
HAL Id: hal-01976182
https://laas.hal.science/hal-01976182

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability of Fault-Tolerant Systems - Explicit
Modeling of the Interactions Between Hardware and

Software Components
Karama Kanoun, Marie Borrel

To cite this version:
Karama Kanoun, Marie Borrel. Dependability of Fault-Tolerant Systems - Explicit Modeling of the
Interactions Between Hardware and Software Components. 2nd Annual IEEE International Computer
Performance and Dependability Symposium (IPDS’96), 4-6 septembre 1996, pp.252-261, Sep 1996,
Urbana-Champaign, United States. �hal-01976182�

https://laas.hal.science/hal-01976182
https://hal.archives-ouvertes.fr

2nd Annual IEEE International Computer Performance and Dependability Symposium (IPDS'96), Urbana-Champaign (USA), 4-6 septembre
1996, pp.252-261

Abstract

This paper addresses the dependability modeling of
hardware and software fault-tolerant systems taking into
account explicitly the interactions between the various
components. It presents a framework for modeling these
interactions based on Generalized Stochastic Petri Nets
(GSPNs). The modeling approach is modular: the
behavior of each component and each interaction is
represented by its own GSPN, while the system model is
obtained by composition of these GSPNs. The
composition rules are defined and formalized through
clear identification of the interfaces between the
component and the dependency nets. In addition to
modularity, the formalism brings flexibility and re-
usability. This approach is applied to a simple, but still
representative, example.

1. Introduction

In the context of computer system dependability, the
need for addressing simultaneously both hardware and
software dependability aspects has now been recognized.
However, even though a number of publications have
been devoted to the dependability of combined hardware
and software systems (see e.g. [5, 6, 13, 14]), work on
both aspects dealt with at the same time is not prevalent.
Also, it is noteworthy that, when they are considered
together for real-life systems, the interactions between the
components are not usually modeled explicitly (see e.g.
[15, 16, 20]).

This paper addresses the dependability modeling of
hardware and software fault-tolerant systems taking into
account the interactions between the various components.
These interactions result for example from components
communications for functional purposes (i.e., functional
interactions), or from the structure of the system, mainly
the distribution of software components onto the
hardware components (i.e., structural interactions), or
from fault tolerance and maintenance strategies
(reconfiguration and maintenance interactions). They

induce dependencies between at least two components
that are usually stochastic in nature. As a result, system
dependability cannot simply be obtained by combining
the dependability of its components. An overall model
accounting for these dependencies is thus needed. Our
aim is to model explicitly these dependencies so as to
quantify their influence on system dependability. This is
of prime importance during the design of a new system or
while upgrading an already existing one. The designer
can make different assumptions about the interactions
between the components and compare the dependability
of the resulting alternative solutions through sensitivity
studies. As the nature of interactions is strongly linked to
the modeling level considered and the assumptions made
at the considered level, it is not possible to model all the
interactions that could take place for any fault-tolerant
system. Rather, we define a framework for modeling
these interactions in a systematic way and, more
generally, we define a framework to build up the depend-
ability model of a fault-tolerant system explicitly taking
into account these interactions. To do this, we follow a
modular approach based on Generalized Stochastic Petri
Nets (GSPNs) due to their ability to handle modularity
and hierarchy. Note that modular approaches using
GSPNs or their offsprings are widely used (see e.g., [2,
18]). Our contribution lies in modeling the interactions
between hardware and software components and giving a
formal description of these dependencies.

The paper is organized in five sections: Section 2
presents the framework for modeling interactions
between hardware and software components. Section 3
gives a formal description of the various types of
dependency nets while Section 4 illustrates the approach
on a duplex system with several interactions. Section 5
concludes.

2. Modeling Framework

The modeling approach consists in identifying, based
on the analysis of the system's behavior, dependencies
between the components that could be induced by func-

Dependability of Fault-Tolerant Systems — Explicit Modeling
of the Interactions Between Hardware and Software Components

 Karama Kanoun and Marie Borrel

 LAAS-CNRS
 7, Avenue du Colonel Roche
 31077 Toulouse Cedex - France

tional or structural interactions or by interactions due to
system reconfiguration and maintenance. Some examples
of dependencies due to these interactions are given in the
following. Error propagation between two software com-
ponents is an example of stochastic dependency resulting
from functional interactions (exchange of data or transfer
of intermediate results from one component to another).
The halting of the software activities following a perma-
nent failure of the hosting hardware is an example of
stochastic dependency induced by a structural interaction.
Sharing of a single repairman by the two hardware com-
puters leads to a maintenance dependency whereas
switching from an active component (hardware or
software) to a spare component following a permanent
failure of the active component leads to a reconfiguration
dependency. In this paper, we consider interactions that
are driven by events occurring in a component whose
occurrence may impact the behavior of other components.

A high level model of the system is first derived based
on the previous analysis. It is made of blocks and arrows:
a block stands for the component model (component net)
or a dependency model (dependency net), and an arrow
shows the direction of the dependency. The system model
is thus obtained by composition of the component and
dependency models. In a second step, each block is
replaced with its detailed GSPN. To allow for a
systematic build up of dependency nets, rules that will
have to be followed during model construction are
defined. These rules manage the interfaces between the
dependency and component nets and are prerequisite for
modularity, hierarchical modeling and re-usability (re-
usability is a valuable concept when it comes to doing
sensitivity studies about certain assumptions regarding a
system's behavior or when several alternative solutions
are being considered). Also, these rules allow an easy
validation of the global model. In the rest of the section,
we give the characteristics of the component and
dependency nets and present the various types of
dependency nets together with the rules that have to be
followed to build up the GSPNs.

Components nets: A component net represents the
behavior of a component as resulting from the activation
of faults in this component and the subsequent error
processing, restart or repair actions. The assumptions
made and the degree of detail considered are usually
guided by the interactions with other components one
wants to exploit (such as the consequences of non
detected errors or activation of temporary faults). A
component net is designed to be a standalone net with its
initial marking, it is live and bounded. It can be
connected with dependency nets only following well de-

fined rules as explained hereafter; connections must not
alter the initial structure of the component nets.

Dependency nets: A dependency net is linked to at least
two adjacent nets: an initializing and a target net that
could be component or dependency nets. To formally
describe dependency nets and to promote re-usability, we
define as much common characteristics as possible. As a
result, whatever is the kind of interaction modeled, all the
dependency nets are initialized and interfaced with the
adjacent nets following the same rules; they only differ in
their effects on the target net. The common characteristics
and the different effects on the target nets are introduced
in figure 1 where a hypothetical dependency net with all
types of effects is given (the notations are introduced with
the formalism). They are summarized hereafter.

ActionEntry places

Internal transitions

Immediate or timed transition

Initializing net
 (Ni)

Dependency net
(Nd)

Target net
 (Ng)

Tests

tij

tcktck

tij

Activation

tsj

taj
't aj

pen1

pen2

tin 1

tin 2

Authorization

pauj taukj

pen3 tin3

prem1j

pret1j

Figure 1: Characteristics of dependency nets

Dependency net initialization
• A dependency net is initialized through the marking of

one or more entry places by the initializing net(s),
following firing of initializing transitions in these
initializing net(s) (as interactions are event driven).

• The initial marking of the entry places is zero.
• When the initializing net is a component net, the

consequences of initializing transition(s) firing on the
component behavior are modeled within the
component net (marking of one or several internal
places) and an additional token is generated and
deposited in the entry place of the dependency net to
activate the interaction.

• If the initializing net is a dependency net, the token
deposited in the entry place could be either the one
generated when entering the initializing dependency
net (corresponding to a series of successive
interactions) or an additional one newly generated
(corresponding to the initialization in parallel of two or
more interactions).

Internal transitions: The dependency net has internal
transitions (timed or instantaneous) whose firing may be
independent from the marking of the adjacent nets
(independent transitions) or conditioned by the marking
of places in the adjacent nets. A condition is modeled by
an inhibitor arc or an arc from and towards the tested
place: the marking of this place is not changed. The
interfaces with the adjacent nets (excluding initializing
arcs and effects on the target nets) are thus only
constituted by tests on the marking of specific places. An
internal transition could be absorbing (i.e., the tokens are
absorbed).

Effects on target nets: These effects are strongly related
to the type of interaction modeled. Thus, three such
effects have been identified:
• If the interaction consists in changing the state of

another component (the target net is necessarily a
component), the effect at the GSPN level involves
removal of a token from a stable place (i.e., a place
followed by timed transitions, this condition stems
from the fact that only stable places correspond to
states of the components) in the target net and return
of the token to the same place or to another stable
place of the target net (immediately or after firing
internal transitions in the dependency net). This is
referred to as an action net.

• If the interaction consists in performing or synchroniz-
ing reconfiguration or maintenance actions, the effects
depend on the nature of the initializing net:
- if the initializing net is a component net, the

interaction consists in coordinating the component
restart (or repair) action with the restart (or repair)
action of the components to which it is linked: it
requests permission before undertaking internal
actions, these actions are enabled by the dependency
net (immediately or after firing of internal
transitions). The target net is necessarily the same as
the initializing net. At the GSPN level, the effect
consists of enabling a transition in the component net
through the marking of a place in the dependency
net. Since the component net is a standalone net, this
means that, in the component net, this transition has
also to be enabled by the marking of at least an
internal place. This is an authorization net,

- if the initializing net is a dependency net, the interac-
tion consists in activating another interaction with
other linked components; at the GSPN level, this
consists of initializing another dependency net by de-
positing a token in its entry place following the firing
of an initializing transition in the initializing
dependency net. As previously stated, depending on
whether the token deposited in the target net is an

additional one, both dependency nets run in parallel
or in series. This is an activation net.

The previous rules are intended to manage the static
links between dependency and adjacent nets. Further
rules have to be considered to control the dynamic
behavior of the nets (i.e., the tokens generation and their
flow). They are given together with the formalism in the
next section. Note that model construction is an iterative
process with information flow in both directions from/to
dependency nets to/from components nets: in the
component models, care should be taken to include
potential dependencies.

Interaction origin and dependency net type: The
interactions have been attributed to three possible origins:
functional, structural and those due to system re-
configuration and maintenance. Functional and structural
interactions are usually accompanied by a state change,
the associated nets are thus action nets. Dependencies due
to reconfiguration and maintenance may induce a state
change and they could be any kind of dependency net.
3. Nets formalization and validation

The aim of this section is to give a formal description
of the various rules introduced in the previous section and
to address model validation. We first give the main
notations, the other notations being defined in table 1.

General Notations
penk ∈ Pd Entry place (EP) of Nd.
tin j ∈Ti Transition of Ni that initializes Nd by marking an EP

Mij Initializing marking of a dependency net
ti j ∈Td Internal independent transition in Nd

tck ∈Td Internal conditioned transition in Nd

Interfaces for an action net
ta j , t' aj ∈Td Removing and returning action transitions in Nd
premk j ∈Tg Input place in Ng of the removing action trans. ta j

pretk j ∈Tg Output place in Ng of the returning action trans. t' aj

Interfaces for an authorization net
pauj ∈Pd Authorization place of Nd

Interfaces for an activation net
tsk ∈Td Activation transition of Nd

Table 1: Notations
Let Ni, Nd and Ng denote respectively an initializing, a

dependency, and a target net, and let Nx be any of these
nets (x = i, d, g). Nx = Px ,Tx , Ix ,Ox , prx , pax() where:
• Px is the set of places of Nx ,.
• Tx = Ttimx ∪ Timmx is the set of transitions of Nx : Ttimx

is the set of timed transitions and Timmx is the set of
immediate transitions.

• Ix : Px ×Tx → N ∪ -1{ } is the input function,

• Ox : Tx × Px → N is the output function (N is the set of
natural integers).

• prx the set of timed transitions rates, pax the set of
firing probabilities of immediate transitions.
The set of places and transitions are such that:

Pi ∩ Pd = ∅, Pi ∩ Pg = ∅ , Pd ∩ Pg = ∅, Ti ∩ Td = ∅ ,
Ti ∩ Tg = ∅ andTd ∩Tg = ∅

The interfaces of a dependency net Nd with an
initializing net Ni and a target net Ng are the input and
output functions, Iid , Idg , Oid , Odg , that connect places
and transitions of Nd to places and transitions of Ni or
Ng . These functions are defined as follows:
 Iid : Pi ×Td → N ∪ −1{ } Idg : Pd × Tg→ N ∪ −1{ }

 Oid : Ti × Pd → N Odg : Td × Pg→ N

When it is not necessary to distinguish between
initializing and target nets, indices i, d, g are omitted.

Initialization: Initializing transitions, entry places and
the initializing marking of a dependency net Nd are
defined as follows: let tin j ∈Ti and pk ∈Pd such that
Oid tinj , pk() > 0 , Idi pk ,tin j() = 0, if ∀ pl ∈Pd , pl ≠ pk , we have
Idi pl , tinj() = 0 then tin j is an initializing transition of Nd
and pk is an entry place of Nd , denoted penk . An entry
place can be initialized by several transitions. In order for
a transition tin j of a net Ni to be fired, one must have:
∀ pm ∈Pi Iid pm ,tin j() ≥ 0⇒ Min pm() ≥ Iid pm ,tin j() (Min : Nd
initializing marking) and Iid pm ,tin j() = −1 ⇒ Min pm() = 0 1.

Internal transitions: Internal transitions of a dependency
net can be independent or conditioned by the marking of
places in adjacent nets. They are defined as follows:
• tij ∈Td is an independent transition if ∀ pk such that

I pk , tij()> 0 or O tij , pk() > 0 then pk ∈ Pd , I = Id , O =Od .
• tck ∈ Td is a conditioned transition if the two

following conditions are verified:
1) ∃ pj ∈ Pg∪ Pi() such that:

 I pj , tck() = O tck , pj() > 0 or I pj , tck() = -1
2) ∀ pn ∈ Pg∪ Pi() such that I pn, tck()> 0 or

 O tck , pn() > 0 then I pn, tck()= O tck , pn() .
An internal transition can be an absorption transition.

An independent or a conditioned transition tij or tcj is an
absorption transition if: ∀ pn ∈ P, O tij , pn()= 0 or
O tcj , pn()= 0 with P = Pd∪Pi∪Pc() .

Action nets: An action net ends with a transition which
causes a token to be removed from a stable place of the
target net and to be returned to the same or another stable
place of the same net. Removal and return can be done
through two distinct transitions (with internal transitions

1 I p, t() ≥ 0 ⇒Mnx p() ≥ I p, t() means that there must be enough

tokens in all the input places of t to enable it.
 I p, t() = −1⇒ Mnx p() = 0means that if there is an inhibitor arc

from p to t, there must be no token in p to enable t.

and places between them) or through the same transition.
The number of tokens in the target net remains
unchanged. Transitions ta j and t' aj are action transitions
if the four following conditions are met:

1) ∀ph ∈Pi , I ph , taj() = 0 and ∀pl ∈Pi , O ta j , pl() = 0
2) ∃ pk ∈Pg such that: Odg ta j , pk () = 0 and

 Idg pk , taj() > 0 (ta j : removing transition) or:
 ∃ p' k ∈Pg such that: Odg t' aj , p' k () > 0 and
 Idg p' k , t' a j() = 0 (t' aj : returning transition)

3) O t' aj , p' i()
i=1

Pg

∑ = I pi , taj()
i=1

Pg

∑

4) pk or p' k is a stable place: ∃t ∈Ttimg such that
 Id pk , t⎛

⎝
⎞
⎠ > 0 and ∀ t ∈Timmg such that Id pk , t()> 0

 then Id pk , t() = Od t, pk() , p' k must verify an
 equivalent relation.
pk is then the input place of the removing action ta j ,
being denoted premk j and p' k ,the output place of the
returning transition t' aj , is denoted pretk j .

Authorization nets: An authorization net ends with one
or several places enabling firing of transitions in the
target net(s), authorization places. In this case, the target
net is necessarily the initializing net.
pauj ∈ Pd is an authorization place of Nd if:
∀ t ∈Td such that I pauj , t() = 0 then ∃ t j k ∈ Ti ∪ Tg() such
that I pauj , t jk() > 0 and O t jk , pauj() = 0 ; t j k is then the
authorized transition in Nc , it is denoted tauk j .

Activation nets: An activation net allows linking of
dependency nets (i.e. synchronize the related
interactions). It ends with a transition, synchronization
transition, that sends one or several tokens in one or
several other dependency nets (but does not remove
tokens from these nets). ts j ∈Td is an activation transition
if ∀ pm ∈Pg Igd pm , ts j() = 0 and if ∃ pk ∈ Pg such that
Odg ts j , pk()> 0 .

Dynamic behavior: The generation, moving and
absorption of the tokens has to be controlled while
building up a dependency net so as to ensure that the
resulting global net is bounded and live. Each token,
generated upon dependency net initialization by the
marking of an entry place must thus be removed either in
the dependency net itself or through the effect on the
target net. It is then necessary that as long as a
dependency net place is marked, whatever the global
marking, there is a transition that can be fired and that
removes a token from this place. This condition must be
formalized for the internal places of all types of
dependency nets.

Let Py be such that Py = Pd for action and activation
nets, Py = Pd − Paut{ } for authorization nets. The internal
places and transitions of a dependency net must satisfy:

1) Every place has at least one transition that removes
tokens: ∀ p∈Py ∃ t ∈Td I p,t() > 0 and O t, p() = 0

2) If there exists an arc with multiplicity x from a place to
a transition, there exist x-1 other arcs with multiplicity
1 to x-1, from the same place to x-1 other transitions
with the same input and output as the preceding
transition:

 ∀ t ∈Td , and p∈ Py with I p, t()> 0 and O t, p() = 0 if
∃ p' ∈Pd such that I p, t() = x, x∈N then ∃ x transitions
t j ∈Td such that I p' , t j() = j, j = 1, ...,x , I p, t j()> 0 and
O t j, p() = 0 .

 All these transitions are independent internal
transitions.

3) if there exists a test arc with multiplicity x between a
place and a transition, there exist x-1 other arcs with
multiplicity 1 to x-1, from the same place to x-1 other
transitions with the same input and output as the
preceding transition.

 ∀ p∈Py and ∀ p∈Py with I p, t()> 0 and O t, p() = 0, if
∃ p' ∈P such that I p' , t() = O t, p'() = x, then ∃ x
transitions t j such that I p' , ti() = O t j , p'() = j, j = 1,..., x
I p, tj()> 0 and O tj ,p() = 0 .

 if p' ∈Pd , t is an independent transition, if p' ∉Pd , t is a
conditioned transition.

4) If there exists an inhibitor arc from a place to a
transition then there must exist an arc from the same
place to another transition.

 ∀t ∈Td and p∈ Py with I p,t()> 0 and O t, p() = 0, if ∃p' ∈P
such that I p, t() = −1, then ∃t' such that I p' , t'()= 0,
I p, t'() > 0 and O t' , p() = 0 .

 if p' ∈Pd , t is an independent transition, if p' ∉Pd , t is
a conditioned transition.

5) The sum of firing probabilities of immediate
transitions in conflict is always equal to 1:

 ∀p ∈Pd , if there are t1...ti ...tu{ } ⊂ Timmd such that
I p, ti() > 0 , and ∀p' such that I p' , ti=x() = constant and

 I p' , ti≠x() = 0, then pa t i() = 1
i=1

n

∑ .

 if p'∈Pd , t is an independent transition, if p'∉Pd , t
is a conditioned transition.

6) In some situations, depending on the marking of the
target net, the token must be removed by an absorbing
transition if it cannot be removed by the target or
initializing net: ∀p ∈P if ∃t ∈Td such that I p, t() ≥ 0 or
I p, t() = −1then O t, p() = 0 .

Model validation: Several verifications are needed to
reach confidence in the model; they are usually grouped
into two categories: syntactic and semantic validation
[10]. Syntactic validation consists in checking that the
model represents the dependability of a system; it mainly
includes structural validations. Semantic validation

consists of checking that the model represents the
dependability of the system under validation; it requires
comparing the system and the model behaviors with
respect to variations of the underlying assumptions.
Usually it is performed through sensitivity studies. Due to
the scope of the paper, we concentrate on the structural
validation. The rules for interfacing dependency and
component nets and for managing the dynamic behavior
allow us to obtain, by construction models that are
structurally valid (i.e., live and bound). Structural
validation is progressively done, starting from the
component nets and gradually adding dependency nets.
Identification of possible problems is thus easy. Also,
these verifications can be achieved automatically by
computation of place- and transition-invariants for
checking necessary or sufficient conditions of liveliness
and boundedness with a tool such as SURF-2 [3]
developed at LAAS-CNRS.

4. Application to the duplex system

Let us consider a duplex system composed of two
hardware computers (H1 and H2) and two identical
software replicas: each replica is implemented on a
computer. We assume semi-active replication [17]: the
leader replica (L) processes all input messages and
provides output messages while the follower replica (F)
does not produce output messages. The internal state of F
is updated by means of notifications from L completed by
direct processing. Temporary faults in the software are
tolerated by exception handling mechanisms associated
with each replica, whereas the activation of permanent
faults leads to restart the replica. To reduce system
unavailability, after detection of an error due to a
permanent fault in L, the software replicas switch their
roles: processing is performed on the new leader before
restarting the new follower. If L and F fail, L is restarted
first. Also, in case of failure of the hardware hosting L
(identified as H1), the replicas switch their roles; the
computer hosting the new follower is then repaired. With
respect to hardware repair policy when the two computers
are in failure, we consider two assumptions: R1: the two
computers share a single repairman and priority of is
given to H1 and R2: two repairmen are available.

4.1. High level modeling

Interactions are directly related to the assumptions
made about the components' behavior. Owing to the
importance of the impact of temporary faults on the
behavior of hardware and software components [7, 8, 12,
19], both permanent and temporary faults are considered
in this example.

It is assumed that the activation of a fault may lead to
the following dependencies:
• Following activation of a hardware fault:

- an error due to the activation of a temporary fault in a
hardware computer may propagate to the hosted
software replica,

- an error due to the activation of a permanent fault in
a hardware computer leads to stopping the hosted
software replica that is restarted after the end of
hardware repair.

• Following activation of a software fault: owing to the
notifications sent from the leader to the follower, an
error in the leader due to a permanent fault — usually
referred to as solid fault — may propagate to the
follower (it is assumed that errors due to temporary
faults — usually referred to as soft faults — are
confined and do not propagate).
Dependencies induced by fault tolerance and

maintenance strategies are as follows:
• Between software replicas: dependency due to fault

tolerance of permanent software faults, i.e.,
reconfiguration from F to L.

• Between hardware computers: dependency due to
reconfiguration and repair.

• Between all components: coordination of fault
tolerance and maintenance actions to form a global
recovery strategy when several components are in
failure.

These dependencies are summarized in table 2
together with the names of the associated nets which are
used to build up the high level model of the duplex
system. The latter is given in figure 2 where NHard and
NSoft represent a computer and a software replica model
respectively.

NProp models propagation of a hardware error to the
hosted software replica

NStop models software stop after activation of a
permanent fault in the hosting hardware

N'Prop models propagation of a software error

NRep models hardware reconfiguration and repair

NRec models software reconfiguration

NStrat models the global recovery strategy

Table 2: Dependency nets

NHard (H1)

NSoft (F)

NRep

NRec

NStopNProp NStop NPropNStrat

N'Prop

NSoft (L)

NHard (H2)

Figure 2: High level model of the duplex system

The corresponding GSPNs are built up following the
rules and formal description presented in Sections 2 and
3; they are successively given in the remainder of the
section.

4.2. Hardware and software component nets

Figure 3 gives the component nets. The hardware
model is based on the following assumptions:
• Faults are activated with rate λh.
• With probability ph the fault is permanent, (probability

of a temporary fault (1-ph)).
• The effects of an error due to a temporary fault are

eliminated within a short time 1/δh.
• An error due to a permanent fault is either detected

with probability dh, or non detected (1-dh); error
processing rate: τh.

• The effects of a permanent, non detected error may be
perceived later (perception rate ζh).

• The repair rate including software restart (following
detection or perception of an error) is µ.

Equivalent assumptions are made regarding the
behavior of the software replicas:
• Faults are activated with rate λs.
• An error is either detected with probability ds, or non

detected (1-ds); detection rate τs.
• The detected error is processed by means of exception

handling mechanisms during a short time 1/πs. At the
end of error processing, 1) if the fault is temporary
(probability (1-ps)) its effects are eliminated and the
software resumes its normal mode of operation, 2) if
the fault is permanent (probability ps); the software has
to be restarted (rate: ν) to eliminate its effects.(1-ps)
measures the efficiency of fault containment
procedures [8, 11].

• The effects of a non detected error may be
eliminated

H-ok

λ hδ h

H-e

hp1- ph

µ

H-t

hd1- ζh

H-nd

H-p

dh

H-u

hτ

H-fd

 Timed transition Immediate transition

• H-ok: proper service without activated fault
• H-e: activation of a fault
• H-t: the error results from a temporary fault
• H-p: the error results from a permanent fault
• H-fd: end of error processing
• H-u: detected or perceived error, hardware repair
• H-nd: non detected error

-a- NHard

λs

S-ok

δ s
ν

S-e

sτ

S-fd
ds

sd1-

s
p1-

S-nd

ζ pss

S-u

S-d

πs

S-ft

• S-ok: proper service without activated fault
• S-e: activation of a fault
• S-fd: end of error detection
• S-nd: non detected error
• S-d: detected error
• S-ft: end of exception handling
• S-u: detected or perceived error, software restart

-b- NSoft

Figure 3: Hardware computer and software replica nets

 (elimination rate δs), or perceived (perception rate ζs)
in which case the software replica has to be restarted.
The difference between these nets lies in that for

hardware, temporary and permanent faults are
differentiated by their respective consequences following
activation, whereas for software, they can only be
distinguished after specific processing [12].

4.3. Error propagation nets

From hardware to software: It is assumed that only
undetected errors and those due to temporary faults can

propagate from a hardware computer to the hosted
software replica. The error propagation net, shown in
figure 4, is initialized by the marking of place Prop
following the firing of transition 1-dh (undetected error)
or of transition 1-ph (an error due to a temporary fault) in
the hardware net (initializing net). With probability 1-pph,
the error is not propagated and with probability pph it is.
NProp is an action net, whose effects on the software net
(target net) are as follows:
• If the token is in S-ok, it is returned to S-e, the induced

error is then processed in the same way as when the
fault is activated without propagation (through λs in
figure 3-b).

• If the token is in S-e, since a fault is already activated
in the software, the probability of error detection may
be reduced (d's≤ds), if the errors are detected, the token
is returned to S-d; if they are non detected (with
probability 1-d's) the token is returned to S-nd.

• If the token is in S-nd (an internal error is non detected
in the replica) the propagated error and the internal
error are detected with probability d"s (d"s≤d's, owing
to the perturbation due to the first error) the token is
returned to S-d; the errors remain undetected with 1-
d"s.

• If the token is in S-d the propagated error can
compromise error processing and prevent the recovery
of an error due to a temporary fault. The internal and
propagated errors are recovered with probability 1-pp
(1-pp < 1-ps).

• If the token is in S-u, the software replica is already
under restart, the token of NProp is absorbed through
tp-u and the token of NSoft is kept in S-u.

L (or F) netH1 (or H2) net pph

Prop
1-p

ph

tp-ok

Ps

S-d

tp-e d' s

1-d's

tp-nd

tp-d
S-u

pp

1-pp

tp-u

d"s

1-d"s

hp1-

hd1-

P-nd

P-d

P-e

S-ok

S-e

S-nd NSoftNHard

Entry places and initializing arcs are indicated in bold

Figure 4: Error propagation net, NProp

From L to F: The dependency net, the target net and the
effects on the target net are exactly the same but the
initializing net is that of the software leader. It is assumed
that only undetected errors in L and detected errors of L
due to permanent faults, can propagate. The error
propagation net is then initialized following the firing of
1-ds or ps. The probability of error propagation is pps.
At a higher modeling level, error propagation from L to F
can be regarded as common mode failures.

4.4. Software stop and restart net

Following a detected error or the perception of an
undetected error in an hardware computer, the hosted
software replica is stopped and is restarted after repair of
the hardware. We assume that the repair includes the
replica restart. The software stop and restart net (Figure
5) is an action net, it is initialized by the marking of STP
following the firing of transition ξh (perception of a non
detected error due to a permanent fault) or dh (detection
of an error due to a permanent fault). Transitions t1 to t5
remove the token from places S-ok, S-e, S-d, S-nd or S-u
respectively. After repair of the hardware (including
software restart), RST is marked and the token is returned
to S-ok.

RST

STP

S-ok

S-d

S-e

S-nd

S-u

ζ

dh

tr

t4

t1

t2

t3

t5

µ

L (or F) net
NSoft

H1 (or H2) net
NHard

h

Figure 5: Software stop and restart, NStop

4.5. Hardware reconfiguration and repair net

As previously stated, we consider two different
assumptions: A1 assumes a single repairman, while A2
assumes the presence of two repairmen. The
corresponding nets are given in figure 6. Each net is
composed of two parts corresponding respectively to
reconfiguration (the shaded parts on the figures) and
repair. They are grouped together because the
reconfiguration is automatically followed by a repair.
Since the reconfiguration strategy is the same, the
associated nets are the same. The two nets are commented
together and, when they are different, the figure number
is specified.

NRep is initialized by the marking of H1F
(respectively H2F) following the firing of dh, detection of
an error due to a permanent fault or ζh perception of an
undetected error, in the hardware hosting L, H1
(respectively H2):
• if H1F is marked, H1 is in failure (H1 is the initializer,

H2 the target):
- if H2 is not in failure (REP2 not marked) switching is

attempted, (βh) and HSW is marked:
1) Switch can succeed with probability ch, place

SSW is then marked,

REP1 REP2

H1F H2F

SWH

SSW

EX1 EX2

FSW

2HF

ch 1-ch

βm

βh

H-ok

H-u

H-ok

H-u

t2h tf

tex

tex1 tex2

tr2
µ

µ

ζ

dh

(H1 net)
NHard

(H2 net)
NHard

hζ

dh
h

-a- R1: with a single repairman

REP1

H1F H2F

SWH

SSW

EX1 EX2

FSW

ch 1-ch

βm

βh

H-ok

H-u

H-ok

H-u
tex

tex1 tex2

µ
µERF

t2f t1f

ζ

dh

(H1 net)

NHard
(H2 net)
NHard

hζ

dh
h

-b- R2: with two repairmen

Figure 6: Hardware reconfiguration and repair nets, NRep

2) It can fail with probability 1-ch, FSW is marked
and switching is done manually2 (βm), SSW is
then marked; tex can be fired, places EX1, EX2
and REP2 are marked; tex1 and tex2 can be
fired, they remove the token from H-u to H-ok,
and from H-ok to H-u, F becomes the new
leader, L the new follower and it can be restarted
(REP2 is marked in figure 6-a for R1, H2F is
marked in figure 6-b for R2),

2 Other possible assumption: it can be assumed that the manual

switch is not attempted. In this case, transition 1-ch leads to place
2HF (dashed arc in figure 6-a); place FSW and transition βm have
to be omitted.

- for R1: if H2 is in failure (REP2 marked): t2h is fired
removing the token from REP2 to 2HF; tr2 can then
be fired returning a token in REP1 and one in H2F in
order to repair H1, then H2, (for R2: if H2 is in
failure (H2F marked): repair of H1 and H2 are
enabled; at the end of H2 repair, if H1 is still under
repair H2 is restarted with the leader),

• for R1 if H2F is marked: H2 is in failure (H2 is
initializer and target): if H1 is not in failure (REP1 not
marked), tf can be fired and REP2 is marked, authorizing
the repair of H2; else the token stays in H2F until the end
of H1 repair; repair of H2 in then allowed through the
marking of REP2 (for R2: repair of H2 is enabled without
any condition on H1).
For R1 and R2: if NRep is initialed by H1 only, its is an
action, activation and an authorization net; when
initialized by H2 only, it is an authorization net. If it is
initialed by H1 then H2 (or H2 then H1) it is an
authorization net.

4.6. Software reconfiguration net

The software reconfiguration net is given in figure 7.
It is initialized by the marking of S1F (respectively S2F)
following the firing of transition ps, a detected error due
to a permanent fault or perception of an undetected error
in L (respectively F):
• if S1F is marked, L is in failure (L is the initializer and

F the target):
- if F is not in failure (RSTF not marked) switching is

attempted (βs) and SWS is marked.
1) Switch can succeed with probability cs, places

EXL, EXF and RSTF are then marked. Marking
of EXL allows firing of tex that removes the
token from S-u to S-ok in L. Marking of EXF
allows the firing of one of transitions t1 to t4
that removes the token in the leader net from
places S-ok, S-e, S-d or S-nd and return it to S-u.
Marking of RSTF enables transition v (in F) to
restart it.

2) Switch can fail with probability 1-cs, places EXF
and 2SF are then marked. Marking of 2SF allows
transition tr2 firing that marks places RSTL and
S2F. Marking of place RSTL enables transition ν
in the leader to restart it. Marking of S2F allows
the follower restart only after the end of the
leader restart.

- if F is in failure (RSTF marked) t2s is fired and 2SF
is marked allowing the firing of tr2 that marks RSTL
and S2F. Marking of place RSTL enables transition ν
in the leader to restart it. Marking of S2F allows the
restart of F only after the end of the leader restart.

ν ν

S1F S2F

SWS
2SF

RSTFRSTL

EXL EXF

S-ok

S-u

S-ok

S-d

S-e

S-nd

S-u

ps ps

bs t2s
tf

cs 1-cs

tex

tr2

t1

t2

t3

t4
CSW

tex

(L net)
NSoft

(F net)
NSoft

ζs ζs

Figure 7: Software reconfiguration net, NRec

• if S2F is marked, F is in failure (F is initializer and
target): if L is not in failure (RSTL not marked)
transition tf can be fired and RSTF is marked,
authorizing the restart of F; else the token stays in S2F
until the end of L restart, restart of F is then allowed
via RSTF marking.
If NRecis initialed by L only, its is an action and an

authorization net. If NRec is initialized by F only, it is an
authorization net. If NRec is initialed by L then F (or F
then L) it is an authorization net.

4.7. Global recovery strategy net

The global recovery strategy net is initialized by NRep
through F1H following the firing of tex. If F is in failure
(RSTF marked) t2 removes the token from RSTF and
deposits a token in RSTL and another one in S2F in order
for L to be repaired first. If F is not in failure (RSTF not
marked) transition t1 deposits a token in CSW in order
that the roles of the follower and leader to be exchanged.
NStrat is an action net if place RSTF is marked and an
activation net if RSTF is not marked.

F1H

SSW RSTL RSTF

tex

t1 t2

NRep

NRecS2F

Figure 8: Global recovery strategy net, NStrat

4.8. Concluding remarks and global model

Due to lack of space the formal description of the
previous nets is not presented. It can be checked that the
hardware and the software GSPNs are live and bounded.
With respect to dependency nets, verification of these

properties have to be done with the adjacent nets as
indicated in figure 2, as follows
• NProp has to be validated connected with NHard and

NSoft, (N'Prop is identical to NProp),
• NStop has to be validated with NHard and NSoft,
• NRep has to be validated with two NHard,
• NRec has to be validated with NSoft,
• NStrat has to be validated with all the other nets (that

have already been validated).
The overall model obtained by replacing the blocks of

figure 2 with their GSPNs given in figures 3 to 8 has been
processed by SURF-2. The marking graph has 1200
markings and the Markov chain 500 states without any
state aggregation due to symmetry.

It could be argued that the state space may be very
large for more complex systems, this is inherent to the
complexity of the system to be modeled and to the level
of detail considered. The only difficulty due specifically
to our modeling approach is the number of markings; it
can be overcome by using an aggregation technique at the
GSPN level to suppress immediate (see e.g. [1]).

Considering again the duplex system, taking into
account the fact that the transition rates associated with
error detection and processing mechanisms are very high
compared to failure, repair and restart rates (the durations
of error detection and processing is of the order of the
second whereas the intervals to failures are several
hundreds of hours), the model can be reduced to 9 states
as shown in figure 9. This model is to be considered as a
limiting case allowing verification of the complete model
in this specific case.

2,1,1 2,0,1 2,1,0

2,0,0

1,1,01,0,1 1,0,0

0,0,0

ν

λsL

λsF
βs•cs

λsLF ν

λsLβs•cs
λh•ph

µ

βh•ch

βh•ch λh•ph

λh•ph

λh•ph

λh•phλsF

λh•ph

λsL

m,0,1

w•βm

µ

r•µ

λh•phµ

λh•ph

λsL = λsF = ps • (λs+(1-ph) • λh • prh)
λsLF = λsL • prs • ps
r = 1 for repair policy R1 and r = 2 for R2
w = 1 assuming manual switch and w = 0 without manual switch

• 2,1,1: proper service of the computers, L and F
• 2,0,1: L is in failure
• 2,1,0: F is in failure
• 2,0,0: both L and F are in failure
• 1,1,0: the computer hosting L is in failure
• 1,0,1: the computer hosting F is in failure
• 1,0,0: the compter hosting F, and L are in failure
• m,0,1: failure of hardware switch, manual switch
• 0,0,0: both computers are in failure

Figure 9: Reduced Markov chain of the duplex system

5. Conclusion

This work presented in this paper has allowed various
types of dependencies between hardware and software
components of a fault-tolerant system to be identified.
These dependencies may result from functional or
structural interactions as well as interactions due to
reconfiguration and maintenance strategies. The
dependability model of the system is obtained by
composition of the components models with those
associated with the dependencies. The rules for
interfacing the models have been clearly defined and
formally described to build up easily validable system
models. The formal description facilitates the
composition of the various GSPNs.

The modeling approach has been illustrated by a
simple example, including all the types of dependencies
identified: the duplex system. Modeling of this system
showed the strong dependency between components. For
example: the activation of a temporary hardware fault,
may propagate an error to the hosted software
component, which in turn may propagate to other
components communicating with it (without being
necessarily on the same computer). Thus the activation of
a hardware fault, may lead to the restart of one or more
software components. Even if this has already been
observed on real-life systems, it has not been modeled
explicitly in previous work. Also, we have shown how
the modification of one or several assumptions can be
performed without modifying all GSPNs, considering two
repair policies and two switching policies (with or
without manual switch).

The main advantage of the modeling approach, based
on considering explicitly the interactions, lies in its
efficiency for modeling several alternatives for the same
system. These alternatives may differ by their
composition (number of computers or replicas) or the
organization (distribution of software components onto
the hardware) or by the fault tolerance and maintenance
strategies. One can clearly identify from the beginning
the components and interactions that are specific and
those that are common to all alternatives. The GSPNs that
are common are thus developed and validated only once.

This approach has been applied to the French Air
Traffic Control system (the subset associated with the
Flight Plan Processing and Radar Data Processing) in [9]
where twelve alternative architectures have been modeled
and their unavailability compared to identify the most
suitable one. Based on these results, additional and more
detailed architectures have been modeled in [4]. This

application showed all the power of the modeling
approach with the explicit modeling of the interactions.

Acknowledgments
The work presented in this paper has been partially

supported by the French Civil Aviation Authority and SRTI
SYSTEM while Marie Borrel was with SRTI SYSTEM and by
the European Commission through the OLOS Network (A
holistic approach to the dependability analysis and evaluation
of control systems involving hardware, software and human
resources).

References
[1] H. H. Ammar, Y. F. Huang and R. W. Liu, “Hierarchical

Models for Systems Reliability, Maintainability, and
Availability”, IEEE Trans. on Circuits and Syst., CAS-
34 (6), pp. 629-38, 1987.

[2] G. Balbo, “On the Success of Stochastic Petri Nets”, in
6th International Workshop on Petri Nets and Per-
formance Models, (Durham, NC, USA), pp. 2-9, 1995.

[3] C. Béounes, M. Aguéra, J. Arlat, S. Bachman, C.
Bourdeau, J. E. Doucet, K. Kanoun, J.-C. Laprie, S.
Metge, J. Moreira de Souza, D. Powell and P. Spiesser,
“SURF-2: A Program for Dependability Evaluation of
Complex Hardware and Software systems”, in 23rd
IEEE Int. Symp. Fault-Tolerant Computing, (Toulouse,
France), pp. 668-73, 1993.

[4] M. Borrel, Interactions between Hardware and Software
Components: Characterization, Formalization and
Modeling — Application to CAUTRA Dependability,
PhD Dissertation, N°96-001, In French, 1996.

[5] A. Costes, C. Landrault and J.-C. Laprie, “Reliability and
Availability Models for Maintained Systems Featuring
Hardware Failures and Design Faults”, IEEE Trans. on
Computers, C-27 (6), pp. 548-60, 1978.

[6] J. B. Dugan and M. Lyu, “System-level Reliability and
Sensitivity Analysis for Three Fault-tolerant
Architectures”, in 4th IFIP Int. Conference on
Dependable Computing for Critical Applications, (San
Diego), pp. 295-307, 1994.

[7] W. R. Elmendorf, “Fault-tolerant Programming”, in 2nd
IEEE Int Symp. Fault-Tolerant Computing, (Newton,
Massashusetts), pp. 79-83, 1972.

[8] J. Gray, “Why Do Computers Stop and What Can be
Done About it ?”, in 5th Int. Symp. on Reliability in
Distributed Software and Database Systems, (Los
Angeles, CA), pp. 3-12, 1986.

[9] K. Kanoun, M. Borrel, T. Moreteveille and A. Peytavin,
“Modeling the Dependability of CAUTRA, a Subset of
the French Air Traffic Control System”, in 26th Int.
Symp. Fault-Tolerant Computing (FTCS-26), (Sendai,
Japan), pp. LAAS-Report, 95-515, 1996.

[10] J.-C. Laprie, “Trustable Evaluation of Computer Systems
Dependability”, in Applied Mathematics and
Performance/Reliability Models of Computer/ Com-
munication Systems, (Pise, Italie), pp. 341-60, 1983.

[11] J.-C. Laprie (Ed.), Dependability: Basic Concepts and
Terminology, Dependable Computing and Fault-Tolerant
Systems, 5, 265 p. , Springer Verlag, Wien-New York,
1992.

[12] J.-C. Laprie, “On The Temporary Character of
Operation-persistent Software Faults”, in 4th Int. Symp.
on Software Reliability Engineering, (Denver, Colorado),
pp. 125, 1993.

[13] J.-C. Laprie and K. Kanoun, “X-ware Reliability and
Availability Modeling”, IEEE Trans. on Software
Engineering, SE-18 (2), pp. 130-47, 1992.

[14] J.-C. Laprie, K. Kanoun, C. Béounes and M. Kaâniche,
“The KAT (Knowledge-Action-Transformation)
Approach to the Modeling and Evaluation of Reliability
and Availability Growth”, IEEE Trans. Software
Engineering, SE-17 (4), pp. 370-82, 1991.

[15] J. K. Muppala, A. Sathaye, R. Howe, C and K. S.
Trivedi, “Dependability Modeling of a Heterogeneous
VAX-cluster System Using Stochastic Reward Nets”, in
Hardware and Software Fault Tolerance in Parallel
Computing Systems (D.Avresky, Ed.), pp. 33-59, 1992.

[16] P. I. Pignal, “An Analysis of Hardware and Software
Availability Exemplified on the IBM-3725
Communication Controller”, IBM Journal of Research
and Development, 32 (2), pp. 268-78, 1988.

[17] D. Powell, “Distributed Fault Tolerance: Lessons from
Delta-4”, IEEE Micro, 14 (1), pp. 36-47, 1994.

[18] W. Sanders and J. Meyer, “Reduced Base Model
Construction Methods for Stochastic Activity
Networks”, IEEE Trans. on Selected Areas in
Communications, 9 (1), pp. 25-36, 1991.

[19] D. P. Siewiorek and R. S. Swarz, The Theory and
Practice of Reliable System Design, Digital Press, 1992.

[20] G. E. Stark, “Dependability Evaluation of Integrated
Hardware/Software Systems”, IEEE Trans. on
Reliability, R-36 (4), pp. 440-4, 1987.

