N
N

N

HAL

open science

Dependability of Fault-Tolerant Systems - Explicit
Modeling of the Interactions Between Hardware and
Software Components

Karama Kanoun, Marie Borrel

» To cite this version:

Karama Kanoun, Marie Borrel. Dependability of Fault-Tolerant Systems - Explicit Modeling of the
Interactions Between Hardware and Software Components. 2nd Annual IEEE International Computer
Performance and Dependability Symposium (IPDS’96), 4-6 septembre 1996, pp.252-261, Sep 1996,
Urbana-Champaign, United States. hal-01976182

HAL Id: hal-01976182
https://laas.hal.science/hal-01976182
Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://laas.hal.science/hal-01976182
https://hal.archives-ouvertes.fr

2nd Annual IEEE International Computer Performance and Dependability Symposium (IPDS'96), Urbana-Champaign (USA), 4-6 septemb:
1996, pp.252-261

Dependability of Fault-Tolerant Systems — Explicit Modeling
of the Interactions Between Hardware and Software Components

Karama Kanoun and Marie Borrel

LAAS-CNRS
7, Avenue du Colonel Roche
31077 Toulouse Cedex - France

Abstract

his paper addresses the dependability modeling of
'ware and software fault-tolerant systems taking into
unt explicitly the interactions between the various
nonents. It presents a framework for modeling these
actions based on Generalized Stochastic Petri Nets
°Ns). The modeling approach is modular: the
wior of each component and each interaction is
esented by its own GSPN, while the system model is
ined by composition of these GSPNs. The
nosition rules are defined and formalized through
r identification of the interfaces between the
nonent and the dependency nets. In addition to
ularity, the formalism brings flexibility and re-
ility. This approach is applied to a simple, but still
esentative, example.

ntroduction

1 the context of computer system dependability, the
. for addressing simultaneously both hardware and
vare dependability aspects has now been recognized.
rever, even though a number of publications have
. devoted to the dependability of combined hardware
software systems (see e.g. [5, 6, 13, 14]), work on
aspects dealt with at the same time is not prevalent.
,, it 1s noteworthy that, when they are considered
ther for real-life systems, the interactions between the
ponents are not usually modeled explicitly (see e.g.
16,20]).
his paper addresses the dependability modeling of
ware and software fault-tolerant systems taking into
unt the interactions between the various components.
se interactions result for example from components
munications for functional purposes (i.e., functional
‘actions), or from the structure of the system, mainly
distribution of software components onto the
ware components (i.e., structural interactions), or
. fault tolerance and maintenance strategies

induce dependencies between at least two compone
that are usually stochastic in nature. As a result, systi
dependability cannot simply be obtained by combini
the dependability of its components. An overall mo
accounting for these dependencies is thus needed. C
aim is to model explicitly these dependencies so as
quantify their influence on system dependability. This
of prime importance during the design of a new system
while upgrading an already existing one. The desig;
can make different assumptions about the interactic
between the components and compare the dependabil
of the resulting alternative solutions through sensitiv
studies. As the nature of interactions is strongly linked
the modeling level considered and the assumptions mz
at the considered level, it is not possible to model all |
interactions that could take place for any fault-toler:
system. Rather, we define a framework for modeli
these interactions in a systematic way and, m
generally, we define a framework to build up the deper
ability model of a fault-tolerant system explicitly taki
into account these interactions. To do this, we follow
modular approach based on Generalized Stochastic Pe
Nets (GSPNs) due to their ability to handle modular
and hierarchy. Note that modular approaches usi
GSPNs or their offsprings are widely used (see e.g.,
18]). Our contribution lies in modeling the interactic
between hardware and software components and givin;
formal description of these dependencies.

The paper is organized in five sections: Section
presents the framework for modeling interactic
between hardware and software components. Sectior
gives a formal description of the various types
dependency nets while Section 4 illustrates the approz
on a duplex system with several interactions. Sectior
concludes.

2. Modeling Framework

The modeling approach consists in identifying, bas
on the analysis of the system's behavior, dependenc

\l or structural interactions or by interactions due to
>m reconfiguration and maintenance. Some examples
>pendencies due to these interactions are given in the
wing. Error propagation between two software com-
‘nts is an example of stochastic dependency resulting
| functional interactions (exchange of data or transfer
itermediate results from one component to another).
halting of the software activities following a perma-
failure of the hosting hardware is an example of
1astic dependency induced by a structural interaction.
ing of a single repairman by the two hardware com-
rs leads to a maintenance dependency whereas
ching from an active component (hardware or
vare) to a spare component following a permanent
re of the active component leads to a reconfiguration
ndency. In this paper, we consider interactions that
driven by events occurring in a component whose
rrence may impact the behavior of other components.
. high level model of the system is first derived based
1e previous analysis. It is made of blocks and arrows:
ck stands for the component model (component net)
dependency model (dependency net), and an arrow
vs the direction of the dependency. The system model
ws obtained by composition of the component and
ndency models. In a second step, each block is
iced with its detailed GSPN. To allow for a
>matic build up of dependency nets, rules that will

to be followed during model construction are
1ed. These rules manage the interfaces between the
ndency and component nets and are prerequisite for
ularity, hierarchical modeling and re-usability (re-
ility is a valuable concept when it comes to doing
itivity studies about certain assumptions regarding a
:m's behavior or when several alternative solutions
being considered). Also, these rules allow an easy
lation of the global model. In the rest of the section,
give the characteristics of the component and
ndency nets and present the various types of
ndency nets together with the rules that have to be
wed to build up the GSPNs.

1ponents nets: A component net represents the
wvior of a component as resulting from the activation
aults in this component and the subsequent error
essing, restart or repair actions. The assumptions
e and the degree of detail considered are usually
ed by the interactions with other components one
s to exploit (such as the consequences of non
cted errors or activation of temporary faults). A
ponent net is designed to be a standalone net with its
il marking, it is live and bounded. It can be
iected with dependency nets only following well de-

fined rules as explained hereafter; connections must 1
alter the initial structure of the component nets.

Dependency nets: A dependency net is linked to at le
two adjacent nets: an initializing and a target net t
could be component or dependency nets. To forma
describe dependency nets and to promote re-usability,
define as much common characteristics as possible. A
result, whatever is the kind of interaction modeled, all
dependency nets are initialized and interfaced with 1
adjacent nets following the same rules; they only differ
their effects on the target net. The common characterist
and the different effects on the target nets are introduc
in figure 1 where a hypothetical dependency net with
types of effects is given (the notations are introduced w
the formalism). They are summarized hereafter.

Initializing net Dependency net Target net
(ND) (Na) (Ng)

[i g

tin 4 ﬂ—,—»(’) pery 17: O premy,
8=+ action

Entry places t '% % ' O ore 9

tin 5 |]—> peny ' i

”j peng : ting

—>! : Q ‘Authorizatiol
Internal transitions “pay; % tauy;

ti i

Activation
—
tc tc i
&I tSj L]
_4 '
'-' - o o w w - FE B B -"
B=1 Immediate or timed transition Tests

Figure 1: Characteristics of dependency nets

Dependency net initialization

* A dependency net is initialized through the marking
one or more entry places by the initializing net(
following firing of initializing transitions in th
initializing net(s) (as interactions are event driven).

* The initial marking of the entry places is zero.

e When the initializing net is a component net, |
consequences of initializing transition(s) firing on
component behavior are modeled within
component net (marking of one or several inter
places) and an additional token is generated a
deposited in the entry place of the dependency net
activate the interaction.

e If the initializing net is a dependency net, the tok
deposited in the entry place could be either the ¢
generated when entering the initializing depender
net (corresponding to a series of success
interactions) or an additional one newly genera
(corresponding to the initialization in parallel of two
more interactions).

rnal transitions: The dependency net has internal
sitions (timed or instantaneous) whose firing may be
pendent from the marking of the adjacent nets
>pendent transitions) or conditioned by the marking
laces in the adjacent nets. A condition is modeled by
nhibitor arc or an arc from and towards the tested
2: the marking of this place is not changed. The
faces with the adjacent nets (excluding initializing

and effects on the target nets) are thus only
tituted by tests on the marking of specific places. An
nal transition could be absorbing (i.e., the tokens are
rbed).

cts on target nets: These effects are strongly related
1e type of interaction modeled. Thus, three such
>ts have been identified:

" the interaction consists in changing the state of
10ther component (the target net is necessarily a
»mponent), the effect at the GSPN level involves
'moval of a token from a stable place (i.e., a place
)llowed by timed transitions, this condition stems
om the fact that only stable places correspond to
ates of the components) in the target net and return
f the token to the same place or to another stable
lace of the target net (immediately or after firing
iternal transitions in the dependency net). This is
:ferred to as an action net.

“the interaction consists in performing or synchroniz-
\g reconfiguration or maintenance actions, the effects
>pend on the nature of the initializing net:

if the initializing net is a component net, the
interaction consists in coordinating the component
restart (or repair) action with the restart (or repair)
action of the components to which it is linked: it
requests permission before undertaking internal
actions, these actions are enabled by the dependency
net (immediately or after firing of internal
transitions). The target net is necessarily the same as
the initializing net. At the GSPN level, the effect
consists of enabling a transition in the component net
through the marking of a place in the dependency
net. Since the component net is a standalone net, this
means that, in the component net, this transition has
also to be enabled by the marking of at least an
internal place. This is an authorization net,

if the initializing net is a dependency net, the interac-
tion consists in activating another interaction with
other linked components; at the GSPN level, this
consists of initializing another dependency net by de-
positing a token in its entry place following the firing
of an initializing transition in the initializing
dependency net. As previously stated, depending on

additional one, both dependency nets run in paral
or in series. This is an activation net.

The previous rules are intended to manage the sta
links between dependency and adjacent nets. Furtl
rules have to be considered to control the dynar
behavior of the nets (i.e., the tokens generation and th
flow). They are given together with the formalism in
next section. Note that model construction is an iterat
process with information flow in both directions from
dependency nets to/from components nets: in |
component models, care should be taken to inclt
potential dependencies.

Interaction origin and dependency net type: T
interactions have been attributed to three possible origi
functional, structural and those due to system
configuration and maintenance. Functional and structu
interactions are usually accompanied by a state chan
the associated nets are thus action nets. Dependencies ¢
to reconfiguration and maintenance may induce a st
change and they could be any kind of dependency net.
3. Nets formalization and validation

The aim of this section is to give a formal descripti
of the various rules introduced in the previous section a
to address model validation. We first give the m
notations, the other notations being defined in table 1.

General Notations
penj € By Entry place (EP) of Nd.

tinj eT; Transition of Ni that initializes Nd by marking an El
Mlj Initializing marking of a dependency net

tij €Ty Internal independent transition in Nd

tey €Ty Internal conditioned transition in Nd

Interfaces for an action net

taj’f a; €T, Removing and returning action transitions in Nd

premi, €T, | Input place in Ng of the removing action trans.a;

prety, €T, Output place in Ng of the returning action trans.t' ¢

Interfaces for an authorization net
pauj € | Authorization place of Nd

Interfaces for an activation net
| tsg €Ty | Activation transition of Nd

Table 1: Notations
Let Ni, Nd and Ng denote respectively an initializing
dependency, and a target net, and let Nx be any of th
nets (x = i, d, g). Nx = (P, T¢.Iy,Oy, pry, pay) Where:

e P, is the set of places of Nx,.

* T, =Ttim, U Timm, is the set of transitions of Nx: Tt
is the set of timed transitions and Timm, is the set
immediate transitions.

* Iy : Py xT, =N U{-1} is the input function,

v: Ty x Pc =N 1is the output function (N is the set of
atural integers).

ry the set of timed transitions rates, pa, the set of
ring probabilities of immediate transitions.

he set of places and transitions are such that:
Pi=0, BRNP=T, ENP=0, TNT=0,
T, =@ andTy NTy =&

he interfaces of a dependency net Nd with an
ilizing net Ni and a target net Ng are the input and
ut functions, iz, Iyg, Ojq, Oqq , that connect places
transitions of Nd to places and transitions of Ni or
These functions are defined as follows:

d: B xTy—=NU{-1} Ijg: PuxTyg— NU{-1}

va: T xBp— N Odg : Ty x Pg— N

vhen it is not necessary to distinguish between
ilizing and target nets, indices i, d, g are omitted.

alization: Initializing transitions, entry places and
initializing marking of a dependency net Nd are
1ed as follows: let sn; €T and p, €P, such that
inj,pk)> 0, Id,-(pk ,tinj) =0, if Vp, €B,,p, = p;, Wwe have
1.tin;)= 0 then #in; is an initializing transition of Nd
pr 18 an entry place of Nd, denoted pen,. An entry
> can be initialized by several transitions. In order for
msition rin; of a net Ni to be fired, one must have:
€P Iy(pating) = 0= Mi,(p,) = Ly pyin;) (Mi,: Nd
ilizing marking) and I,»d(Pmoting)=-1 = Mi,(p,)=0".

rnal transitions: Internal transitions of a dependency
>an be independent or conditioned by the marking of
>s in adjacent nets. They are defined as follows:

i €T, 1is an independent transition if V p, such that

Pisti;)>0 or Olti;,p)>0 then pe B, I=1,,0=0,.

r €ET; 1is a conditioned transition if the two

)llowing conditions are verified:

) 3dp; € (PgU E) such that:
I(pj, tck) = O(tck,pj) >0 or I(pj, tck) =-1

) Vp, E(RUP such that I(p,, tc,)>0 or
O(tck, p,,) >0 then I(pn, tck)= O(tck, pn).

.n internal transition can be an absorption transition.

ndependent or a conditioned transition #i; or fc;j is an

rption transition if: V p, €P, O(tij, pn) =0 or

'j,pn)z 0 with P=(P,uPUR).

on nets: An action net ends with a transition which
es a token to be removed from a stable place of the
:t net and to be returned to the same or another stable
> of the same net. Removal and return can be done
1gh two distinct transitions (with internal transitions

r,t)z 0 =>Mnx(p) = I(p,t) means that there must be enough
ens in all the input places of t to enable it.

v A 1 M (0 N maanc that if thara ic an inhikhitar aes

and places between them) or through the same transitic
The number of tokens in the target net rema
unchanged. Transitions ; and 7 a; are action transitic

if the four following conditions are met:
1) Vp, P, I(ph,taj)=0 and Vp, €P, O(taj,pl) =0
2) Ap; EP, such that: Odg(ta Pk) =0 a
Idg(Pk » taj)> 0(taj: removing transition)
Ap'y EPg such that: Odg(t' aj,pk)>0 a
Idg(Pr.ta j) =0(7 aj: returning transition)
[P.] |7 |
3) EO(f aj,p',-) = El(p,»,taj)
i=1 i=1
4) pr or p'y is a stable place: 3rETrimg such t
Iq(pk ~t)>0 and VrETimmg such that Li(px. 1):
then I4(px. 1) = 04(t. pr)» Pk must verify
equivalent relation.
pr 1s then the input place of the removing action ¢
being denoted premj; and p'y the output place of |
returning transition 7 a; , is denoted prery -

Authorization nets: An authorization net ends with ¢
or several places enabling firing of transitions in
target net(s), authorization places. In this case, the tar;
net is necessarily the initializing net.

pauj € Py 18 an authorization place of Nd if:

V t€T, such that I(pauj,t)=0 then 3¢, € (T,UY;,) St
that I(pauj,tjk)>0 and O tjk,pauj) =0; tj, is then
authorized transition in Nc, it is denoted rauy je

Activation nets: An activation net allows linking
dependency nets (i.e. synchronize the rela
interactions). It ends with a transition, synchronizati
transition, that sends one or several tokens in one
several other dependency nets (but does not remc
tokens from these nets). 7s; ET; is an activation transiti
if Vp,€P, Igd(pm,tsj)=0 and if 3p, €R such t
Ogeltsj,pr)>0.

Dynamic behavior: The generation, moving 2
absorption of the tokens has to be controlled wh
building up a dependency net so as to ensure that 1
resulting global net is bounded and live. Each tok
generated upon dependency net initialization by
marking of an entry place must thus be removed either
the dependency net itself or through the effect on
target net. It is then necessary that as long as
dependency net place is marked, whatever the glol
marking, there is a transition that can be fired and t
removes a token from this place. This condition must
formalized for the internal places of all types
dependency nets.

Let P, be such that P, =P, for action and activati
nets, P,={P; - P,,} for authorization nets. The inter

very place has at least one transition that removes
kens: V¥ p€P,Ar€T, |(p.t)>0 and O(r, p) = 0

“there exists an arc with multiplicity x from a place to
transition, there exist x-1 other arcs with multiplicity
to x-1, from the same place to x-1 other transitions
1th the same input and output as the preceding
ansition:

/ter,, and pepP, with I(p,rf)>0 and O(r,p)=0if
p€P, such that I(p,r)=x, xEN then Ix transitions
€7, such that I(p',tj) =j,j=1..x, I(p,tj)>0 and
(1.0) =0.

Il these transitions are independent internal

ansitions.

“there exists a test arc with multiplicity x between a
lace and a transition, there exist x-1 other arcs with
wltiplicity 1 to x-1, from the same place to x-1 other
ansitions with the same input and output as the
receding transition.

/pepP, and Vpep, with I(p,s)>0and O(t,p) =0, if
pEP such that I(p'.1)=0(t,p')=x, then 3x
ansitions ¢; such that I(p',ti)=0(tj,ﬁ)=j,j= L...x
:p,tj)> 0 and O(Ij ,p) =0.

p'€P,, t is an independent transition, if p' &P, ¢ is a
»nditioned transition.

" there exists an inhibitor arc from a place to a
ansition then there must exist an arc from the same
lace to another transition.

t €Ty and pe P, with I(p,)>0and O(r,p) =0, if IpeP
ich that I(p,r)=-1, then 3¢ such that 1(p',7)=0,
p.t)>0and Of ,p) =0.

' p'E€PRy, t 1s an independent transition, if p' &Py, ¢ is
conditioned transition.

he sum of firing probabilities of immediate
ansitions in conflict is always equal to 1:
p €py, if there are {tl...ti ...tu} C Timmyg such that
p.1;)>0,and Vp' such that Iy ,7—,)=constant and

n

:p',ti#) =0, then E pa(ti) =1.
=

p'€PFy, t is an independent transition, if p'%Pd, t
a conditioned transition.

1 some situations, depending on the marking of the
rget net, the token must be removed by an absorbing
ansition if it cannot be removed by the target or
itializing net: Vp epP if 3:r€T; such that|1(p.1)=0 or
p.t) = -1then O(1,p) =0.

lel validation: Several verifications are needed to
n confidence in the model; they are usually grouped
two categories: syntactic and semantic validation
. Syntactic validation consists in checking that the
el represents the dependability of a system; it mainly

consists of checking that the model represents
dependability of the system under validation; it requi
comparing the system and the model behaviors w
respect to variations of the underlying assumptio
Usually it is performed through sensitivity studies. Due
the scope of the paper, we concentrate on the structu
validation. The rules for interfacing dependency a
component nets and for managing the dynamic behav
allow us to obtain, by construction models that :
structurally valid (i.e., live and bound). Structu
validation is progressively done, starting from
component nets and gradually adding dependency n¢
Identification of possible problems is thus easy. Al
these verifications can be achieved automatically
computation of place- and transition-invariants

checking necessary or sufficient conditions of livelin
and boundedness with a tool such as SURF-2

developed at LAAS-CNRS.

4. Application to the duplex system

Let us consider a duplex system composed of t
hardware computers (H1 and H2) and two identi
software replicas: each replica is implemented on
computer. We assume semi-active replication [17]: 1
leader replica (L) processes all input messages a
provides output messages while the follower replica |
does not produce output messages. The internal state o
is updated by means of notifications from L completed
direct processing. Temporary faults in the software :
tolerated by exception handling mechanisms associas
with each replica, whereas the activation of perman
faults leads to restart the replica. To reduce syst
unavailability, after detection of an error due to
permanent fault in L, the software replicas switch th
roles: processing is performed on the new leader beft
restarting the new follower. If L and F fail, L is restar
first. Also, in case of failure of the hardware hosting
(identified as H1), the replicas switch their roles; !
computer hosting the new follower is then repaired. W
respect to hardware repair policy when the two comput
are in failure, we consider two assumptions: R1: the t
computers share a single repairman and priority of
given to H1 and R2: two repairmen are available.

4.1. High level modeling

Interactions are directly related to the assumptic
made about the components' behavior. Owing to
importance of the impact of temporary faults on
behavior of hardware and software components [7, 8,
19], both permanent and temporary faults are consider
in this example.

. 1s assumed that the activation of a fault may lead to
ollowing dependencies:

ollowing activation of a hardware fault:

an error due to the activation of a temporary fault in a
hardware computer may propagate to the hosted
software replica,

an error due to the activation of a permanent fault in
a hardware computer leads to stopping the hosted
software replica that is restarted after the end of
hardware repair.

ollowing activation of a software fault: owing to the
otifications sent from the leader to the follower, an
ror in the leader due to a permanent fault — usually
'ferred to as solid fault — may propagate to the
llower (it is assumed that errors due to temporary
wlts — usually referred to as soft faults — are
»nfined and do not propagate).
)ependencies induced by fault
itenance strategies are as follows:
etween software replicas: dependency due to fault
lerance of permanent software faults, i.e.,
:configuration from F to L.

etween hardware computers: dependency due to
:configuration and repair.

etween all components: coordination of fault
lerance and maintenance actions to form a global
covery strategy when several components are in
ilure.

tolerance and

hese dependencies are summarized in table 2
ther with the names of the associated nets which are

to build up the high level model of the duplex
'm. The latter is given in figure 2 where Nyarq and
1 represent a computer and a software replica model

>ctively.
Prop models propagation of a hardware error to the
hosted software replica
Stop models software stop after activation of a
permanent fault in the hosting hardware
"Pmp models propagation of a software error
hep models hardware reconfiguration and repair
Rec models software reconfiguration
Strat models the global recovery strategy
Table 2: Dependency nets
NHard (H1)[<+— NHep InEL NHard (H2)
AR \ AR
N | [Ny |[Mo |
iy A/
Ngort (L) [—2 Nig Nsor (F)

Fionre 2 Hioch level madel af the dunlex cuetem

The corresponding GSPNs are built up following

rules and formal description presented in Sections 2 a
3; they are successively given in the remainder of 1
section.

4.2. Hardware and software component nets

Figure 3 gives the component nets. The hardw:

model is based on the following assumptions:

Faults are activated with rate Ap,.

With probability py the fault is permanent, (probabil
of a temporary fault (1-pp)).

The effects of an error due to a temporary fault
eliminated within a short time 1/0p.

An error due to a permanent fault is either detec
with probability dp, or non detected (1-dp); er

processing rate: T.

The effects of a permanent, non detected error may
perceived later (perception rate Cp).

The repair rate including software restart (follow:
detection or perception of an error) is W.

Equivalent assumptions are made regarding |

behavior of the software replicas:

Faults are activated with rate Ag.

An error is either detected with probability dg, or n
detected (1-dy); detection rate Tg.

The detected error is processed by means of excepti
handling mechanisms during a short time 1/mg. At
end of error processing, 1) if the fault is tempor:
(probability (1-pg)) its effects are eliminated and
software resumes its normal mode of operation, 2)
the fault is permanent (probability ps); the software 1
to be restarted (rate: v) to eliminate its effects.(1-

measures the efficiency of fault containm
procedures [8, 11].
The effects of a non detected error may

eliminated

= Timed transition — Immediate transition
+ H-ok: proper service without activated fault
+ H-e: activation of a fault
+ H-t: the error results from a temporary fault
+ H-p: the error results from a permanent fault
+ H-fd: end of error processing
+ H-u: detected or perceived error, hardware repair
+ H-nd: non detected error

-a- NHard

e

-65 5

A
T
S

f
i

e e,
—69 (9
1p
1P
L, o p,
o

+ S-ok: proper service without activated fault

+ S-e: activation of a fault

+ S-fd: end of error detection

+ S-nd: non detected error

+ S-d: detected error

+ S-ft: end of exception handling

+ S-u: detected or perceived error, software restart

'b' NSOﬁ

‘igure 3: Hardware computer and software replica nets

:limination rate dg), or perceived (perception rate Cg)
1 which case the software replica has to be restarted.
he difference between these nets lies in that for
ware, temporary and permanent faults are
rentiated by their respective consequences following
ration, whereas for software, they can only be
nguished after specific processing [12].

Error propagation nets

n hardware to software: It is assumed that only

propagate from a hardware computer to the hos
software replica. The error propagation net, shown
figure 4, is initialized by the marking of place Pi
following the firing of transition 1-dy (undetected err

or of transition 1-pp (an error due to a temporary fault)
the hardware net (initializing net). With probability 1-p
the error is not propagated and with probability ppp it
Nprop 18 an action net, whose effects on the software |

(target net) are as follows:

If the token is in S-oKk, it is returned to S-e, the induc
error is then processed in the same way as when
fault is activated without propagation (through Ag
figure 3-b).

If the token is in S-e, since a fault is already activas
in the software, the probability of error detection nr
be reduced (d's=dy), if the errors are detected, the tok
is returned to S-d; if they are non detected (w
probability 1-d's) the token is returned to S-nd.

If the token is in S-nd (an internal error is non detec
in the replica) the propagated error and the inter
error are detected with probability d"s (d"¢=d's, owi
to the perturbation due to the first error) the token
returned to S-d; the errors remain undetected with
d"s.

If the token is in S-d the propagated error «
compromise error processing and prevent the recove
of an error due to a temporary fault. The internal a
propagated errors are recovered with probability 1-
(1-pp < 1-ps).

If the token is in S-u, the software replica is alrea
under restart, the token of Nprop is absorbed throu
tp-u and the token of Ngf; is kept in S-u.

H1 (or H2) net L (or F) ne
Niarg Nsort
1-ph :
1-d; :
¥
L[]
¥
¥
L[]
¥
¥
L[] i
' dIIS \
¥ I
T
L[] tp-nd ot
\ P g 9[L, ik
\ tp-u
\ '_i'D 'l
[SN — §

Entry places and initializing arcs are indicated in bold

Figure 4: Error propagation net, Npyp

n L to F: The dependency net, the target net and the
>ts on the target net are exactly the same but the
ilizing net is that of the software leader. It is assumed
only undetected errors in L and detected errors of L
to permanent faults, can propagate. The error
agation net is then initialized following the firing of
or ps. The probability of error propagation is pps.
higher modeling level, error propagation from L to F
se regarded as common mode failures.

Software stop and restart net

ollowing a detected error or the perception of an
stected error in an hardware computer, the hosted
vare replica is stopped and is restarted after repair of
hardware. We assume that the repair includes the
ca restart. The software stop and restart net (Figure
an action net, it is initialized by the marking of STP
wing the firing of transition &y (perception of a non
cted error due to a permanent fault) or dy (detection

1 error due to a permanent fault). Transitions tl to t5
yve the token from places S-ok, S-e, S-d, S-nd or S-u
cctively. After repair of the hardware (including
vare restart), RST is marked and the token is returned
-ok.

S rrrraaaa o\
’: N l: ok

L]
H1 (or H2) net , 7] 3 L (or F) net
S-
NHard \]tZ : ° NSoft

L]
L]
\
L]

th]ts S-d

hi]m .
ﬁ] . : Su

I L]

L e

Figure 5: Software stop and restart, Ngp
Hardware reconfiguration and repair net

s previously stated, we consider two different
mptions: Al assumes a single repairman, while A2
mes the presence of two repairmen. The
>sponding nets are given in figure 6. Each net is
posed of two parts corresponding respectively to
nfiguration (the shaded parts on the figures) and
ir. They are grouped together because the
nfiguration is automatically followed by a repair.
e the reconfiguration strategy is the same, the
ciated nets are the same. The two nets are commented
ther and, when they are different, the figure number
ecified.

NRep is initialized by the marking of H
(respectively H2F) following the firing of dy,, detection
an error due to a permanent fault or T, perception of
undetected error, in the hardware hosting L,
(respectively H2):

e if HIF is marked, H1 is in failure (H1 is the initializ

H?2 the target):

- if H2 is not in failure (REP2 not marked) switching
attempted, (Br) and HSW is marked:
1) Switch can succeed with probability cp, ple
SSW is then marked,

[R e R e R R R R R

H-ok < # H-ok
° T 4 text texz: °

tex 1 By :
H-u i“ i I

[
’
]
[
’
[
[
’
]
[

tr2

-a- R1: with a single repairman

R I I R I eyl

tex2 Ho

i
o

[}
H-L

PR N N N AR e e e e e e |

-b- R2: with two repairmen

Figure 6: Hardware reconfiguration and repair nets, Ng,,

2) It can fail with probability 1-cp, FSW is mark
and switching is done manually? (By,), SSW
then marked; tex can be fired, places EXI1, E
and REP2 are marked; texl and tex2 can
fired, they remove the token from H-u to H-
and from H-ok to H-u, F becomes the n
leader, L the new follower and it can be restar!
(REP2 is marked in figure 6-a for R1, H2F
marked in figure 6-b for R2),

2 Other possible assumption: it can be assumed that the man

switch is not attempted. In this case, transition 1-cy, leads to pl
AL (Adaclhhad nwn ta Finsiaea £ oo calana DOWT and tannmaitina R .

for R1: if H2 is in failure (REP2 marked): t2h is fired
removing the token from REP2 to 2HF; tr2 can then
be fired returning a token in REP1 and one in H2F in
order to repair H1, then H2, (for R2: if H2 is in
failure (H2F marked): repair of HI and H2 are
enabled; at the end of H2 repair, if H1 is still under
repair H2 is restarted with the leader),

for R1 if H2F is marked: H2 is in failure (H2 is
ilizer and target): if H1 is not in failure (REP1 not
<ed), tf can be fired and REP2 is marked, authorizing
epair of H2; else the token stays in H2F until the end
[1 repair; repair of H2 in then allowed through the
<ing of REP2 (for R2: repair of H2 is enabled without
condition on H1).
R1 and R2: if Ngep is initialed by H1 only, its is an
m, activation and an authorization net; when
ilized by H2 only, it is an authorization net. If it is
illed by HI then H2 (or H2 then HI1) it is an
orization net.

Software reconfiguration net

he software reconfiguration net is given in figure 7.
initialized by the marking of S1F (respectively S2F)
wing the firing of transition ps, a detected error due
permanent fault or perception of an undetected error

(respectively F):

'S1F is marked, L is in failure (L is the initializer and
the target):

if F is not in failure (RSTF not marked) switching is
attempted (Bs) and SWS is marked.

1) Switch can succeed with probability cg, places
EXL, EXF and RSTF are then marked. Marking
of EXL allows firing of tex that removes the
token from S-u to S-ok in L. Marking of EXF
allows the firing of one of transitions tl to t4
that removes the token in the leader net from
places S-ok, S-e, S-d or S-nd and return it to S-u.
Marking of RSTF enables transition v (in F) to
restart it.

2) Switch can fail with probability 1-cg, places EXF
and 2SF are then marked. Marking of 2SF allows
transition tr2 firing that marks places RSTL and
S2F. Marking of place RSTL enables transition v
in the leader to restart it. Marking of S2F allows
the follower restart only after the end of the
leader restart.

if F is in failure (RSTF marked) t2s is fired and 2SF
is marked allowing the firing of tr2 that marks RSTL
and S2F. Marking of place RSTL enables transition v
in the leader to restart it. Marking of S2F allows the
restart of F only after the end of the leader restart.

Figure 7: Software reconfiguration net, N,

e if S2F is marked, F is in failure (F is initializer a
target): if L is not in failure (RSTL not marks
transition tf can be fired and RSTF is mark
authorizing the restart of F; else the token stays in S
until the end of L restart, restart of F is then allow
via RSTF marking.

If NRgecis initialed by L only, its is an action and
authorization net. If Ng, is initialized by F only, it is
authorization net. If Ng, is initialed by L then F (o1
then L) it is an authorization net.

4.7. Global recovery strategy net

The global recovery strategy net is initialized by N,
through F1H following the firing of tex. If F is in faili
(RSTF marked) t2 removes the token from RSTF a
deposits a token in RSTL and another one in S2F in or«
for L to be repaired first. If F is not in failure (RSTF 1
marked) transition tl deposits a token in CSW in or
that the roles of the follower and leader to be exchange:
Nsirqr 1s an action net if place RSTF is marked and

activation net if RSTF is not marked.

l:ln t2
.“$ ““““ % .%,‘. —

Ssw RSTL SoF RSTF Nreo

Frorox oo
F

Figure 8: Global recovery strategy net, N qr
4.8. Concluding remarks and global model

Due to lack of space the formal description of
previous nets is not presented. It can be checked that |
hardware and the software GSPNs are live and bounds

xxTe.1 e . ~

erties have to be done with the adjacent nets as
sated in figure 2, as follows

Prop has to be validated connected with Nyarg and
Soft, (N'Prop s identical to Nprop),

Stop has to be validated with Nyarg and Ngoft,

Rep has to be validated with two Nyard,

Rec has to be validated with Ngt,

‘strat has to be validated with all the other nets (that
ave already been validated).

he overall model obtained by replacing the blocks of
‘e 2 with their GSPNs given in figures 3 to 8 has been
essed by SURF-2. The marking graph has 1200
<ings and the Markov chain 500 states without any
aggregation due to symmetry.

. could be argued that the state space may be very
> for more complex systems, this is inherent to the
plexity of the system to be modeled and to the level
etail considered. The only difficulty due specifically
ar modeling approach is the number of markings; it
e overcome by using an aggregation technique at the
N level to suppress immediate (see e.g. [1]).
‘onsidering again the duplex system, taking into
unt the fact that the transition rates associated with
- detection and processing mechanisms are very high
pared to failure, repair and restart rates (the durations
rror detection and processing is of the order of the
nd whereas the intervals to failures are several
Ireds of hours), the model can be reduced to 9 states
1own in figure 9. This model is to be considered as a
ing case allowing verification of the complete model
is specific case.

= hsF = Ps * (As+(1-pn) * An ¢ prh)

:=AsL* Prs * Ps
for repair policy R1 and r = 2 for R2
1 assuming manual switch and w = 0 without manual switch

’,1,1: proper service of the computers, L and F
2,0,1: Lis in failure

2,1,0: Fis in failure

2,0,0: both L and F are in failure

,1,0: the computer hosting L is in failure

,0,1: the computer hosting F is in failure

,0,0: the compter hosting F, and L are in failure
n,0,1: failure of hardware switch, manual switch
),0,0: both computers are in failure

Figure 9: Reduced Markov chain of the duplex system

5. Conclusion

This work presented in this paper has allowed varic
types of dependencies between hardware and softw:
components of a fault-tolerant system to be identifi
These dependencies may result from functional
structural interactions as well as interactions due
reconfiguration and maintenance strategies. 1
dependability model of the system is obtained
composition of the components models with the
associated with the dependencies. The rules
interfacing the models have been clearly defined a
formally described to build up easily validable syst
models. The formal description facilitates
composition of the various GSPNs.

The modeling approach has been illustrated by
simple example, including all the types of dependenc
identified: the duplex system. Modeling of this syst
showed the strong dependency between components. I
example: the activation of a temporary hardware fa
may propagate an error to the hosted softw:
component, which in turn may propagate to ofl
components communicating with it (without bei
necessarily on the same computer). Thus the activation
a hardware fault, may lead to the restart of one or m«
software components. Even if this has already be
observed on real-life systems, it has not been mode
explicitly in previous work. Also, we have shown h
the modification of one or several assumptions can
performed without modifying all GSPNs, considering t
repair policies and two switching policies (with
without manual switch).

The main advantage of the modeling approach, bas
on considering explicitly the interactions, lies in
efficiency for modeling several alternatives for the sa
system. These alternatives may differ by th
composition (number of computers or replicas) or
organization (distribution of software components or
the hardware) or by the fault tolerance and maintenar
strategies. One can clearly identify from the beginni
the components and interactions that are specific a
those that are common to all alternatives. The GSPNs t/
are common are thus developed and validated only onc:

This approach has been applied to the French .
Traffic Control system (the subset associated with
Flight Plan Processing and Radar Data Processing) in
where twelve alternative architectures have been mode.
and their unavailability compared to identify the m
suitable one. Based on these results, additional and m«
detailed architectures have been modeled in [4]. T

ication showed all the power of the modeling
oach with the explicit modeling of the interactions.

nowledgments

he work presented in this paper has been partially
orted by the French Civil Aviation Authority and SRTI
TEM while Marie Borrel was with SRTI SYSTEM and by
Zuropean Commission through the OLOS Network (A
tic approach to the dependability analysis and evaluation
ntrol systems involving hardware, software and human
rces).

erences

H. H. Ammar, Y. F. Huang and R. W. Liu, “Hierarchical
Models for Systems Reliability, Maintainability, and
Availability”, IEEE Trans. on Circuits and Syst., CAS-
34 (6), pp- 629-38, 1987.

G. Balbo, “On the Success of Stochastic Petri Nets”, in
6th International Workshop on Petri Nets and Per-
formance Models, (Durham, NC, USA), pp. 2-9, 1995.

C. Béounes, M. Aguéra, J. Arlat, S. Bachman, C.
Bourdeau, J. E. Doucet, K. Kanoun, J.-C. Laprie, S.
Metge, J. Moreira de Souza, D. Powell and P. Spiesser,
“SURF-2: A Program for Dependability Evaluation of
Complex Hardware and Software systems”, in 23rd
IEEE Int. Symp. Fault-Tolerant Computing, (Toulouse,
France), pp. 668-73, 1993.

M. Borrel, Interactions between Hardware and Software
Components: Characterization, Formalization and
Modeling — Application to CAUTRA Dependability,
PhD Dissertation, N°96-001, In French, 1996.

A. Costes, C. Landrault and J.-C. Laprie, “Reliability and
Availability Models for Maintained Systems Featuring
Hardware Failures and Design Faults”, IEEE Trans. on
Computers, C-27 (6), pp. 548-60, 1978.

J. B. Dugan and M. Lyu, “System-level Reliability and
Sensitivity ~ Analysis for Three Fault-tolerant
Architectures”, in 4th IFIP Int. Conference on
Dependable Computing for Critical Applications, (San
Diego), pp- 295-307, 1994.

W. R. Elmendorf, “Fault-tolerant Programming”, in 2nd
IEEE Int Symp. Fault-Tolerant Computing, (Newton,
Massashusetts), pp. 79-83, 1972.

J. Gray, “Why Do Computers Stop and What Can be
Done About it ?”, in 5th Int. Symp. on Reliability in
Distributed Software and Database Systems, (Los
Angeles, CA), pp. 3-12, 1986.

K. Kanoun, M. Borrel, T. Moreteveille and A. Peytavin,
“Modeling the Dependability of CAUTRA, a Subset of
the French Air Traffic Control System”, in 26th Int.
Symp. Fault-Tolerant Computing (FTCS-26), (Sendai,
Japan), pp. LAAS-Report, 95-515, 1996.

J.-C. Laprie, “Trustable Evaluation of Computer Systems
Dependability”, in Applied Mathematics and
Performance/Reliability Models of Computer/ Com-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.-C. Laprie (Ed.), Dependability: Basic Concepts ¢
Terminology, Dependable Computing and Fault-Toler
Systems, 5, 265 p. , Springer Verlag, Wien-New Yc
1992.

J-C. Laprie, “On The Temporary Character
Operation-persistent Software Faults”, in 4th Int. Syr
on Software Reliability Engineering, (Denver, Colorad
pp. 125, 1993.

J.-C. Laprie and K. Kanoun, “X-ware Reliability ¢
Availability Modeling”, IEEE Trans. on Softw
Engineering, SE-18 (2), pp. 130-47, 1992.

J.-C. Laprie, K. Kanoun, C. Béounes and M. Kaanic
“The KAT (Knowledge-Action-Transformati
Approach to the Modeling and Evaluation of Reliabi.
and Availability Growth”, IEEE Trans. Softw
Engineering, SE-17 (4), pp. 370-82, 1991.

J. K. Muppala, A. Sathaye, R. Howe, C and K.
Trivedi, “Dependability Modeling of a Heterogene«
VAX-cluster System Using Stochastic Reward Nets”.
Hardware and Software Fault Tolerance in Para
Computing Systems (D.Avresky, Ed.), pp. 33-59, 1992

P. I. Pignal, “An Analysis of Hardware and Softw
Availability =~ Exemplified on the IBM-37
Communication Controller”, IBM Journal of Resea
and Development, 32 (2), pp. 268-78, 1988.

D. Powell, “Distributed Fault Tolerance: Lessons fr
Delta-4”, IEEE Micro, 14 (1), pp. 36-47, 1994.

W. Sanders and J. Meyer, “Reduced Base Mo
Construction Methods for Stochastic Activ
Networks”, IEEE Trans. on Selected Areas
Communications, 9 (1), pp. 25-36, 1991.

D. P. Siewiorek and R. S. Swarz, The Theory ¢
Practice of Reliable System Design, Digital Press, 199

G. E. Stark, “Dependability Evaluation of Integra
Hardware/Software Systems”, [EEE Trans.
Reliability, R-36 (4), pp. 440-4, 1987.

