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Provably Safe Motions Strategies for Mobile
Robots in Dynamic Domains

Rachid Alami, K. Madhava Krishna, and Thierry Siméon

LAAS-CNRS
7, Avenue du Colonel Roche - 31077 Toulouse - France

Abstract. We present in this paper a methodology for computing the maximum
velocity profile over a trajectory planned for a mobile robot. Environment and robot
dynamics as well as the constraints of the robot sensors determine the profile. The
planned profile is indicative of maximum speeds that can be possessed by the robot
along its path without colliding with any of the mobile objects that could intercept
its future trajectory. The mobile objects could be arbitrary in number and the only
information available is their maximum possible velocity. The velocity profile also
enables to deform planned trajectories for better trajectory time. The methodology
has been adopted for holonomic and non-holonomic motion planners. An extension
of the approach to an online real-time scheme that modifies and adapts the path as
well as velocities to changes in the environment such that both safety and execution
time are not compromised is also presented for the holonomic case. Simulation and
experimental results illustrate the efficacy of this methodology.

1 Introduction

Several strategies exist for planning collision free paths in an environment
whose model is known [9]. However during execution, parameters such as
robot and environment dynamics, sensory capacities need to be incorporated
for safe navigation. This is especially so if the robot navigates in an area
where there are other mobile objects such as humans. For example in Fig-
ure 1, the robot would require to slow down as it approaches the doorway,
in anticipation of mobile objects to emerge from there, even if it does not
intend to make a turn through the doorway. A possible means to tackle the
above problem at the execution stage is to always navigate the robot at very
small speeds. In fact, reactive schemes such as the nearness diagram approach
[11] operate the robot at minimal velocities throughout the navigation. How-
ever incorporating the computation of a velocity profile at the planning stage
would circumvent not only the problem of permanent conservative veloci-
ties throughout navigation but would also allow for a modification of the
trajectory to achieve lower time such as shown in Figure 2.

A novel pro-active strategy that incorporates robot and environment dy-
namics as well as sensory constraints onto a collision free motion plan is
presented in this paper. By pro-active we mean that the robot is always in
a state of expectation regarding the possibility of a mobile object impinging
onto its path from regions invisible to its sensor. This pro-active state is re-
flected in the velocity profile of the robot, which guarantees that in the worst



Fig. 1. A safe robot has to slow down while approaching the doorway.

case scenario, the robot will not collide with any of the moving objects that
can cross its path. The ability of the algorithm to compute a priori velocities
for the entire trajectory accounting for moving objects moving in arbitrary
directions is the essential novelty of this effort. A similar kind of strategy for
the aforementioned objective does not appear to have been presented in the
robotic literature so far.

As is always the case, planned paths and profiles need constant modifica-
tion at the execution stage due to changes in the environment. For example,
a profile and path that was planned for an environment with a closed door-
way needs to be modified during real-time if the doorway is found open. The
paper also addresses the problem illustrated in Figure 3. Given an initial
trajectory planned for a particular environment, how does the robot modify
its trajectory while new objects (not necessarily intersecting the robot’s tra-
jectory) are introduced into the environment such that the basic philosophy
of ensuring safety as well as reducing time lengths of the path continue to
be respected. Simulation and experimental results are presented to indicate
the efficacy of the scheme. In [1] we had reported how the maximum veloc-
ity profiles can be computed for any generic planner and in [8] we presented
initial simulation and experimental results of the reactive version of [1].

Fig. 2. A longer path could be faster due to higher velocity.

Related work can be cited in the areas of modifying global plans using sen-
sory data obtained during execution for overcoming uncertainty accumulated
during motions [3] and those that try to bridge the gap between planning and
uncertainty [10] or planning and control [7], [2]. The velocity obstacle con-
cept[13][5] bears resemblance to the current endeavor in that they involve
selection of a robot velocity that avoids any number of moving objects. The
difference is that in the present approach the only information about the mo-
bile object available is the bound on velocity. The direction of motion and the
actual velocities are not known during computation of the velocity profile.



Fig. 3. How does the robot adapt its path in the presence of new segments (a, b)
and (c, d) while maintaining safety

The work of Strachniss [14] also involves considering the robot’s pose and
velocities at the planning phase. A path is determined in the (x, y) space and
a subgoal is chosen. A sequence of linear and angular velocities, (v, w), is fur-
nished till the subgoal is reached. It however does not speak of reducing the
time of the path by modifying it, and the dynamics of the environment does
not seem to affect the computation of the velocity profile. In [12] a policy
search approach is presented that projects a low dimensional intermediate
plan to a higher dimensional space where the orientation and velocity are
included. As a result better motion plans are generated that enable better
execution of the plan by the robot. The current effort has similar ties to [12]
at the planning level but also extends it to a suitable reactive level in the
presence of new obstacles encountered during execution.

2 Problem Definition

Consider a workspace cluttered by static polygonal obstacles Oi. The static
obstacles can hide possible mobile objects whose motions are not predictable;
the only information is their bounded velocity vob. The robot R, modelled
as a disc, is equipped with an omnidirectional sensor having a limited range
Rvis. We call Cvis the visibility circle, centered at robot’s position with radius
Rvis. The paths of R are sequences of straight segments possibly connected
with circular arcs of radius ρ in case of a non-holonomic robot. The robot’s
motion is subject to dynamic constraints simply modelled by a bounded lin-
ear velocity v ∈ [0, vrm] and a bounded acceleration a ∈ [−a−m, am]. The
maximum possible deceleration a−m needs not equal the maximum acceler-
ation am. The following problems are addressed in the paper:

Problem 1: Given a robot’s path τ(s) computed by a standard planner
(e.g. [9]), determine the maximal velocity profile vτ (s) such that, considering
the constraints imposed by its dynamics, the robot can stop before collision
occurs with any of the mobile objects that could emerge from regions not
visible to the robot at position s ∈ τ(s). For example the velocity profile dic-
tates that the robot in Figure 1 slows down near the doorway in expectation
of mobile objects from the other side. We call MP = (τ(s), vτ (s)) a robust
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Fig. 4. Mobile objects may appear anywhere on Cvis’s contour.

motion plan. The velocity profile allows us to define the time T (τ) required
for the robust execution of path τ :

T (τ) =
∫ L

0

ds

vτ (s)

Problem 2: Modify the planned trajectory such that the overall trajectory
time T (τ) is reduced. For example, the path of Figure 2 is traversed in a
shorter time, though longer path, than the one of Figure 1.

Problem 3: Adapt the path and velocities reactively in the presence of
new objects not a part of the original workspace such that the criteria of
safe velocities and reduced time of path continue to be respected. This is
illustrated in Figure 3.

3 From path to robust motion plan

The procedure for computing the maximum velocity profile vτ (s) delineated
in Sections 3.1, 3.2 and 3.3 addresses the first problem. The constraints im-
posed by the environment on the robot’s velocity are due to two categories
of mobile objects. The first category consists of mobiles that could appear
from anywhere outside the boundary of the visibility circle Cvis. The second
category involves mobile objects that could emerge from shadows created in
Cvis due to stationary objects.

3.1 Velocity constraints due to the environment

No obstacles in Cvis: In the simple case where the robot’s position is
such that no static obstacle lies inside Cvis, a moving object may appear
(at time t = 0) anywhere on Cvis’s boundary (Fig. 4). Let Vrb denote the
maximum possible robot velocity due to a mobile object at the boundary. At
time t0 = vrb/a−m (i.e., when the robot is stopped), the distance crossed by
the object is dobj(vrb) ≤ vobvrb/a−m. Avoiding any potential collision imposes
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Fig. 5. Mobile objects may also appear from the shadows of static obstacles.

that Rvis ≥ drb(vrb)+dobj(vrb), where drb = v2
rb/2a−m. The condition relates

vrb to the sensor’s range Rvis as:

vrb = −vob +
√

v2
ob + 2a−mRvis (1)

Influence of shadowing corners: Static obstacles lying inside Cvis may
create shadows (e.g., see the grey region of Figure 5) which contains mobile
objects. The worst-case situation occurs when the mobile object remains
unseen until it arrives at the shadowing corner of a polygonal obstacle. Since
the mobile object’s motion direction is not known it is best modeled for a
worst case scenario as an expanding circular wave of radius vobt centered at
(d, θ). Its equation is given by: (X(t)−d cos θ)2+(Y (t)−d sin θ)2 = v2

obt
2. Let

us first consider that the robot’s path τ is a straight segment. Considering
that the intersections between the circular wave and the robot’s segment
path, should never reach the robot before it stops at time t0 = vrs/a−m

yields the following velocity constraint:

v4
rsv − 4(a−md cos θ + v2

ob)v
2
rsv + 4a2

−md2 ≥ 0 (2)

Here vrsv is the maximum possible robot velocity due to the shadowing vertex
under consideration. The solution of Equation 2 gives vrsv, as a function of
(d, θ). This solution only exists under the condition vob >

√
a−md(1− cos θ),

i.e., when the object’s velocity vob is sufficiently high to interfere with the
robot’s halting path. Otherwise, the shadowing corner does not constrain the
robot’s velocity which can be set to the maximum bound vrm.

Similar reasoning can be applied to the case where the robot traverses a
circular arc path of radius ρ. This case however leads to a nonlinear equation
that needs to be solved numerically to derive the maximal velocity [4]. The
expression that needs to be solved for computing the maximum velocity at a
given point on a circular arc is of the form:

((v2
rsvv2

ob)/a2
−m) + 2ρ2 cos(v2

ob/2a−mρ) + 2dρ sin((v2
ob/2a−mρ)− θ) =

d2 + 2ρ2 − 2dρ sin θ (3)



3.2 Computing the shadowing corners

The problem of determining the set of shadowing corners needed for the
velocity computation in Section 3.1 is the problem of extracting those vertices
of the polygonal obstacle to which a ray emitted from the robot’s center is
tangential (Fig. 6). The set of shadowing corners can be easily extracted
from an algorithm that outputs the visibility polygon [15] as a sorted list of
vertices.
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Fig. 6. Shadowing corners: among the three vertices of V(p), only s2 and s3 create
shadows (the line going through s1 is not tangent to the left obstacle).

3.3 Computation of maximum velocity profile vτ (s)

While the methodology for computing the maximum velocity profile de-
lineated here is essentially for a holonomic path, its extension to the non-
holonomic case is not difficult.

1. A holonomic path τ , consisting of a sequence of straight line segments
ab, bc, cd (Fig. 7) is deformed into a sequence of straight lines and clothoids
to ensure continuity of velocities at the bends [6]. The maximum devia-
tion from an endpoint to its clothoidal arc (depicted as e in Figure 7) is
dependent on the nearest distance to an object from the endpoint under
consideration.

Fig. 7. A holonomic path deformed into a sequence of straight segments and
clothoidal arcs



2. The linear velocity along a clothoid is a constant and the maximum pos-
sible linear velocity considering robot dynamics alone is calculated for
each of the clothoidal arc a1b0, b1c0 according to [6] and is represented
as vc(a1), vc(b1).

3. The straight segment aa1 is discretized into M equally spaced points,
excluding the endpoints of the segment, viz a and a1. We denote the first
such point as a1 and the last such point as aM . The point of entry into
the clothoid, viz. a1 is also denoted as aM+1.

4. For each of the N points, ai, the steps 4a to 4e are repeated.
4a Maximum possible velocity that a robot could have such that it can come

to a halt before colliding with objects that enter into the robot’s field of
vision from the boundary is computed as vrb(ai) according to Eq. 1

4b Velocity of the robot due to stationary obstacles inside the robot’s field of
vision that create shadows is computed as vrsv(ai) according to Eq. 2. The
minimum of all the velocities due to such vertices is found and denoted
as vrs(ai).

4c The maximum possible velocity of the robot at ai due to environment is
then computed as:

vre(ai) = min(vrb(ai), vrs(ai)) (4)

4d Velocity of the robot at ai due to its own dynamics is given by:

vrd(ai) =
√

v2
r(ai−1) + 2ams(ai, ai−1) (5)

The above equation is computed if vre(ai) > vr(ai−1). Here s(ai, ai−1)
represents the distance between the points ai and ai−1 and am represents
the maximum acceleration of the robot.

4e The eventual velocity at ai is given by:

vr(ai) = min(vrd(ai), vre(ai), vrm) (6)

Here vrm represents the maximum robot velocity permissible due to servo
motor constants.

5. The velocity at the endpoint a1 is computed as vr(a1) = min(vr(a1), vc(a1))
and this would be the linear velocity with which the robot would traverse
the clothoid.

6. Steps 6a and 6b are performed by going backwards on each of the N
points from aN to a1

6a If vr(ai) > vr(ai+1) then the modified maximum possible velocity at ai

is computed as:

vrd(ai) =
√

v2
r(ai+1) + 2a−ms(ai, ai+1) (7)

6b Finally the maximum safe velocity at ai is given as vr(ai) = min(vr(ai), vrd(ai)).
7. Repeat steps 3 to 6 for all the remaining straight segments to obtain the

maximal velocity profile over a given trajectory τ as vτ (s) = {vr(a), vr(a1),
..., vr(aN ), vr(a1), vr(b1), ..., vr(d)}



3.4 Modifying planned trajectory for lower time

The knowledge of the maximum velocity profile over a trajectory is utilized to
tackle the problem posed in Section 2 of reducing the overall trajectory time
of the path. The procedure for reducing trajectory time at the planning stage
involves random deformation of the planned path and evaluating time along
this path. The modified path becomes the new trajectory if time along it is less
than along the original trajectory. The process is continued till over a finite
number of attempts no further minimization of trajectory time is possible.
Prior to delineating the algorithm it is to be noted that the set of all collision
free space of the workspace is denoted as Cfree and the current trajectory of
the robot as τc(s). A point of discretization on a trajectory discretized into
N parts is denoted as p(si), i ∈ {1, 2, ..., N}. The corresponding configuration
of the robot at those points is denoted by q(si).

Algorithm 1 Globally reducing trajectory time
1: Ntry ← 0
2: while Ntry < Nattempts do
3: Discretize current trajectory τc(s) into Np where Np is selected based on

minimum discretization distance between two points.
4: Set flag ← 0
5: for i = 1 to Np do
6: Compute minimum velocity at si due to shadowing vertices as vrmin(si)
7: if vrmin(si) < vrm then
8: Find a configuration q(sp) ∈ Cfree and sp /∈ τc(sk), k ∈ {1, ..., Np} such

that q(sp) is reachable from q(si).
9: Find a point sr on the remaining part of the trajectory, sr ∈ τc(sj); i <

j ≤ Np such that q(sr) is reachable from q(sp).
10: Form a new trajectory through si, sp, sq and denote it as τn(s)
11: if T (τn) < T (τc) then
12: discretize τn into Nq points.
13: τc ← τn

14: Np ← Nq

15: Set flag ← 1
16: end if
17: end if
18: end for
19: if flag = 0 then
20: Ntry ← Ntry + 1
21: end if
22: end while

The algorithm is given as Algorithm 1. Step 8 of the algorithm is carried
out by searching for a collision free configuration which would displace the
path away from the shadowing vertex responsible for the lowest velocity at
si. Step 11 adapts the displaced path as the new current path if its trajectory



Fig. 8. Remembering of previous scenes

time is less than the current path. Nattempts, is the number of unsuccessful
attempts at minimizing trajectory time before the algorithm halts.

3.5 Remembering Sensor Information

The computation of the velocity profile at a given point on the robot’s tra-
jectory incorporates the robot’s field of vision at that point. This field can
change appreciably between two successive instances of computation. For ex-
ample in Figure 8 the robot at position a has full field of vision of the corridor
that is transverse to the robot’s trajectory. However at position b the robot
is blind to the zone shown in darker shade of gray. Hence it needs to slow
down as it moves further down to c since it envisages the possibility of a mov-
ing object approaching it from the corners of the stationary objects. These
corners are the starting areas of the robot’s blind zone at b.

However, if the robot could remember the earlier scene, it could use this
to compute its velocity profile during execution of the planned path. In such
a case, if the robot did not see any moving objects in close proximity at a it
can make use of this information at b to have a velocity profile from b that is
greater than the one computed in the absence of such information. Figure 8
shows (in darker shade) the zone memorized by the robot. The contour of the
memorized area represents the blind zone of the robot at b, from where mobile
objects can emanate. The area in lighter shade of gray is the visibility polygon
for the robot at b. With the passage of time the frontier of the remembered
area shrinks due to the advancement of the imagined mobile objects from the
initial frontier. The details of this scheme are given below.



Fig. 9. Three categories of blind vertices

Remembering is fruitful when a (hitherto non-shadowing) vertex begins
to cast a shadow thereby hiding regions which were previously visible. The
set of all vertices that are currently visible, shadowing and were at some
prior instant visible, non-shadowing is denoted by V sns. For every vertex
ve ∈ V sns a corresponding vertex is associated and called the blind vertex.
The blind vertices are of three categories explained in Figure 9 where the
vertex a, non-shadowing for the robot at p becomes shadowing when the
robot is at q. Correspondingly the vertex c of the triangular obstacle which
was visible and shadowing when the robot was at p becomes invisible when
the robot moves to q. Simultaneously one of the other end-points of b, viz. a,
would also become inevitably invisible at q. Vertices like b fall in the second
category. If b was already outside Cvis at p the intersection of Cvis with the
segment ab, namely o is identified as the third category of blind vertex. The
set of all such vertices is denoted by V bs. These vertices are advanced by
a distance vob∆t where ∆t is the time taken by the robot between p and
q to new virtual locations along the line that connects those vertices to a.
At q the velocity is computed due to the closest of the vertices in the set
V bs at their virtual locations instead of a, which is otherwise the vertex for
which equation (2) is computed.. Such a trend continues till the distance
between the robot to the closest hypothetical vertex is less than the actual
distance of the robot to a. The remembering part of the algorithm is given
in Algorithm 2. The set of all visible shadowing vertices is denoted by V sh.

4 From Plan to Execution

The velocity profile, vτ (s), is a sequence of maximum velocities calculated
at discretized locations along the trajectory τ(s). The locations at which
the velocity profile at the execution stage is computed are not the same
locations as where the profile was computed during planning due to odometric
and motor constraints. Moreover, if there are changes in the environment it
entails modifying the trajectory and hence the velocities. During execution it



Algorithm 2 Remembering effects on velocity
1: for each vertex ve ∈ V sh do
2: if ve ∈ V sns then
3: for each vertex vb ∈ V bs associated with ve do
4: Advance vb by vob∆t
5: end for
6: Denote the distance from the robot’s current location, sc, to the closest of

all advanced vertices, vbc as dcvb

7: if d(sc, ve) < dcvb then
8: Compute velocity due to the virtual vertex vbc by Equation 2
9: else

10: Compute velocity due to the actual vertex ve by Equation 2
11: end if
12: end if
13: end for

is computationally expensive to compute the profile for the entire remaining
trajectory, hence the profile is computed for the next finite distance, given by,
dsafe = dmax +ndsamp, where dmax = v2

rm/(2∗a−m), represents the distance
required by the robot to come to a halt while it moves with the maximum
permissible velocity afforded by motor constants. And dsamp = vrmtsamp

is the maximum possible distance that the robot can move between two
successive samples (time instants) of transmitting motion commands, where
time between two samples is tsamp.

The main issue here is what should be the distance over which the velocity
profile needs to be computed during execution such that it is safe. A velocity
command is not considered safe if it is less than the current velocity and
not attainable within the next sample. The velocity is constrained by the
environment as well as robot’s own dynamics and hence their role are both
studied below.

Effect of Environment: Mobile objects that can emerge from corners in
a head-on direction cause the greatest change in velocity over two samples.
Figure 10 shows one such situation, where the rectangular object casts a
shadow and is susceptible to hide mobile objects. Let the current velocity of
the robot at a due to the object be v1. Let the velocity at a distance, s, from
a, at b (Fig. 10) due to the object be v2. Velocities at a and b are given by:

va = −vob +
√

v2
ob + 2a−md (8)

vb = −vob +
√

v2
ob + 2a−m(d− s) (9)

Hence we have:

v2
a − v2

b = 2a−ms + 2vob(
√

v2
ob + 2a−m(d− s)−

√
v2

ob + 2a−md) (10)



Fig. 10. The effect of the rectangular object that could hide possible mobile objects
on the robot’s velocity at locations a and b

Evidently the second term on the right hand side of Equation 10 is neg-
ative, since the second square root term is less positive than the first. Hence
v2

a − v2
b ≤ 2a−ms. Therefore the velocity at b, vb can be attained from the

velocity at a, va under maximum deceleration, dm, irrespective of the max-
imum velocity of the mobile object or the robot’s own motor constraints.
This was intuitively expected since the robot’s velocity at any location is
the maximum possible velocity that guarantees immobility before collision;
its velocity at a subsequent location permitted by the environment would be
greater than or equal to the velocity at the same location obtained under
maximum deceleration from the previous location. In other words, for safe-
ness of velocity going purely by environmental considerations it suffices to
calculate the velocity, for the next sampling distance alone, for without loss
of generality, d = dsamp.

Effect of robot’s dynamics: The robot needs to respect the velocity con-
straints imposed while nearing the clothoidal arcs and eventually while com-
ing to the target. The robot can reach zero velocity from its maximum velocity
over a distance of dmax, computed before. Hence dmax +dsamp represents the
safe distance over which the velocities need to be computed.

4.1 Online path adaptation for lower trajectory time

The third of the problems outlined in Section 2 is addressed here. During
navigation the robot in general comes across objects hitherto not a part
of the map. The robot reacts to these new objects in line with the basic
philosophy of safety as well as time reduced paths. The adaptation proceeds
by finding locations over a finite portion of the future trajectory where drops
in velocity occur and pushing the trajectory away from those vertices of the
objects that caused these drops to areas in free space where higher velocities
are possible. A search is made through the newly found locations of higher
velocities for a time reduced path.

Generalized Procedure: The generalized procedure for adapting the path
in presence of new objects is delineated through Figure 11.

1. On the trajectory segment that is currently traversed, AB in Figure 11,
enumerate the vertices of objects that reduce the velocity of the robot.



Fig. 11. A trajectory in the presence of new objects. The points marked with crosses
represent locations through which a path is searched for reduced time trajectory.

2. The positions are found on AB where the influence of vertices is likely to
be maximal.

3. These positions are pushed by distances dp = k(vl − vr), where vl and vr

are the velocities at that location on the path due to the most influential
vertices on the left and right of the path. These new locations are denoted
as p1, p2, p3, p4 (Fig. 11) and maintained as a list provided the velocity
at the new locations is higher than the original ones. p6 is the farthest
point on the robot’s trajectory visible from its current location at A

4. On this set of locations A, p1, p2, p3, p4, p5, p6 starting from the current
location at A, find a trajectory sequence shorter in time than the current
sequence of A,B, p6 if it exists.

5. The steps 1 to 4 are repeated until the robot reaches the target.

It should be noted that if a collision with an object is detected, a collision
free location is first found that connects the current location with another
location on the original trajectory and this new collision free path is further
adapted for a time-reduced path if it exists. Also, while the velocities are
computed over a distance dsafe, that part of the remaining trajectory that
is visible from the current location is considered for adapting to a better
time-length.

5 Analysis and Results at the Planning Stage

In this section the results of incorporating the velocity profile computation
as a consequence of considering robot and environment dynamics and sensor
capacities at the planning stage and the subsequent adaptation of paths to
better time of trajectory is analyzed. Figure 12-a shows the path computed
by a typical holonomic planner [9] and its corresponding velocity profile. The
velocity corresponding to the robot’s location on the trajectory (shown as a
small circle) is marked by a straight line labeled m on the profile. The dark
star-shaped polygon centered at the robot depicts the visibility of the robot
at that instant and is called the visibility polygon. The figure is a snapshot



Fig. 12. (a) Path computed by a typical planner and its velocity profile shown
on the top. The robot’s velocity corresponding to its location on the trajectory is
shown by a vertical line on the profile and labeled as m and (b) Path obtained after
adaptation to reduced time-length

of the instant when the robot begins to decelerate to a velocity less than half
the current velocity as it closes down on the vertex a marked in the figure.
Evidently from the visibility polygon the vertex a casts a shadow and the
closer the robot gets to it, the slower the velocity must be.

Figure 12-b is the time reduced counterpart of Figure 12-a. The snapshot
is once again at a location close to vertex a. Staying away from a permits
nearly maximum velocity. The dip observed in the profile due to vertex a is
negligible. Similarly staying away from other vertices such as b allows for a
trajectory time of 21.79s compared to 26.30s for Figure 12-a. Modification of
the trajectory for shorter time proceeds along the lines of Section 3.4. For the
two examples discussed, the robot’s maximum acceleration and deceleration
was fixed at 1m/s2, maximum velocity at 1m/s and the sensor range at
7m. The maximum bound on the object’s velocities was 1.5m/s. Figure 13
depicts the planned trajectory and velocity profiles before (left) and after
(right) reduction of trajectory time for our laboratory environment. The time
reduced trajectory is shorter by more than 8 seconds as it widens its field of
view by moving away from the bends while turning around them.

5.1 Effect of remembering on trajectory time

Figure 14 shows an environment with four corridors with a path obtained
by minimizing time. It also portrays the robot’s field of vision as it enters
a corridor. The velocity profile for the above path is shown in Figure 15.
The location of the robot corresponding to its location in Figure 14 is shown
through the vertical line. The locations of the robot as it decelerates when
its field of view of each of the corridors vanishes is also marked with the
respective numbers on the profile.

Though the path of Figure 14 is minimized in time its velocity profile
still shows decelerations in the vicinity of the corridors. This is due to the
phenomenon discussed in Section 3.5 where the robot becomes blind to many
parts of the environment it had seen at the preceding instant. However, when



Fig. 13. (a) Planned trajectory before adaptation to a reduced time and (b) Time
reduced trajectory at planning stage

Fig. 14. Computed path in an environment with four corridors

Fig. 15. Velocity profile for Figure 14. Position of the robot shown in vertical line.
Decelerations near the corridors are also marked with the same numbers

the robot is able to remember the previous images, the need to decelerate is
nullified and the trajectory time is further reduced. Figure 16 illustrates this
where the decelerations shown in the velocity profile of Figure 15 at locations
1, 2, 3 and 4 are now absent.



Fig. 16. The velocity profile obtained after incorporation of memory

6 Simulation and Experimental Results

6.1 Velocity profiles during planning and execution

In this section the velocity profiles obtained during planning and execution
stages are compared in the absence of any new objects during execution.
Figure 17-a shows a simple planned trajectory and the corresponding velocity
profile for our lab environment. Some of the obstacles are filled in gray and
others are shown as segments (in gray). The robot is shown as a small circle
and the star shaped polygon in black represents the field of vision of the robot
at that location. The vertical line, marked m in the velocity profile represents
the velocity of the robot corresponding to its position on the trajectory. The
profile shows a subsequent drop in velocity, a consequent of robot getting
closer to region marked, d, to which it is blind. Figure 17-b compares the
planned and executed (in simulation) velocity profile. The executed trajectory
tallied to a time of 12.28s in comparison with 12.25s for the planned profile.
These figures illustrate that the executed profiles and execution times are
close to the planned profiles and times while there are no changes in the
environment.

Fig. 17. (a) A simple planned trajectory and its velocity profile and (b) The
planned and executed velocity profile in simulation



Figures 19 and 20 show the execution by the Nomad XR4000 (Fig. 18) of
paths computed by a standard planner. Figure 19 corresponds to the original
path computed by the planner and Figure 20 is its time reduced counterpart.

Fig. 18. The Nomad XR4000 used in our experiments.

Fig. 19. Execution of the original planned path by the Nomad.

The velocity profiles during execution of the two paths are shown in Fig-
ure 21. Some of the bigger drops in the un-reduced profile are absent in
the reduced profile as the robot avoids turning close to the obstacles that
form the bends. The path of Figure 20 got executed in 12.9s while the path
in Figure 19 was executed in 13.98s. The figures are meant as illustrations
of the theme that trajectories deformed to shorter time-lengths at planning



Fig. 20. Execution of the time-reduced path by the Nomad.

stage are also executed in shorter time during implementation than their
un-reduced versions.

Fig. 21. The top profile corresponds to the path executed in Figure 19 and the
bottom to Figure 20.

6.2 Online adaptation of paths for better trajectory time

This section presents results of the algorithm in the presence of newly added
objects that affect the velocities of the robot in real-time. Figure 22-a shows
a path where the robot avoids the two new segments S1 and S2 intersecting
the original planned trajectory but does not adapt its path for better time.



The velocity profile for the same is shown in Figure 22-b. Figure 23 is the
counterpart of Figure 22 where the robot adapts its path to a better time-
length reactively. The big dips in the velocity profile of Figure 22-b are filtered
in Figure 23-b considerably as the robot avoids the obstacles with larger
separation. The time reduced execution tallied to 10.9s while the un-reduced
version was executed in 12.5s. The trajectory time at planning was 7.9s. The
above graphs are those obtained in simulation.

Fig. 22. (a) A simulated execution in the presence of two new segments S1 and
S2 along with the corresponding velocity profile. The path is not adapted to better
time-length. Start and goal locations marked as S and T and (b) The velocity
profile for the execution of Figure 22.

Fig. 23. (a) Path of Figure 22 adapted to better time-length and (b) The corre-
sponding velocity profile.

Figure 24 shows the un-reduced executed path by the XR4000 Nomadic
robot in our laboratory at LAAS. The obstacles in the original map are shown
by black lines, while the segments perceived by the SICK laser are shown in



Fig. 24. Un-reduced path executed by the Nomad XR4000. The vertex d of the
new box shaped object B forces a slow down near it.

lighter shades of gray. Some of these segments get mapped to the ones in the
map and the others are considered new segments. This is done by a segment
based localization algorithm. The segments of concern here are those which
form a box shaped obstacle marked B in Figure 24. The vertex d of this
obstacle casts a shadow on the robot’s sensory field, which forces it to slow
down at those locations due to Equation 2. The execution time for this un-
reduced path is 10.6s. The time reduced counterpart is shown in Figure 25
that tallied to 9.6s. The original planning time was 8.8s in the absence of the
box shaped object. The velocity profile for the same is shown in Figure 26.

7 Conclusions and Scope

A proactive safe planning algorithm and its reactive version that facilitates
real-time execution has been presented. The proactive nature of the algorithm
stems from the computed velocity profile, vτ (s), that guarantees immobility of
the robot before collision with any of the possible mobiles that could interfere
its future trajectory from regions blind to its sensor. The proactivity does not
however come at the cost of robot’s velocity or trajectory time. The knowledge
of vτ (s) computed over the trajectory τ(s) further facilitates reduction of the
over all trajectory time T (τ) by adaptation of the initially planned path.
Analysis of the scheme at the planning stage depict that the robot can have
a velocity profile that achieves its maximum possible velocity for a sustained
duration without many dips provided it stays away from doorways and narrow
passages along its path. Memory of previously observed scenes also enhance



Fig. 25. Time reduced path executed by the Nomad XR4000. Increasing linear and
angular separation from vertex d facilitates a higher speed.

Fig. 26. Velocity profile for the path executed by the Nomad in Figure 25.

the robot’s performance through reduced trajectory time and a more uniform
velocity profile.

A reactive extension of the scheme that facilitates real-time simulation
and implementation is also presented. The scheme maintains the underlying
philosophy of computing safe velocities and modification of paths for better
trajectory time. Simulation and experimental results at real-time corroborate
our earlier results obtained at the planning stage (that by keeping away from
vertices of objects that could hide mobiles the robot could move at higher
velocities and obtain better time-lengths) and thus the efficacy of overall
strategy is vindicated. The minimum distance over which the velocities need
to be computed on the remaining trajectory during real-time such that the
computed velocities are safe is theoretically established. This avoids repeti-
tive computation of velocities over the entire remaining trajectory for every



motion command, thereby reducing computational intensity and facilitating
for real-time implementation. The methodology could be useful in the context
of personal robots moving in areas where interference with mobile humans
especially aged ones are generally expected.

Immediate scope of this work involves incorporating memory of phenom-
ena at the reactive level such that higher speeds are possible. The method-
ology needs to be validated in the presence of mobile objects that actually
impinge on the path from blind zones with a provision for the robot to avoid
the objects without halting continuing to respect safety considerations as well
as minimizing trajectory time.

Acknowledgments

The work described in this paper was conducted within the EU Integrated
Project COGNIRON (”The Cognitive Companion”) and was funded by the
European Commission Division FP6-IST Future and Emerging Technologies
under Contract FP6-002020 and by the French National Program ROBEA.

References

1. R. Alami, T. Simeon, and K.Madhava Krishna. On the influence of sensor ca-
pacities and environment dynamics onto collision-free motion plans. IEEE/RSJ
International Conference on Intelligent Robots and Systems, EPFL, Swizerland,
2002.

2. J.C. Alvarez, A. Skhel, and V. Lumelsky. Accounting for mobile robot dynamics
in sensor-based motion planning: experimental results. IEEE International
Conference on Robotics and Automation, Leuven (Belgium), 1998.

3. B. Bouily, T. Simeon, and R. Alami. A numerical technique for planning motion
strategies of a mobile robot in presence of uncertainty. IEEE International
Conference on Robotics and Automation, Nagoya (Japan), 1995.

4. D. Cruzel. Planification de mouvements sous contraintes de perception. Mas-
ter’s thesis, LAAS-CNRS, 1998.

5. P. Fiorinin and Z. Schiller. Motion planning in dynamic environments using
velocity obstacles. International Journal of Robotics Research, 17(7):760–772,
1998.

6. S. Fleury, P. Soueres, and J.P. Laumond. Primitives for smoothing mobile robot
trajectories. IEEE Transactions on Robotics and Automation, 11(3):441–448,
1995.

7. M. Khatib, B. Bouily, T. Simeon, and R. Chatila. Indoor navigation with
uncertainty using sensor-based motions. IEEE International Conference on
Robotics and Automation, Albuquerque (USA), 1997.

8. K.Madhava Krishna, R. Alami, and T. Simeon. Moving safely but not slowly
- reactively adapting paths for better trajectory times. IEEE International
Conference on Advanced Robotics, Quimbra, Portugal, 2003.

9. J.C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.
10. A. Lazanas and J.C. Latombe. Motion planning with uncertainty: a landmark

approach. Artificial Intelligence, pages 287–315, 1995.



11. J. Minguez and L. Montano. Nearness diagram navigation. a new real-time col-
lision avoidance approach. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2000.

12. N. Roy and S. Thrun. Motion planning through policy search. IEEE/RSJ
International Conference on Intelligent Robots and Systems, EPFL, Swizerland,
pages 2419–2425, 2002.

13. Z. Schiller, F. Large, and S. Sekhavat. Motion planning in dynamic environ-
ments: Obstacles moving along arbitrary trajectories. IEEE International Conf.
on Rob. Automat., pages 3716–3721, 2001.

14. C. Strachniss and W. Burgard. An integrated approach to goal-directed obsta-
cle avoidance under dynamic constraints for dynamic environments. IEEE/RSJ
International Conference on Intelligent Robots and Systems, EPFL, Swizerland,
2002.

15. S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visi-
bility polygons with holes. ACM Symp. on Computational Geometry, 1986.


