• T x = Ttim x ∪ Timm x is the set of transitions of Nx : Ttim x is the set of timed transitions and Timm x is the set of immediate transitions.

• I x : P x × T x → N ∪ -1 { } is the input function, O x : T x × P x → N is the output function ( N is the set of natural integers).
pr x the set of timed transitions rates, pa x the set of firing probabilities of immediate transitions. The set of places and transitions are such that:

i ∩ P d = ∅, P i ∩ P g = ∅ , P d ∩ P g = ∅, T i ∩ T d = ∅ , i ∩ T g = ∅ andT d ∩ T g = ∅
The interfaces of a dependency net Nd with an itializing net Ni and a target net Ng are the input and utput functions, I id , I dg , O id , O dg , that connect places nd transitions of Nd to places and transitions of Ni or g . These functions are defined as follows:

I id : P i × T d → N ∪ -1 { } I dg : P d × T g → N ∪ -1 { } O id : T i × P d → N O dg : T d × P g → N
When it is not necessary to distinguish between itializing and target nets, indices i, d, g are omitted.

nitialization: Initializing transitions, entry places and e initializing marking of a dependency net Nd are efined as follows: let tin j ∈T i and p k ∈P d such that

id tin j , p k ( )> 0 , I di p k ,tin j ( ) = 0, if ∀ p l ∈P d , p l ≠ p k , we have di p l , tin j ( )= 0 then tin j is an initializing transition of Nd
nd p k is an entry place of Nd , denoted pen k . An entry lace can be initialized by several transitions. In order for transition tin j of a net Ni to be fired, one must have:

p m ∈P i I id p m ,tin j ( ) ≥ 0 ⇒ Mi n p m ( ) ≥ I id p m ,tin j ( ) ( Mi n : Nd itializing marking) and I id p m ,tin j ( ) = -1 ⇒ Mi n p m ( ) = 0 1 .
nternal transitions: Internal transitions of a dependency et can be independent or conditioned by the marking of laces in adjacent nets. They are defined as follows:

ti j ∈T d is an independent transition if ∀ p k such that I p k , ti j ( )> 0 or O ti j , p k ( ) > 0 then p k ∈ P d , I = I d , O = O d .
tc k ∈ T d is a conditioned transition if the two following conditions are verified: 1) ∃ p j ∈ P g ∪ P i ( ) such that:

I p j , tc k ( ) = O tc k , p j ( ) > 0 or I p j , tc k ( ) = -1 2) ∀ p n ∈ P g ∪ P i ( ) such that I p n , tc k ( ) > 0 or O tc k , p n ( ) > 0 then I p n , tc k ( ) = O tc k , p n ( ) .
An internal transition can be an absorption transition. n independent or a conditioned transition ti j or tc j is an bsorption transition if:

∀ p n ∈ P, O ti j , p n ( ) = 0 or tc j , p n ( ) = 0 with P = P d ∪P i ∪ P c ( ) .
ction nets: An action net ends with a transition which auses a token to be removed from a stable place of the rget net and to be returned to the same or another stable lace of the same net. Removal and return can be done rough two distinct transitions (with internal transitions I p, t ( ) ≥ 0 ⇒ Mn x p ( ) ≥ I p, t ( ) means that there must be enough tokens in all the input places of t to enable it. I p, t ( ) = -1 ⇒ Mn x p ( ) = 0 means that if there is an inhibitor arc from p to t, there must be no token in p to enable t.

and places between them) or through the same transition.

The number of tokens in the target net remains unchanged. Transitions ta j and t' a j are action transitions if the four following conditions are met: 1) ∀p h ∈P i , I p h , ta j ( )= 0 and ∀p l ∈P i , O ta j , p l ( ) = 0

2) ∃ p k ∈P g such that:

O dg ta j , p k ( ) = 0 and I dg p k , ta j ( )> 0 (ta j : removing transition) or:

∃ p' k ∈P g such that:
O dg t' a j , p' k ( ) > 0 and

I dg p' k , t' a j ( )= 0 (t' a j : returning transition) 3) O t' a j , p' i ( ) i =1 Pg ∑ = I p i , ta j ( ) i=1 Pg ∑ 4) p k or p' k is a stable place: ∃t ∈Ttim g such that I d p k , t ⎛ ⎝ ⎞ ⎠ > 0 and ∀ t ∈Timm g such that I d p k , t ( ) > 0 then I d p k , t ( ) = O d t, p k ( ) , p' k
must verify an equivalent relation. p k is then the input place of the removing action ta j , being denoted prem k j and p' k ,the output place of the returning transition t' a j , is denoted pret k j .

Authorization nets: An authorization net ends with one or several places enabling firing of transitions in the target net(s), authorization places. In this case, the target net is necessarily the initializing net. pau j ∈ P d is an authorization place of Nd if:

∀ t ∈T d such that I pau j , t ( ) = 0 then ∃ t j k ∈ T i ∪ T g ( ) such
that I pau j , t j k ( ) > 0 and O t j k , pau j ( ) = 0 ; t j k is then the authorized transition in Nc , it is denoted tau k j .

Activation nets: An activation net allows linking of dependency nets (i.e. synchronize the related interactions). It ends with a transition, synchronization transition, that sends one or several tokens in one or several other dependency nets (but does not remove tokens from these nets). ts j ∈T d is an activation transition if ∀ p m ∈P g I gd p m , ts j ( ) = 0 and if ∃ p k ∈ P g such that

O dg ts j , p k ( )> 0 .
Dynamic behavior: The generation, moving and absorption of the tokens has to be controlled while building up a dependency net so as to ensure that the resulting global net is bounded and live. Each token, generated upon dependency net initialization by the marking of an entry place must thus be removed either in the dependency net itself or through the effect on the target net. It is then necessary that as long as a dependency net place is marked, whatever the global marking, there is a transition that can be fired and that removes a token from this place. This condition must be formalized for the internal places of all types of dependency nets. Let P y be such that P y = P d for action and activation nets, P y = P d -P aut

{

} for authorization nets. The internal places and transitions of a dependency net must satisfy:

Every place has at least one transition that removes tokens: ∀ p ∈P y ∃ t ∈T d I p,t ( ) > 0 and O t, p ( ) = 0

If there exists an arc with multiplicity x from a place to a transition, there exist x-1 other arcs with multiplicity 1 to x-1, from the same place to x-1 other transitions with the same input and output as the preceding transition: ∀t ∈T d , and p ∈ P y with I p, t

( ) > 0 and O t, p ( ) = 0 if ∃ p' ∈P d such that I p, t
( ) = x, x ∈N then ∃ x transitions t j ∈T d such that I p' , t j ( ) = j, j = 1, ..., x , I p, t j ( )> 0 and

O t j , p ( ) = 0 .
All these transitions are independent internal transitions.

if there exists a test arc with multiplicity x between a place and a transition, there exist x-1 other arcs with multiplicity 1 to x-1, from the same place to x-1 other transitions with the same input and output as the preceding transition.

∀ p ∈P y and ∀ p ∈P y with I p, t

( ) > 0 and O t, p ( ) = 0, if ∃ p' ∈P such that I p' , t ( ) = O t, p' ( ) = x, then ∃ x transitions t j such that I p' , t i ( ) = O t j , p' ( ) = j, j = 1,..., x I p, t j ( )> 0 and O t j , p ( ) = 0 . if p' ∈P d , t is an independent transition, if p' ∉P d , t is a conditioned transition.
If there exists an inhibitor arc from a place to a transition then there must exist an arc from the same place to another transition. 

( ) = 0, then pa t i ( ) = 1 i =1 n ∑ . if p' ∈ P d , t is an independent transition, if p' ∉ P d , t is a conditioned transition.
In some situations, depending on the marking of the target net, the token must be removed by an absorbing transition it cannot be removed by the target or initializing net: 

Application to the duplex system

Let us consider a duplex system composed of two hardware computers (H1 and H2) and two identical software replicas: each replica is implemented on a computer. We assume semi-active replication [START_REF] Powell | Distributed Fault Tolerance: Lessons from Delta-4[END_REF]: the leader replica (L) processes all input messages and provides output messages while the follower replica (F) does not produce output messages. The internal state of F is updated by means of notifications from L completed by direct processing. Temporary faults in the software are tolerated by exception handling mechanisms associated with each replica, whereas the activation of permanent faults leads to restart the replica. To reduce system unavailability, after detection of an error due to a permanent fault in L, the software replicas switch their roles: processing is performed on the new leader before restarting the new follower. If L and F fail, L is restarted first. Also, in case of failure of the hardware hosting L (identified as H1), the replicas switch their roles; the computer hosting the new follower is then repaired. With respect to hardware repair policy when the two computers are in failure, we consider two assumptions: R1: the two computers share a single repairman and priority of is given to H1 and R2: two repairmen are available.

High level modeling

Interactions are directly related to the assumptions made about the components' behavior. Owing to the importance of the impact of temporary faults on the behavior of hardware and software components [START_REF] Dugan | System-level Reliability and Sensitivity Analysis for Three Fault-tolerant Architectures[END_REF][START_REF] Elmendorf | Fault-tolerant Programming[END_REF]12,[START_REF] Siewiorek | The Theory and Practice of Reliable System Design[END_REF], both permanent and temporary faults are considered in this example.

It is assumed that the activation of a fault may lead to e following dependencies: Following activation of a hardware fault: -an error due to the activation of a temporary fault in a hardware computer may propagate to the hosted software replica, -an error due to the activation of a permanent fault in a hardware computer leads to stopping the hosted software replica that is restarted after the end of hardware repair. Following activation of a software fault: owing to the notifications sent from the leader to the follower, an error in the leader due to a permanent fault -usually referred to as solid fault -may propagate to the follower (it is assumed that errors due to temporary faults -usually referred to as soft faults -are confined and do not propagate). Dependencies induced by fault tolerance and aintenance strategies are as follows: Between software replicas: dependency due to fault tolerance of permanent software faults, i.e., reconfiguration from F to L. Between hardware computers: dependency due to reconfiguration and repair. Between all components: coordination of fault tolerance and maintenance actions to form a global recovery strategy when several components are in failure.

These dependencies are summarized in table 2 gether with the names of the associated nets which are sed to build up the high level model of the duplex ystem. The latter is given in figure 2 where N Hard and Soft represent a computer and a software replica model espectively. The corresponding GSPNs are built up following the rules and formal description presented in Sections 2 and 3; they are successively given in the remainder of the section. (elimination rate δ s ), or perceived (perception rate ζ s ) in which case the software replica has to be restarted. The difference between these nets lies in that for ardware, temporary and permanent faults are ifferentiated by their respective consequences following ctivation, whereas for software, they can only be istinguished after specific processing [12].

Hardware and software component nets

.3. Error propagation nets

rom hardware to software: It is assumed that only ndetected errors and those due to temporary faults can propagate from a hardware computer to the hosted software replica. The error propagation net, shown in figure 4, is initialized by the marking of place Prop following the firing of transition 1-d h (undetected error) or of transition 1-p h (an error due to a temporary fault) in the hardware net (initializing net). With probability 1-p ph , the error is not propagated and with probability p ph it is. N Prop is an action net, whose effects on the software net (target net) are as follows:

• If the token is in S-ok, it is returned to S-e, the induced error is then processed in the same way as when the fault is activated without propagation (through λ s in figure 3-b). • If the token is in S-e, since a fault is already activated in the software, the probability of error detection may be reduced (d' s ≤d s ), if the errors are detected, the token is returned to S-d; if they are non detected (with probability 1-d' s ) the token is returned to S-nd. • If the token is in S-nd (an internal error is non detected in the replica) the propagated error and the internal error are detected with probability d" s (d" s ≤d' s , owing to the perturbation due to the first error) the token is returned to S-d; the errors remain undetected with 1d" s . • If the token is in S-d the propagated error can compromise error processing and prevent the recovery of an error due to a temporary fault. The internal and propagated errors are recovered with probability 1-p p (1-p p < 1-p s ). • If the token is in S-u, the software replica is already under restart, the token of N Prop is absorbed through tp-u and the token of N Soft is kept in S-u. rom L to F: The dependency net, the target net and the ffects on the target net are exactly the same but the itializing net is that of the software leader. It is assumed at only undetected errors in L and detected errors of L ue to permanent faults, can propagate. The error ropagation net is then initialized following the firing of -d s or p s . The probability of error propagation is p ps . t a higher modeling level, error propagation from L to F an be regarded as common mode failures.

L (or F) net H1 (or H2) net

.4. Software stop and restart net

Following a detected error or the perception of an ndetected error in an hardware computer, the hosted oftware replica is stopped and is restarted after repair of e hardware. We assume that the repair includes the eplica restart. The software stop and restart net (Figure ) is an action net, it is initialized by the marking of STP ollowing the firing of transition ξ h (perception of a non etected error due to a permanent fault) or d h (detection f an error due to a permanent fault). Transitions t1 to t5 emove the token from places S-ok, S-e, S-d, S-nd or S-u espectively. After repair of the hardware (including oftware restart), RST is marked and the token is returned S-ok. 

Hardware reconfiguration and repair net

As previously stated, we consider two different ssumptions: A1 assumes a single repairman, while A2 ssumes the presence of two repairmen. The orresponding nets are given in figure 6. Each net is omposed of two parts corresponding respectively to econfiguration (the shaded parts on the figures) and epair. They are grouped together because the econfiguration is automatically followed by a repair. ince the reconfiguration strategy is the same, the ssociated nets are the same. The two nets are commented gether and, when they are different, the figure number specified.

N Rep is initialized by the marking of H1F (respectively H2F) following the firing of d h , detection of an error due to a permanent fault or ζ h perception of an undetected error, in the hardware hosting L, H1 (respectively H2): • if H1F is marked, H1 is in failure (H1 is the initializer, H2 the target):

-if H2 is not in failure (REP2 not marked) switching is attempted, (β h ) and HSW is marked: 1) Switch can succeed with probability c h , place SSW is then marked, 2) It can fail with probability 1-c h , FSW is marked and switching is done manually2 (β m ), SSW is then marked; tex can be fired, places EX1, EX2 and REP2 are marked; tex1 and tex2 can be fired, they remove the token from H-u to H-ok, and from H-ok to H-u, F becomes the new leader, L the new follower and it can be restarted (REP2 is marked in figure 6-a for R1, H2F is marked in figure 6-b for R2),

-for R1: if H2 is in failure (REP2 marked): t2h is fired removing the token from REP2 to 2HF; tr2 can then be fired returning a token in REP1 and one in H2F in order to repair H1, then H2, (for R2: if H2 is in failure (H2F marked): repair of H1 and H2 are enabled; at the end of H2 repair, if H1 is still under repair H2 is restarted with the leader), • for R1 if H2F is marked: H2 is in failure (H2 is itializer and target): if H1 is not in failure (REP1 not arked), tf can be fired and REP2 is marked, authorizing e repair of H2; else the token stays in H2F until the end f H1 repair; repair of H2 in then allowed through the arking of REP2 (for R2: repair of H2 is enabled without ny condition on H1). or R1 and R2: if N Rep is initialed by H1 only, its is an ction, activation and an authorization net; when itialized by H2 only, it is an authorization net. If it is itialed by H1 then H2 (or H2 then H1) it is an uthorization net.

.6. Software reconfiguration net

The software reconfiguration net is given in figure 7 • if S2F is marked, F is in failure (F is initializer and target): if L is not in failure (RSTL not marked) transition tf can be fired and RSTF is marked, authorizing the restart of F; else the token stays in S2F until the end of L restart, restart of F is then allowed via RSTF marking.

If N Rec is initialed by L only, its is an action and an authorization net. If N Rec is initialized by F only, it is an authorization net. If N Rec is initialed by L then F (or F then L) it is an authorization net.

Global recovery strategy net

The global recovery strategy net is initialized by N Rep through F1H following the firing of tex. If F is in failure (RSTF marked) t2 removes the token from RSTF and deposits a token in RSTL and another one in S2F in order for L to be repaired first. If F is not in failure (RSTF not marked) transition t1 deposits a token in CSW in order that the roles of the follower and leader to be exchanged. N Strat is an action net if place RSTF is marked and an activation net if RSTF is not marked. 

Concluding remarks and global model

Due to lack of space the formal description of the previous nets is not presented. It can be checked that the hardware and the software GSPNs are live and bounded. With respect to dependency nets, verification of these roperties have to be done with the adjacent nets as dicated in figure 2, as follows N Prop has to be validated connected with N Hard and N Soft , (N' Prop is identical to N Prop ), N Stop has to be validated with N Hard and N Soft , N Rep has to be validated with two N Hard , N Rec has to be validated with N Soft , N Strat has to be validated with all the other nets (that have already been validated). The overall model obtained by replacing the blocks of igure 2 with their GSPNs given in figures 3 to 8 has been rocessed by SURF-2. The marking graph has 1200 arkings and the Markov chain 500 states without any tate aggregation due to symmetry.

It could be argued that the state space may be very rge for more complex systems, this is inherent to the omplexity of the system to be modeled and to the level f detail considered. The only difficulty due specifically our modeling approach is the number of markings; it an be overcome by using an aggregation technique at the SPN level to suppress immediate (see e.g. [1]).

Considering again the duplex system, taking into ccount the fact that the transition rates associated with rror detection and processing mechanisms are very high ompared to failure, repair and restart rates (the durations f error detection and processing is of the order of the econd whereas the intervals to failures are several undreds of hours), the model can be reduced to 9 states s shown in figure 9. This model is to be considered as a miting case allowing verification of the complete model this specific case.

2,1,1 2,0,1 2,1,0 2,0,0 1,1,0 1,0,1 1,0,0 0,0,0 ν λ sL λ sF β s •c s λ sLF ν λ sL β s •c s λ h •p h µ β h •c h β h •c h λ h •p h λ h •p h λ h •p h λ h •p h λ sF λ h •p h λ sL m,0,1 w•β m µ r•µ λ h •p h µ λ h •p h
λ sL = λ sF = p s • (λ s +(1-p h ) • λ h • pr h ) λ sLF = λ sL • pr s • p s r = 1 for repair policy R1 and r = 2 for R2 w = 1 assuming manual switch and w = 0 without manual switch • 2,1,1: proper service of the computers, L and F • 2,0,1: L is in failure • 2,1,0: F is in failure • 2,0,0: both L and F are in failure • 1,1,0: the computer hosting L is in failure • 1,0,1: the computer hosting F is in failure • 1,0,0: the compter hosting F, and L are in failure • m,0,1: failure of hardware switch, manual switch • 0,0,0: both computers are in failure 

Conclusion

This work presented in this paper has allowed various types of dependencies between hardware and software components of a fault-tolerant system to be identified. These dependencies may result from functional or structural interactions as well as interactions due to reconfiguration and maintenance strategies. The dependability model of the system is obtained by composition of the components models with those associated with the dependencies. The rules for interfacing the models have been clearly defined and formally described to build up easily validable system models. The formal description facilitates the composition of the various GSPNs.

The modeling approach has been illustrated by a simple example, including all the types of dependencies identified: the duplex system. Modeling of this system showed the strong dependency between components. For example: the activation of a temporary hardware fault, may propagate an error to the hosted software component, which in turn may propagate to other components communicating with it (without being necessarily on the same computer). Thus the activation of a hardware fault, may lead to the restart of one or more software components. Even if this has already been observed on real-life systems, it has not been modeled explicitly in previous work. Also, we have shown how the modification of one or several assumptions can be performed without modifying all GSPNs, considering two repair policies and two switching policies (with or without manual switch).

The main advantage of the modeling approach, based on considering explicitly the interactions, lies in its efficiency for modeling several alternatives for the same system. These alternatives may differ by their composition (number of computers or replicas) or the organization (distribution of software components onto the hardware) or by the fault tolerance and maintenance strategies. One can clearly identify from the beginning the components and interactions that are specific and those that are common to all alternatives. The GSPNs that are common are thus developed and validated only once.

This approach has been applied to the French Air Traffic Control system (the subset associated with the Flight Plan Processing and Radar Data Processing) in [START_REF] Gray | Why Do Computers Stop and What Can be Done About it ?[END_REF] where twelve alternative architectures have been modeled and their unavailability compared to identify the most suitable one. Based on these results, additional and more detailed architectures have been modeled in [START_REF] Béounes | SURF-2: A Program for Dependability Evaluation of Complex Hardware and Software systems[END_REF]. This pplication showed all the power of the modeling pproach with the explicit modeling of the interactions.
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 2 Figure 2: High level model of the duplex system

Figure 3

 3 Figure 3 gives the component nets. The hardware model is based on the following assumptions: • Faults are activated with rate λ h . • With probability p h the fault is permanent, (probability of a temporary fault (1-p h )). • The effects of an error due to a temporary fault are eliminated within a short time 1/δ h . • An error due to a permanent fault is either detected with probability d h , or non detected (1-d h ); error processing rate: τ h . • The effects of a permanent, non detected error may be perceived later (perception rate ζ h ). • The repair rate including software restart (following detection or perception of an error) is µ.

  ok: proper service without activated fault • S-e: activation of a fault • S-fd: end of error detection • S-nd: non detected error • S-d: detected error • S-ft: end of exception handling • S-u: detected or perceived error, software restart -b-N Soft
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 3 Figure 3: Hardware computer and software replica nets
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 6 Figure 6: Hardware reconfiguration and repair nets, N Rep
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 1 Notations

  ∀p ∈P if ∃t ∈T d such that I p, t Semantic validation consists of checking that the model represents the dependability of the system under validation; it requires comparing the system and the model behaviors with respect to variations of the underlying assumptions. Usually it is performed through sensitivity studies. Due to the scope of the paper, we concentrate on the structural validation. The rules for interfacing dependency and component nets and for managing the dynamic behavior allow us to obtain, by construction models that are structurally valid (i.e., live and bound).

	Structural
	validation is progressively done, starting from the
	component nets and gradually adding dependency nets.
	Identification of possible problems is thus easy. Also,
	these verifications can be achieved automatically by
	computation of place-and transition-invariants for
	checking necessary or sufficient conditions of liveliness
	and boundedness with a tool such as SURF-2 [3]
	developed at LAAS-CNRS.
	( ) ≥ 0 or

I p, t ( ) = -1then O t, p ( ) = 0 .

odel validation: verifications needed to each confidence in the model; they are usually grouped to two categories: syntactic and semantic validation 10]. Syntactic validation consists in checking that the odel represents the dependability of a system; it mainly cludes structural validations.

  . • An error due to a permanent fault is either detected with probability d h , or non detected (1-d h ); error processing rate: τ h . • The effects of a permanent, non detected error may be perceived later (perception rate ζ h ). • The repair rate including software restart (following detection or perception of an error) is µ.

				H-ok
		δ h		λ h	µ
				H-e
	1-	p	h		p h
			H-t	H-p
					τ	h
					H-fd
		1-	h d	ζ h	d h
				H-nd	H-u
	Timed transition		Immediate transition
	• H-ok: proper service without activated fault
	• H-e: activation of a fault
	• H-t: the error results from a temporary fault
	• H-p: the error results from a permanent fault
	• H-fd: end of error processing
	• H-u: detected or perceived error, hardware repair
	• H-nd: non detected error
				-a-N Hard
					Equivalent assumptions are made regarding the
					behavior of the software replicas:
					• Faults are activated with rate λ s .
					• An error is either detected with probability d s , or non
					detected (1-d s ); detection rate τ s .
					• The detected error is processed by means of exception
					handling mechanisms during a short time 1/π s . At the
					end of error processing, 1) if the fault is temporary
					(probability (1-p s )) its effects are eliminated and the
					software resumes its normal mode of operation, 2) if
					the fault is permanent (probability p s ); the software has
					to be restarted (rate: ν) to eliminate its effects.(1-p s )
					measures the efficiency of fault containment
					procedures [8, 11].
					• The effects of a non detected error may be
					eliminated

Other possible assumption: it can be assumed that the manual switch is not attempted. In this case, transition 1-c h leads to place 2HF (dashed arc in figure6-a); place FSW and transition β m have to be omitted.