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Abstract 

This paper addresses the dependability modeling of 
hardware and software fault-tolerant systems taking into 
account explicitly the interactions between the various 
components. It presents a framework for modeling these 
interactions based on Generalized Stochastic Petri Nets 
(GSPNs). The modeling approach is modular: the 
behavior of each component and each interaction is 
represented by its own GSPN, while the system model is 
obtained by composition of these GSPNs. The 
composition rules are defined and formalized through 
clear identification of the interfaces between the 
component and the dependency nets. In addition to 
modularity, the formalism brings flexibility and re-
usability. This approach is applied to a simple, but still 
representative, example.  

1. Introduction 

In the context of computer system dependability, the 
need for addressing simultaneously both hardware and 
software dependability aspects has now been recognized. 
However, even though a number of publications have 
been devoted to the dependability of combined hardware 
and software systems (see e.g. [5, 6, 13, 14]), work on 
both aspects dealt with at the same time is not prevalent. 
Also, it is noteworthy that, when they are considered 
together for real-life systems, the interactions between the 
components are not usually modeled explicitly (see e.g. 
[15, 16, 20]). 

This paper addresses the dependability modeling of 
hardware and software fault-tolerant systems taking into 
account the interactions between the various components. 
These interactions result for example from components 
communications for functional purposes (i.e., functional 
interactions), or from the structure of the system, mainly 
the distribution of software components onto the 
hardware components (i.e., structural interactions), or 
from fault tolerance and maintenance strategies 
(reconfiguration and maintenance interactions). They 

induce dependencies between at least two components 
that are usually stochastic in nature. As a result, system 
dependability cannot simply be obtained by combining 
the dependability of its components. An overall model 
accounting for these dependencies is thus needed. Our 
aim is to model explicitly these dependencies so as to 
quantify their influence on system dependability. This is 
of prime importance during the design of a new system or 
while upgrading an already existing one. The designer 
can make different assumptions about the interactions 
between the components and compare the dependability 
of the resulting alternative solutions through sensitivity 
studies. As the nature of interactions is strongly linked to 
the modeling level considered and the assumptions made 
at the considered level, it is not possible to model all the 
interactions that could take place for any fault-tolerant 
system. Rather, we define a framework for modeling 
these interactions in a systematic way and, more 
generally, we define a framework to build up the depend-
ability model of a fault-tolerant system explicitly taking 
into account these interactions. To do this, we follow a 
modular approach based on Generalized Stochastic Petri 
Nets (GSPNs) due to their ability to handle modularity 
and hierarchy. Note that modular approaches using 
GSPNs or their offsprings are widely used (see e.g., [2, 
18] ). Our contribution lies in modeling the interactions 
between hardware and software components and giving a 
formal description of these dependencies.  

The paper is organized in five sections: Section 2 
presents the framework for modeling interactions 
between hardware and software components. Section 3 
gives a formal description of the various types of 
dependency nets while Section 4 illustrates the approach 
on a duplex system with several interactions. Section 5 
concludes. 

2. Modeling Framework 

The modeling approach consists in identifying, based 
on the analysis of the system's behavior, dependencies 
between the components that could be induced by func-
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tional or structural interactions or by interactions due to 
system reconfiguration and maintenance. Some examples 
of dependencies due to these interactions are given in the 
following. Error propagation between two software com-
ponents is an example of stochastic dependency resulting 
from functional interactions (exchange of data or transfer 
of intermediate results from one component to another). 
The halting of the software activities following a perma-
nent failure of the hosting hardware is an example of 
stochastic dependency induced by a structural interaction. 
Sharing of a single repairman by the two hardware com-
puters leads to a maintenance dependency whereas 
switching from an active component (hardware or 
software) to a spare component following a permanent 
failure of the active component leads to a reconfiguration 
dependency. In this paper, we consider interactions that 
are driven by events occurring in a component whose 
occurrence may impact the behavior of other components. 

A high level model of the system is first derived based 
on the previous analysis. It is made of blocks and arrows: 
a block stands for the component model (component net) 
or a dependency model (dependency net), and an arrow 
shows the direction of the dependency. The system model 
is thus obtained by composition of the component and 
dependency models. In a second step, each block is 
replaced with its detailed GSPN. To allow for a 
systematic build up of dependency nets, rules that will 
have to be followed during model construction are 
defined. These rules manage the interfaces between the 
dependency and component nets and are prerequisite for 
modularity, hierarchical modeling and re-usability (re-
usability is a valuable concept when it comes to doing 
sensitivity studies about certain assumptions regarding a 
system's behavior or when several alternative solutions 
are being considered). Also, these rules allow an easy 
validation of the global model. In the rest of the section, 
we give the characteristics of the component and 
dependency nets and present the various types of 
dependency nets together with the rules that have to be 
followed to build up the GSPNs. 

Components nets: A component net represents the 
behavior of a component as resulting from the activation 
of faults in this component and the subsequent error 
processing, restart or repair actions. The assumptions 
made and the degree of detail considered are usually 
guided by the interactions with other components one 
wants to exploit (such as the consequences of non 
detected errors or activation of temporary faults). A 
component net is designed to be a standalone net with its 
initial marking, it is live and bounded. It can be 
connected with dependency nets only following well de-

fined rules as explained hereafter; connections must not 
alter the initial structure of the component nets.  

Dependency nets: A dependency net is linked to at least 
two adjacent nets: an initializing and a target net that 
could be component or dependency nets. To formally 
describe dependency nets and to promote re-usability, we 
define as much common characteristics as possible. As a 
result, whatever is the kind of interaction modeled, all the 
dependency nets are initialized and interfaced with the 
adjacent nets following the same rules; they only differ in 
their effects on the target net. The common characteristics 
and the different effects on the target nets are introduced 
in figure 1 where a hypothetical dependency net with all 
types of effects is given (the notations are introduced with 
the formalism). They are summarized hereafter. 
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Figure 1: Characteristics of dependency nets  

Dependency net initialization 
• A dependency net is initialized through the marking of 

one or more entry places by the initializing net(s), 
following firing of initializing transitions in these 
initializing net(s) (as interactions are event driven).  

• The initial marking of the entry places is zero. 
• When the initializing net is a component net, the 

consequences of initializing transition(s) firing on the 
component behavior are modeled within the 
component net (marking of one or several internal 
places) and an additional token is generated and 
deposited in the entry place of the dependency net to 
activate the interaction.  

• If the initializing net is a dependency net, the token 
deposited in the entry place could be either the one 
generated when entering the initializing dependency 
net (corresponding to a series of successive 
interactions) or an additional one newly generated 
(corresponding to the initialization in parallel of two or 
more interactions). 



 

 

Internal transitions: The dependency net has internal 
transitions (timed or instantaneous) whose firing may be 
independent from the marking of the adjacent nets 
(independent transitions) or conditioned by the marking 
of places in the adjacent nets. A condition is modeled by 
an inhibitor arc or an arc from and towards the tested 
place: the marking of this place is not changed. The 
interfaces with the adjacent nets (excluding initializing 
arcs and effects on the target nets) are thus only 
constituted by tests on the marking of specific places. An 
internal transition could be absorbing (i.e., the tokens are 
absorbed). 

Effects on target nets: These effects are strongly related 
to the type of interaction modeled. Thus, three such 
effects have been identified: 
• If the interaction consists in changing the state of 

another component (the target net is necessarily a 
component), the effect at the GSPN level involves 
removal of a token from a stable place (i.e., a place 
followed by timed transitions, this condition stems 
from the fact that only stable places correspond to 
states of the components) in the target net and return 
of the token to the same place or to another stable 
place of the target net (immediately or after firing 
internal transitions in the dependency net). This is 
referred to as an action net. 

• If the interaction consists in performing or synchroniz-
ing reconfiguration or maintenance actions, the effects 
depend on the nature of the initializing net:  
- if the initializing net is a component net, the 

interaction consists in coordinating the component 
restart (or repair) action with the restart (or repair) 
action of the components to which it is linked: it 
requests permission before undertaking internal 
actions, these actions are enabled by the dependency 
net (immediately or after firing of internal 
transitions). The target net is necessarily the same as 
the initializing net. At the GSPN level, the effect 
consists of enabling a transition in the component net 
through the marking of a place in the dependency 
net. Since the component net is a standalone net, this 
means that, in the component net, this transition has 
also to be enabled by the marking of at least an 
internal place. This is an authorization net, 

- if the initializing net is a dependency net, the interac-
tion consists in activating another interaction with 
other linked components; at the GSPN level, this 
consists of initializing another dependency net by de-
positing a token in its entry place following the firing 
of an initializing transition in the initializing 
dependency net. As previously stated, depending on 
whether the token deposited in the target net is an 

additional one, both dependency nets run in parallel 
or in series. This is an activation net.  

The previous rules are intended to manage the static 
links between dependency and adjacent nets. Further 
rules have to be considered to control the dynamic 
behavior of the nets (i.e., the tokens generation and their 
flow). They are given together with the formalism in the 
next section. Note that model construction is an iterative 
process with information flow in both directions from/to 
dependency nets to/from components nets: in the 
component models, care should be taken to include 
potential dependencies. 

Interaction origin and dependency net type: The 
interactions have been attributed to three possible origins: 
functional, structural and those due to system re-
configuration and maintenance. Functional and structural 
interactions are usually accompanied by a state change, 
the associated nets are thus action nets. Dependencies due 
to reconfiguration and maintenance may induce a state 
change and they could be any kind of dependency net. 
3. Nets formalization and validation  

The aim of this section is to give a formal description 
of the various rules introduced in the previous section and 
to address model validation. We first give the main 
notations, the other notations being defined in table 1.  
 

General Notations  
penk ∈ Pd  Entry place  (EP) of Nd.  
tin j ∈Ti  Transition of Ni that initializes Nd by marking an EP 

Mij  Initializing marking of a dependency net 
ti j ∈Td  Internal independent transition in Nd 

tck ∈Td  Internal conditioned transition in Nd 

Interfaces for an action net 
ta j , t' aj ∈Td  Removing and returning action transitions in Nd 
premk j ∈Tg  Input place in Ng of the removing action trans. ta j   

pretk j ∈Tg  Output place in Ng of the returning action trans. t' aj   

Interfaces for an authorization net 
pauj ∈Pd  Authorization place of Nd    

Interfaces for an activation net 
tsk ∈Td  Activation transition of Nd 

Table 1: Notations 
Let Ni, Nd and Ng denote respectively an initializing, a 

dependency, and a target net, and let Nx  be any of these 
nets (x = i, d, g). Nx = Px ,Tx , Ix ,Ox , prx , pax( ) where: 
• Px  is the set of places of Nx ,. 
• Tx  = Ttimx ∪ Timmx  is the set of transitions of Nx : Ttimx  

is the set of timed transitions and Timmx  is the set of 
immediate transitions. 

•     Ix :  Px ×Tx → N ∪ -1{ }  is the input function, 



 

 

•   Ox :  Tx × Px → N  is the output function (  N  is the set of 
natural integers). 

• prx  the set of timed transitions rates, pax  the set of 
firing probabilities of immediate transitions. 
The set of places and transitions are such that: 

Pi ∩ Pd = ∅, Pi ∩ Pg = ∅ , Pd ∩ Pg = ∅, Ti ∩ Td = ∅ , 
Ti ∩ Tg = ∅ andTd ∩Tg = ∅  

The interfaces of a dependency net Nd  with an 
initializing net Ni  and a target net Ng  are the input and 
output functions, Iid , Idg , Oid , Odg , that connect places 
and transitions of Nd  to places and transitions of Ni  or 
Ng . These functions are defined as follows: 
   Iid :  Pi ×Td → N ∪ −1{ }     Idg :  Pd × Tg→ N ∪ −1{ }  

  Oid :  Ti × Pd → N      Odg :  Td × Pg→ N  

When it is not necessary to distinguish between 
initializing and target nets, indices i, d, g are omitted.  

Initialization: Initializing transitions, entry places and 
the initializing marking of a dependency net Nd  are 
defined as follows: let tin j ∈Ti  and pk ∈Pd  such that 
Oid tinj , pk( ) > 0 , Idi pk ,tin j( ) = 0,  if ∀ pl  ∈Pd , pl ≠ pk , we have 
Idi pl , tinj( ) = 0 then tin j  is an initializing transition of Nd  
and pk  is an entry place of Nd , denoted penk . An entry 
place can be initialized by several transitions. In order for 
a transition tin j  of a net Ni  to be fired, one must have: 
∀ pm ∈Pi   Iid pm ,tin j( ) ≥ 0⇒ Min pm( ) ≥ Iid pm ,tin j( ) (Min : Nd  
initializing marking) and Iid pm ,tin j( ) = −1 ⇒ Min pm( ) = 0 1.  

Internal transitions: Internal transitions of a dependency 
net can be independent or conditioned by the marking of 
places in adjacent nets. They are defined as follows:  
• tij  ∈Td   is an independent transition if ∀ pk  such that 

I pk , tij( )> 0  or O tij , pk( ) > 0  then pk ∈ Pd , I = Id , O =Od . 
• tck  ∈  Td  is a conditioned transition if the two 

following conditions are verified: 
1) ∃ pj  ∈  Pg∪ Pi( ) such that:

 I pj ,  tck( ) = O tck ,  pj( ) > 0  or I pj ,  tck( ) = -1 
2) ∀ pn ∈  Pg∪ Pi( )  such that I pn,  tck( )> 0  or

 O tck ,  pn( ) > 0  then I pn,  tck( )= O tck ,  pn( ) . 
An internal transition can be an absorption transition. 

An independent or a conditioned transition tij or tcj is an 
absorption transition if: ∀ pn  ∈ P,  O tij , pn( )= 0  or 
O tcj , pn( )= 0  with P = Pd∪Pi∪Pc( ) . 

Action nets: An action net ends with a transition which 
causes a token to be removed from a stable place of the 
target net and to be returned to the same or another stable 
place of the same net. Removal and return can be done 
through two distinct transitions (with internal transitions 
                                                
1 I p, t( ) ≥ 0 ⇒Mnx p( ) ≥ I p, t( ) means that there must be enough 

tokens in all the input places of t to enable it. 
 I p, t( ) = −1⇒ Mnx p( ) = 0means that if there is an inhibitor arc 

from p to t, there must be no token in p to enable t. 

and places between them) or through the same transition. 
The number of tokens in the target net remains 
unchanged. Transitions ta j  and t' aj  are action transitions 
if the four following conditions are met: 

1) ∀ph ∈Pi ,  I ph , taj( ) = 0  and ∀pl ∈Pi ,  O ta j , pl( ) = 0  
2) ∃ pk ∈Pg  such that: Odg ta j , pk ( ) = 0  and         

 Idg pk ,  taj( ) > 0 ( ta j : removing transition) or: 
 ∃ p' k ∈Pg  such that: Odg t' aj , p' k ( ) > 0  and 
 Idg p' k ,  t' a j( ) = 0 ( t' aj : returning transition) 

3) O t' aj , p' i( )
i=1

Pg

∑ = I pi , taj( )
i=1

Pg

∑  

4) pk   or p' k  is a stable place: ∃t ∈Ttimg  such that 
 Id pk , t⎛ 

⎝ 
⎞ 
⎠ > 0  and ∀ t ∈Timmg  such that Id pk ,  t( )> 0  

 then  Id pk ,  t( ) = Od t,  pk( ) , p' k   must verify an 
 equivalent relation. 
pk  is then the input place of the removing action ta j , 
being denoted premk j  and p' k  ,the output place of the 
returning transition t' aj , is denoted pretk j . 

Authorization nets: An authorization net ends with one 
or several places enabling firing of transitions in the 
target net(s), authorization places. In this case, the target 
net is necessarily the initializing net.  
pauj  ∈  Pd  is an authorization place of Nd  if:  
∀ t ∈Td  such that I pauj , t( ) = 0  then ∃ t j k  ∈  Ti ∪ Tg( )  such 
that I pauj , t jk( ) > 0 and O t jk , pauj( ) = 0 ; t j k  is then the 
authorized transition in Nc , it is denoted tauk j . 

Activation nets: An activation net allows linking of 
dependency nets (i.e. synchronize the related 
interactions). It ends with a transition, synchronization 
transition, that sends one or several tokens in one or 
several other dependency nets (but does not remove 
tokens from these nets). ts j ∈Td  is an activation transition 
if ∀ pm ∈Pg  Igd pm , ts j( ) = 0  and if ∃ pk  ∈ Pg  such that 
Odg ts j , pk( )> 0 . 

Dynamic behavior: The generation, moving and 
absorption of the tokens has to be controlled while 
building up a dependency net so as to ensure that the 
resulting global net is bounded and live. Each token, 
generated upon dependency net initialization by the 
marking of an entry place must thus be removed either in 
the dependency net itself or through the effect on the 
target net. It is then necessary that as long as a 
dependency net place is marked, whatever the global 
marking, there is a transition that can be fired and that 
removes a token from this place. This condition must be 
formalized for the internal places of all types of 
dependency nets.  

Let Py  be such that  Py = Pd  for action and activation 
nets, Py = Pd − Paut{ }  for authorization nets. The internal 
places and transitions of a dependency net must satisfy: 



 

 

1) Every place has at least one transition that removes 
tokens: ∀ p∈Py  ∃ t ∈Td  I p,t( ) > 0 and O t, p( ) = 0  

2) If there exists an arc with multiplicity x from a place to 
a transition, there exist x-1 other arcs with multiplicity 
1 to x-1, from the same place to x-1 other transitions 
with the same input and output as the preceding 
transition: 

  ∀ t ∈Td ,   and p∈ Py  with I p, t( )> 0  and O t, p( ) = 0 if 
∃ p' ∈Pd  such that   I p, t( ) = x,  x∈N  then ∃ x  transitions 
t j ∈Td  such that I p' , t j( ) = j,  j = 1, ...,x ,  I p, t j( )> 0  and 
O t j, p( ) = 0 . 

 All these transitions are independent internal 
transitions. 

3) if there exists a test arc with multiplicity x between a 
place and a transition, there exist x-1 other arcs with 
multiplicity 1 to x-1, from the same place to x-1 other 
transitions with the same input and output as the 
preceding transition.  

  ∀ p∈Py   and ∀ p∈Py  with I p, t( )> 0 and O t, p( ) = 0,  if 
∃ p' ∈P   such that I p' , t( ) = O t, p'( ) = x,  then ∃ x   
transitions t j  such that I p' , ti( ) = O t j , p'( ) = j,  j = 1,..., x   
I p, tj( )> 0  and O tj ,p( ) = 0 . 

 if p' ∈Pd ,  t  is an independent transition, if p' ∉Pd ,  t is a 
conditioned transition. 

4) If there exists an inhibitor arc from a place to a 
transition then there must exist an arc from the same 
place to another transition. 

 ∀t ∈Td  and p∈ Py  with I p,t( )> 0 and O t, p( ) = 0,  if ∃p' ∈P  
such that I p, t( ) = −1,  then ∃t'  such that I p' , t'( )= 0,  
I p, t'( ) > 0 and O t' , p( ) = 0 . 

 if p' ∈Pd ,  t  is an independent transition, if p' ∉Pd ,  t  is 
a conditioned transition. 

5) The sum of firing probabilities of immediate 
transitions in conflict is always equal to 1: 

 ∀p ∈Pd ,  if there are t1...ti ...tu{ } ⊂ Timmd  such that 
I p, ti( ) > 0 , and ∀p'  such that   I p' , ti=x( ) = constant  and 

 I p' , ti≠x( ) = 0,  then pa t i( ) = 1
i=1

n

∑ . 

 if p'∈Pd ,  t  is an independent transition, if p'∉Pd ,  t  
is a conditioned transition. 

6) In some situations, depending on the marking of the 
target net, the token must be removed by an absorbing 
transition if it cannot be removed by the target or 
initializing net: ∀p ∈P  if ∃t ∈Td such that  I p, t( ) ≥ 0 or 
I p, t( ) = −1then O t, p( ) = 0 . 

Model validation: Several verifications are needed to 
reach confidence in the model; they are usually grouped 
into two categories: syntactic and semantic validation 
[10]. Syntactic validation consists in checking that the 
model represents the dependability of a system; it mainly 
includes structural validations. Semantic validation 

consists of checking that the model represents the 
dependability of the system under validation; it requires 
comparing the system and the model behaviors with 
respect to variations of the underlying assumptions. 
Usually it is performed through sensitivity studies. Due to 
the scope of the paper, we concentrate on the structural 
validation. The rules for interfacing dependency and 
component nets and for managing the dynamic behavior 
allow us to obtain, by construction models that are 
structurally valid (i.e., live and bound). Structural 
validation is progressively done, starting from the 
component nets and gradually adding dependency nets. 
Identification of possible problems is thus easy. Also, 
these verifications can be achieved automatically by 
computation of place- and transition-invariants for 
checking necessary or sufficient conditions of liveliness 
and boundedness with a tool such as SURF-2 [3] 
developed at LAAS-CNRS.  

4. Application to the duplex system 

Let us consider a duplex system composed of two 
hardware computers (H1 and H2) and two identical 
software replicas: each replica is implemented on a 
computer. We assume semi-active replication [17]: the 
leader replica (L) processes all input messages and 
provides output messages while the follower replica (F) 
does not produce output messages. The internal state of F 
is updated by means of notifications from L completed by 
direct processing. Temporary faults in the software are 
tolerated by exception handling mechanisms associated 
with each replica, whereas the activation of permanent 
faults leads to restart the replica. To reduce system 
unavailability, after detection of an error due to a 
permanent fault in L, the software replicas switch their 
roles: processing is performed on the new leader before 
restarting the new follower. If L and F fail, L is restarted 
first. Also, in case of failure of the hardware hosting L 
(identified as H1), the replicas switch their roles; the 
computer hosting the new follower is then repaired. With 
respect to hardware repair policy when the two computers 
are in failure, we consider two assumptions: R1: the two 
computers share a single repairman and priority of is 
given to H1 and R2: two repairmen are available.  

4.1. High level modeling 

Interactions are directly related to the assumptions 
made about the components' behavior. Owing to the 
importance of the impact of temporary faults on the 
behavior of hardware and software components [7, 8, 12, 
19], both permanent and temporary faults are considered 
in this example.  



 

 

It is assumed that the activation of a fault may lead to 
the following dependencies: 
• Following activation of a hardware fault:  

- an error due to the activation of a temporary fault in a 
hardware computer may propagate to the hosted 
software replica,  

- an error due to the activation of a permanent fault in 
a hardware computer leads to stopping the hosted 
software replica that is restarted after the end of 
hardware repair. 

• Following activation of a software fault: owing to the 
notifications sent from the leader to the follower, an 
error in the leader due to a permanent fault — usually 
referred to as solid fault — may propagate to the 
follower (it is assumed that errors due to temporary 
faults — usually referred to as soft faults — are 
confined and do not propagate). 
Dependencies induced by fault tolerance and 

maintenance strategies are as follows:  
• Between software replicas: dependency due to fault 

tolerance of permanent software faults, i.e., 
reconfiguration from F to L. 

• Between hardware computers: dependency due to 
reconfiguration and repair. 

• Between all components: coordination of fault 
tolerance and maintenance actions to form a global 
recovery strategy when several components are in 
failure.  

These dependencies are summarized in table 2 
together with the names of the associated nets which are 
used to build up the high level model of the duplex 
system. The latter is given in figure 2 where NHard and 
NSoft represent a computer and a software replica model 
respectively.  

NProp models propagation of a hardware error to the 
hosted software replica 

NStop models software stop after activation of a 
permanent fault in the hosting hardware  

N'Prop models propagation of a software error 

NRep models hardware reconfiguration and repair  

NRec models software reconfiguration  

NStrat models the global recovery strategy  

Table 2: Dependency nets 
 

NHard  (H1)

NSoft  (F)

NRep

NRec

NStopNProp NStop NPropNStrat

N'Prop

NSoft  (L)

NHard  (H2)

 
Figure 2: High level model of the duplex system 

The corresponding GSPNs are built up following the 
rules and formal description presented in Sections 2 and 
3; they are successively given in the remainder of the 
section.  

4.2. Hardware and software component nets 

Figure 3 gives the component nets. The hardware 
model is based on the following assumptions: 
• Faults are activated with rate λh. 
• With probability ph the fault is permanent, (probability 

of a temporary fault (1-ph)). 
• The effects of an error due to a temporary fault are 

eliminated within a short time 1/δh. 
• An error due to a permanent fault is either detected 

with probability dh, or non detected (1-dh); error 
processing rate: τh. 

• The effects of a permanent, non detected error may be 
perceived later (perception rate ζh). 

• The repair rate including software restart (following 
detection or perception of an error) is µ. 

Equivalent assumptions are made regarding the 
behavior of the software replicas: 
• Faults are activated with rate λs. 
• An error is either detected with probability ds, or non 

detected (1-ds); detection rate τs. 
• The detected error is processed by means of exception 

handling mechanisms during a short time 1/πs. At the 
end of error processing, 1) if the fault is temporary 
(probability (1-ps)) its effects are eliminated and the 
software resumes its normal mode of operation, 2) if 
the fault is permanent (probability ps); the software has 
to be restarted (rate: ν) to eliminate its effects.(1-ps) 
measures the efficiency of fault containment 
procedures [8, 11].  

• The effects of  a non  detected  error  may be  
eliminated  
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• S-ok: proper service without activated fault 
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• S-ft: end of exception handling  
• S-u: detected or perceived error, software restart 
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Figure 3: Hardware computer and software replica nets 

 (elimination rate δs), or perceived (perception rate ζs) 
in which case the software replica has to be restarted. 
The difference between these nets lies in that for 

hardware, temporary and permanent faults are 
differentiated by their respective consequences following 
activation, whereas for software, they can only be 
distinguished after specific processing [12]. 

4.3. Error propagation nets  

From hardware to software: It is assumed that only 
undetected errors and those due to temporary faults can 

propagate from a hardware computer to the hosted 
software replica. The error propagation net, shown in 
figure 4, is initialized by the marking of place Prop 
following the firing of transition 1-dh (undetected error) 
or of transition 1-ph (an error due to a temporary fault) in 
the hardware net (initializing net). With probability 1-pph, 
the error is not propagated and with probability pph it is. 
NProp  is an action net, whose effects on the software net 
(target net) are as follows: 
• If the token is in S-ok, it is returned to S-e, the induced 

error is then processed in the same way as when the 
fault is activated without propagation (through λs in 
figure 3-b). 

• If the token is in S-e, since a fault is already activated 
in the software, the probability of error detection may 
be reduced (d's≤ds), if the errors are detected, the token 
is returned to S-d; if they are non detected (with 
probability 1-d's) the token is returned to S-nd. 

• If the token is in S-nd (an internal error is non detected 
in the replica) the propagated error and the internal 
error are detected with probability d"s (d"s≤d's, owing 
to the perturbation due to the first error) the token is 
returned to S-d; the errors remain undetected with 1-
d"s. 

• If the token is in S-d the propagated error can 
compromise error processing and prevent the recovery 
of an error due to a temporary fault. The internal and 
propagated errors are recovered with probability 1-pp 
(1-pp < 1-ps). 

• If the token is in S-u, the software replica is already 
under restart, the token of NProp is absorbed through 
tp-u and the token of NSoft is kept in S-u. 

L (or F) netH1 (or H2) net pph

Prop
1-p

ph

tp-ok

Ps

S-d

tp-e d' s

1-d's
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d"s

1-d"s

hp1-

hd1-

P-nd

P-d

P-e

S-ok

S-e

S-nd NSoftNHard 

 
Entry places and initializing arcs are indicated in bold 

Figure 4: Error propagation net, NProp 



 

 

From L to F: The dependency net, the target net and the 
effects on the target net are exactly the same but the 
initializing net is that of the software leader. It is assumed 
that only undetected errors in L and detected errors of L 
due to permanent faults, can propagate. The error 
propagation net is then initialized following the firing of 
1-ds or ps. The probability of error propagation is pps.  
At a higher modeling level, error propagation from L to F 
can be regarded as common mode failures. 

4.4. Software stop and restart net 

Following a detected error or the perception of an 
undetected error in an hardware computer, the hosted 
software replica is stopped and is restarted after repair of 
the hardware. We assume that the repair includes the 
replica restart. The software stop and restart net (Figure 
5) is an action net, it is initialized by the marking of STP 
following the firing of transition ξh (perception of a non 
detected error due to a permanent fault) or dh (detection 
of an error due to a permanent fault). Transitions t1 to t5 
remove the token from places S-ok, S-e, S-d, S-nd or S-u 
respectively. After repair of the hardware (including 
software restart), RST is marked and the token is returned 
to S-ok. 
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µ
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NSoft
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h

 
Figure 5: Software stop and restart, NStop 

4.5. Hardware reconfiguration and repair net 

As previously stated, we consider two different 
assumptions: A1 assumes a single repairman, while A2 
assumes the presence of two repairmen. The 
corresponding nets are given in figure 6. Each net is 
composed of two parts corresponding respectively to 
reconfiguration (the shaded parts on the figures) and 
repair. They are grouped together because the 
reconfiguration is automatically followed by a repair. 
Since the reconfiguration strategy is the same, the 
associated nets are the same. The two nets are commented 
together and, when they are different, the figure number 
is specified.  

NRep is initialized by the marking of H1F 
(respectively H2F) following the firing of dh, detection of 
an error due to a permanent fault or ζh perception of an 
undetected error, in the hardware hosting L, H1 
(respectively H2): 
• if H1F is marked, H1 is in failure (H1 is the initializer, 

H2 the target): 
- if H2 is not in failure (REP2 not marked) switching is 

attempted, (βh) and HSW is marked: 
1) Switch can succeed with probability ch, place 

SSW is then marked, 

REP1 REP2

H1F H2F

SWH

SSW

EX1 EX2

FSW

2HF

ch 1-ch

βm

βh

H-ok

H-u

H-ok

H-u

t2h tf

tex

tex1 tex2

tr2
µ

µ

ζ

dh

(H1 net)
NHard

(H2 net)
NHard

hζ

dh
h

 
-a- R1: with a single repairman 
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-b- R2: with two repairmen 

Figure 6: Hardware reconfiguration and repair nets, NRep 

2) It can fail with probability 1-ch, FSW is marked 
and switching is done manually2 (βm), SSW is 
then marked; tex can be fired, places EX1, EX2 
and REP2 are marked; tex1 and tex2 can be 
fired, they remove the token from H-u to H-ok, 
and from H-ok to H-u, F becomes the new 
leader, L the new follower and it can be restarted 
(REP2 is marked in figure 6-a for R1, H2F is 
marked in figure 6-b for R2), 

                                                
2 Other possible assumption: it can be assumed that the manual 

switch is not attempted. In this case, transition 1-ch leads to place 
2HF (dashed arc in figure 6-a); place FSW and transition βm have 
to be omitted. 



 

 

- for R1: if H2 is in failure (REP2 marked): t2h is fired 
removing the token from REP2 to 2HF; tr2 can then 
be fired returning a token in REP1 and one in H2F in 
order to repair H1, then H2, (for R2: if H2 is in 
failure (H2F marked): repair of H1 and H2 are 
enabled; at the end of H2 repair, if H1 is still under 
repair H2 is restarted with the leader), 

• for R1 if H2F is marked: H2 is in failure (H2 is 
initializer and target): if H1 is not in failure (REP1 not 
marked), tf can be fired and REP2 is marked, authorizing 
the repair of H2; else the token stays in H2F until the end 
of H1 repair; repair of H2 in then allowed through the 
marking of REP2 (for R2: repair of H2 is enabled without 
any condition on H1). 
For R1 and R2: if NRep is initialed by H1 only, its is an 
action, activation and an authorization net; when 
initialized by H2 only, it is an authorization net. If it is 
initialed by H1 then H2 (or H2 then H1) it is an 
authorization net. 

4.6. Software reconfiguration net 

The software reconfiguration net is given in figure 7. 
It is initialized by the marking of S1F (respectively S2F) 
following the firing of transition ps, a detected error due 
to a permanent fault or perception of an undetected error 
in L (respectively F): 
• if S1F is marked, L is in failure (L is the initializer and 

F the target): 
- if F is not in failure (RSTF not marked) switching is 

attempted (βs) and SWS is marked. 
1) Switch can succeed with probability cs, places 

EXL, EXF and RSTF are then marked. Marking 
of EXL allows firing of tex that removes the 
token from S-u to S-ok in L. Marking of EXF 
allows the firing of one of transitions  t1 to t4 
that removes the token in the leader net from 
places S-ok, S-e, S-d or S-nd and return it to S-u. 
Marking of RSTF enables transition v (in F) to 
restart it.  

2) Switch can fail with probability 1-cs, places EXF 
and 2SF are then marked. Marking of 2SF allows 
transition tr2 firing that marks places RSTL and 
S2F. Marking of place RSTL enables transition ν 
in the leader to restart it. Marking of S2F allows 
the follower restart only after the end of the 
leader restart.  

- if F is in failure (RSTF marked) t2s is fired and 2SF 
is marked allowing the firing of tr2 that marks RSTL 
and S2F. Marking of place RSTL enables transition ν 
in the leader to restart it. Marking of S2F allows the 
restart of F only after the end of the leader restart.  

ν ν
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Figure 7: Software reconfiguration net, NRec 

• if S2F is marked, F is in failure (F is initializer and 
target): if L is not in failure (RSTL not marked) 
transition tf can be fired and RSTF is marked, 
authorizing the restart of F; else the token stays in S2F 
until the end of L restart, restart of F is then allowed 
via RSTF marking. 
If NRecis initialed by L only, its is an action and an 

authorization net. If NRec is initialized by F only, it is an 
authorization net. If NRec is initialed by L then F (or F 
then L) it is an authorization net.  

4.7. Global recovery strategy net 

The global recovery strategy net is initialized by NRep 
through F1H following the firing of tex. If F is in failure 
(RSTF marked) t2 removes the token from RSTF and 
deposits a token in RSTL and another one in S2F in order 
for L to be repaired first. If F is not in failure (RSTF not 
marked) transition t1 deposits a token in CSW in order 
that the roles of the follower and leader to be exchanged.  
NStrat  is an action net if place RSTF is marked and an 
activation net if RSTF is not marked. 

F1H

SSW RSTL RSTF

tex

t1 t2

NRep

NRecS2F
 

Figure 8: Global recovery strategy net, NStrat 

4.8. Concluding remarks and global model 

Due to lack of space the formal description of the 
previous nets is not presented. It can be checked that the 
hardware and the software GSPNs are live and bounded. 
With respect to dependency nets, verification of these 



 

 

properties have to be done with the adjacent nets as 
indicated in figure 2, as follows 
• NProp has to be validated connected with NHard and 

NSoft, (N'Prop is identical to NProp), 
• NStop has to be validated with NHard and NSoft, 
• NRep has to be validated with two NHard, 
• NRec has to be validated with NSoft, 
• NStrat has to be validated with all the other nets (that 

have already been validated). 
The overall model obtained by replacing the blocks of 

figure 2 with their GSPNs given in figures 3 to 8 has been 
processed by SURF-2. The marking graph has 1200 
markings and the Markov chain 500 states without any 
state aggregation due to symmetry.  

It could be argued that the state space may be very 
large for more complex systems, this is inherent to the 
complexity of the system to be modeled and to the level 
of detail considered. The only difficulty due specifically 
to our modeling approach is the number of markings; it 
can be overcome by using an aggregation technique at the 
GSPN level to suppress immediate (see e.g. [1]). 

Considering again the duplex system, taking into 
account the fact that the transition rates associated with 
error detection and processing mechanisms are very high 
compared to failure, repair and restart rates (the durations 
of error detection and processing is of the order of the 
second whereas the intervals to failures are several 
hundreds of hours), the model can be reduced to 9 states 
as shown in figure 9. This model is to be considered as a 
limiting case allowing verification of the complete model 
in this specific case. 
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λsL = λsF = ps • (λs+(1-ph) • λh • prh) 
λsLF = λsL • prs • ps 
r = 1 for repair policy R1 and r = 2 for R2 
w = 1 assuming manual switch and w = 0 without manual switch 
 
• 2,1,1: proper service of the computers, L and F 
• 2,0,1: L is in failure 
• 2,1,0: F is in failure 
• 2,0,0: both L and F are in failure 
• 1,1,0: the computer hosting L is in failure 
• 1,0,1: the computer hosting F is in failure 
• 1,0,0: the compter hosting F, and L are in failure 
• m,0,1: failure of hardware switch, manual switch 
• 0,0,0: both computers are in failure 

  

Figure 9: Reduced Markov chain of the duplex system 

5. Conclusion 

This work presented in this paper has allowed various 
types of dependencies between hardware and software 
components of a fault-tolerant system to be identified. 
These dependencies may result from functional or 
structural interactions as well as interactions due to 
reconfiguration and maintenance strategies. The 
dependability model of the system is obtained by 
composition of the components models with those 
associated with the dependencies. The rules for 
interfacing the models have been clearly defined and 
formally described to build up easily validable system 
models. The formal description facilitates the 
composition of the various GSPNs. 

The modeling approach has been illustrated by a 
simple example, including all the types of dependencies 
identified: the duplex system. Modeling of this system 
showed the strong dependency between components. For 
example: the activation of a temporary hardware fault, 
may propagate an error to the hosted software 
component, which in turn may propagate to other 
components communicating with it (without being 
necessarily on the same computer). Thus the activation of 
a hardware fault, may lead to the restart of one or more 
software components. Even if this has already been 
observed on real-life systems, it has not been modeled 
explicitly in previous work. Also, we have shown how 
the modification of one or several assumptions can be 
performed without modifying all GSPNs, considering two 
repair policies and two switching policies (with or 
without manual switch). 

The main advantage of the modeling approach, based 
on considering explicitly the interactions, lies in its 
efficiency for modeling several alternatives for the same 
system. These alternatives may differ by their 
composition (number of computers or replicas) or the 
organization (distribution of software components onto 
the hardware) or by the fault tolerance and maintenance 
strategies. One can clearly identify from the beginning 
the components and interactions that are specific and 
those that are common to all alternatives. The GSPNs that 
are common are thus developed and validated only once.  

This approach has been applied to the French Air 
Traffic Control system (the subset associated with the 
Flight Plan Processing and Radar Data Processing) in [9] 
where twelve alternative architectures have been modeled 
and their unavailability compared to identify the most 
suitable one. Based on these results, additional and more 
detailed architectures have been modeled in [4]. This 



 

 

application showed all the power of the modeling 
approach with the explicit modeling of the interactions. 
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