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Abstract. The purpose of this paper is to present a framework for comparing different candidate
architectures for the same system. To this end, we propose a rigorous approach for homogeneously
modelling different architectures. Starting with the functional specifications of the system, we derive
a functional-level model that is used to construct a high-level dependability model for each architec-
ture, using well-defined, formal construction rules. Our modelling approach is then applied to three
possible architectures of an instrumentation and control system, and an example of a comparative

analysis of these systems is provided.

1 Introduction

The process of defining and implementing an instrumentation and control (I&C) system can be
viewed as a multi-phase process, starting from the issue of a Call for Tenders by the stakeholder.
The call for tenders gives the functional and non-functional (i.e., dependability) requirements
of the system. Several systems’ suppliers respond by proposing potential systems satisfying the
specified requirements. In a first step, a pre-selection process, according to particular criteria,
allows the stakeholder to keep two or three candidate systems identified as the most suitable
ones. The comparative analysis of the pre-selected candidate systems, in a second step, allows
the selection of the most appropriate one, referred to as the retained system. The latter is refined
and thoroughly analysed to go through the qualification process.

Dependability modelling and evaluation constitute a good support for both the selection and

the refinement processes of the retained system. The main purpose of our work is to help the



stakeholder in this modelling task. Without a well-defined approach, modelling can be tedious
and error prone. To this end, we have defined a rigorous, systematic and progressive modelling
approach that can be easily used to select the most appropriate system and to model it thor-
oughly. Thus, this approach can also be used by any system’s developer, even in a different
system design and implementation process, based on comparison of potential systems.

Modelling can start as early as system functional specifications, from which a functional-
level model is derived. A high-level dependability model is then constructed for each candidate
system, based on the functional-level model and on the knowledge of the system’s structure.
The model of the retained system can be refined to include more details about the system, in
order to obtain accurate results of the dependability evaluation.

This paper concentrates on the construction of the dependability models of the candidate
systems, to select the most appropriate one. Three different 1&C systems are used to illustrate
our approach. In order to simplify the construction of each high-level dependability model, a
library of basic models is developed. This library allows modelling of all components of the three
candidate systems, with minimal modifications. Finally, an example of a comparative analysis
of the systems is presented.

This paper elaborates on our previous work [3, 5]. [3] is devoted only to the construction of
the high-level dependability model from the functional-level model, and [5] puts more emphasis
on the refinement of the high-level dependability model into a detailed model. Neither of them
refers to the comparison of the three 1&C systems, particularly to the library of basic models
and the results of the comparative analysis. The complete study is presented in [4].

The remainder of the paper is organised as follows. Section 2 is devoted to the presentation of
the modelling approach. Section 3 presents the three 1&C systems of our study. The application

of the proposed approach to these systems is given in Section 4, and Section 5 concludes the

paper.

2 Modelling Approach

Our modelling approach follows the same steps as the 1&C system design and implementation

process: It is also performed in three steps as described in Figure 1.

Step 1. Derivation of a functional-level model based on the system’s specifications.



Step 2. Construction a high-level dependability model, based on the functional-level model and
on the knowledge of the system’s structure. There is one for each pre-selected candidate
system. The aim of this step is to compare the pre-selected candidate systems, based on
dependability evaluation.

Step 3. Refinement of the high-level dependability model, based on the detailed architecture of
the retained system. The aim is to evaluate dependability figures as accurate as possible

and to make sensitivity studies with respect to detailed system implementation.

As highlighted in Figure 1, this paper specifically addresses the first and second steps.
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Fig. 1. Various steps of 1&C definition and implementation, and modelling

The functional-level model gives a global overview of system’s functions and helps analysing
dependencies between the various functions. It is composed of a set of states corresponding to
the functions’ accomplishment states and a link model that is not known nor specified at this
stage. The link model can only be built once the structure of the system is specified. Once it is
built, the functional-level model becomes a dependability model. The link model is composed
of the structural model (modelling the system’s architectural behaviour in presence of faults)
and an interface model between the functions’ states (functional-level model) and the structural
model.

The functional-level model cannot be processed per-se. Only the dependability models can
be processed to obtain dependability measures. Dependability models are based on Generalised

Stochastic Petri Nets (GSPN) due to their ability to cope with modularity and model refinement



[1]. The GSPN model is processed to obtain the associated dependability measures (i.e., avail-
ability, reliability, safety, ...) using an evaluation tool such as SURF-2 [2], DEEM [7], SPN (8]
or UltraSAN [14].

In the rest of this section, we will first describe the functional-level model, then give a global

overview of the link model before addressing successively the interface and structural models.

2.1 Functional-level Model

The system’s functional-level model is the starting point of our approach. This model is inde-
pendent from the underlying system’s structure. Hence, it can be built as early as the call for
tenders.

The system’s functional-level model is formed by places representing the possible states of
functions. For each function F!, the minimal number of places is two (Figure 2): One representing
the function’s nominal state (F) and the other its failure state (F). Between these two states, we
have the events that manage changes from F to F and vice-versa. These events are inherent to
the system’s structure that is not specified in this step as it is not known yet. We call the model
that contains these events and the corresponding places, the link model (Mg,). Note that the set
{F, My,, F} that constitutes the system’s GSPN model, will be completed once the architecture

system is known?.

ML =Link Model

ul

Fig. 2. Functional-level model related to a single function

Most of the times though, systems perform more than one function. If this is the case, one
has to look for dependencies between these functions due to the communication between them.
We distinguish two degrees of dependency: Total dependency and partial dependency.

! For the sake of simplicity, the nominal place of the model, associated with a function, has the same name as

the function itself.
2 This modelling approach is applicable in the same manner when there are several failure modes per function.



Case (a) Total dependency — Fa totally depends on F1, noted Fy <P Fy. In this case, if F; fails,
Fy also fails, i.e. (M (F1) =1) = (M (F2) = 1), where M (F) represents the marking
of place F. This means that the probability that F9 fails equals the probability that
Fy fails, times the probability that Fo fails due to the failure of its components;

Case (b) Partial dependency — F9 depends partially on F1, noted Fy <= Fy. In this case, although
F1’s failure does not induce Fy’s failure, i.e. (M (Fl) = 1) # (M (Fg) = 1), Fy is
affected. In fact, Fq’s failure puts Fy in a degraded state that is represented by place

Fo4. Fog will be marked whenever Fy is in its failure state and F9 in its nominal one,

ie. M (Fgq) =14 (M (F1) =1) A(M(Fg) = 1). This case is illustrated in Figure 3.

—= Arc
<— Doublearc
—o Inhibitor arc

— Immediate transition

Fig. 3. Partial functional dependency (Fy < F1)

2.2 Link Model

The link model gathers the set of states and events related to the architectural behaviour of the
system. The first step in constructing this model consists in the identification of the components
associated with the system’s functions. Thus, we identify the nominal and the unavailability
states of each component. We then built the interface between the functional-level and structural
models. To illustrate the transition from the functional-level model to the structural one, we

consider the following complete set of cases:

Case A. Single function: In this case, several situations may be taken into account. A function
can be performed by:
A.1. A single software component on a single hardware component;
A.2. Several software components on a single hardware component;
A.3. A single software component on several hardware components;

A.4. Several software components on several hardware components;



Case B. Several functions: Again two situations can take place:
B.1. The functions have no common components;

B.2. The functions have some common components.

Note that the models presented in this section are not complete. Rather, we put emphasis
on the interface between the functional-level and the structural models. Examples of complete

models are given in Section 4.
Case A. Single function.

A.1. Let us suppose function F carried out by a software component S and a hardware compo-
nent H — Figure 4. Then, F and F markings depend upon the markings of the hardware and

software component models. More specifically:

e F’s up state is the combined result of H’s up state and S’s up state.

o F’s failure state is the result of H’s unavailability or S’s unavailability.

M M
LM,
ML = Link model
I= MI = Interface model

M g = Structural model

State Definition

H,x |hardware’s up state

Hj, |hardware’s unavailability state

Sok |software’s up state

Sko [software’s unavailability state

Fig. 4. Interface model of a function executed by 2 components



The behaviour of H and S is modelled by the so-called structural model (Mg) and then it is
connected to F and F through an interface model referred to as M. The link model (M) is thus
made up of the structural model (Mg) and of the interface model (My):
My, = Mg + Mj. This interface model connects hardware and software components with their
functions by a set of immediate transitions. Note that there is only one interface model but to
make its representation easier, we split it into two parts: An upstream part and a downstream

part.

A.2. Consider function F performed by two software components S; and Sy on a hardware

component H, in which case we have to consider two situations:

e S; and Sy redundant (Figure 5(a))

i. F’s up state is the combined result of H’s up state and S; or Sy’s up states:
M(F) =1& (M (Hok:) =1 A [M (Slok') =1 Vv M (Sgok) = 1])

ii. F’s failure state is the result of H’s unavailability or S;’s unavailability and So’s

unavailability:
MF) =16 M(Hg) =1 V [M(Siko) =1 A M (Sap) = 1])

e S; in series with So (Figure 5(b))

i. F’s up state is the combined result of H, S; and So’s up states:
MEF)=1e M(Hp) =1 A M(Sik) =1 A M (Sg) =1)
ii. F’s failure state is the result of H’s unavailability or S; or So’s unavailability:
MEF) =16 (M(Hg) =1V M(Siko) =1 V M (Sgg) = 1)

A.3. The case of function F performed by a single software on several hardware components, is

essentially similar to the previous one;

A.4. Suppose function F performed by a set of N components:



(8) S; and S, redundant (b) Sy in serieswith S,

Fig. 5. Link model of F performed by two software components on a hardware component

i. If all components, under the same conditions, have different behaviours, then the struc-
tural model will have N nominal places. This case corresponds to a generalisation of
Case A.1.

ii. If some of the N components, under the same conditions, have ezactly the same behaviour,
their structural models are grouped. In this case, the structural model will have (Q nominal

places (Q < N).

Case B. Consider two functions (the generalisation is straightforward) and let {Cy;} (resp.

{Ca;}) be the set of components associated to Fy (resp. Fa).

B.1. Fy and Fy have no common components, {Cy;} N {Cg;} = 0. The interface models related
to F1 and Fg are built separately in the same way as explained for a single function.
B.2. F; and Fy have some common components, {Cy;} N {Ca;} # 0. This case is illustrated on
a simple example:
e I performed by three components: A hardware component H and two redundant soft-
ware components S11 and Sqa. F; corresponds to case (a) — Figure 5.
e Fy performed by two components: The same hardware component H as for F1 and a
software component So;. Fo corresponds to Case A.1. of Figure 4.
Their model is given in Figure 6. It can be seen that i) both interface models (M7 and Mp9)
are built separately in the same way as before, and ii) in the global model, the common

hardware component H is represented only once by a common component model.



Fig. 6. Example of two functions executed on the same hardware component

2.3 Interface Model

The interface model My connects the system’s component states with their function states by a
set of transitions. This model is a key element in our approach. It can be built in a systematic
way in order to make the approach re-usable and to facilitate the construction of several models
related to various systems.

In this section the general organisation of the interface model is presented. Interfacing rules
have been defined in formal terms [4]. However, the main rules are stated, in an informal manner,
hereafter.

Upstream and downstream M7 have the same number of immediate transitions and the arcs

that are connected to these transitions are built in a rational way:

e Upstream Mj: It contains one function transition tiF for each series (set of) component(s),
to mark the function’s up state place, and one component transition tcy for each series, dis-
tinct component that has a direct impact on the functional model, to unmark the function’s
up state place.

- Each tiF is linked by an inhibitor arc to the function’s up state place, by an arc to the
function’s up state place and by one bidirectional arc to each initial (ok) component’s
place;

- Each toy is linked by an arc to the function’s up state place and by one bidirectional arc

to each failure component’s place.



e Downstream Mj: It contains one function transition t’iF for each series (set of) compo-
nent(s), to unmark the function’s failure state place, and one component transition t’cy for
each series, distinct component that has a direct impact on the functional model, to mark

the function’s failure state place.

- Each t’% is linked by an arc to the function’s failure state place and by one bidirectional
arc to each initial (ok) component’s place;

- Each t'cy is linked by an inhibitor arc to the function’s failure state place, by an arc from
the function’s failure state place and by one bidirectional arc to each component’s failure

place.

2.4 Structural Model

In order to build the interface between the functional-level and the structural models, we have
identified the components implementing each function, and thus the components’ nominal and
unavailability state places in the structural model.

For several reasons, the first structural model that is built, starting from the functional-level
model, may not be very detailed. One of these reasons could be the lack of information in the
early system’s definition and implementation phases. Another reason could be the complexity
of the system to be modelled. Indeed, to master this complexity, the structural model is built
at a high-level of detail using any of the many existing modular modelling approaches (see e.g.,
[6,9,10,13]), and then refined progressively.

Figure 7 represents a simple example of a high-level dependability model composed of two
components: A hardware component and a software component. It corresponds to the complete
model of Figure 5. For each of these components, we considered two states: Nominal and unavail-
ability. Transitions between these two states are ruled by events of failure (transitions T; and
T3) and restoration (transitions T9 and T4). These are timed transitions. It is worth noting that
there is a dependency between these two components. Indeed, when a hardware component’s
failure occurs, the software component is stopped (immediate transition ¢; and place Sg;). This
last one will be restarted once the restoration of the hardware component is completed. Also, we

took into account the possible hardware’s failure after the failure of the software. In this case:

e If the software component is restored before the hardware’s restoration is completed, it will
be put on hold until the hardware is up again. Then, and just then, the software component

will be restarted;

10



e If the hardware component is restored before the software component, then the token from

place S, will be removed. This is modelled by immediate transition ts.

Note that we consider two unavailable states for the software component: The fail state,
corresponding to place Syq;, and the software’s stop after a hardware’s failure, corresponding to
place Sg:. The interface between the structural and the functional-level model stays unchanged
due to place Sg, that will be marked on both cases. All state and transition definitions are

presented on the figure’s tables.

Dependency net

777777777777777777777777777777777777777777777777777777777777777777777

| Hardware Software !
Places Definition
Transition|Rate Definition
H,r |hardware’s up state
T A |failure of the hardware component
Hj, |hardware’s unavailability state
T» vy, |repair of the hardware component
Sor |software’s up state
T3 As |failure of the software component
Sko |software’s unavailability state
T4 Vs |restoration of the software component
Stail |software’s failure state
Trs p |restart of the software component
Ss¢ |software’s standby state

Fig. 7. Example of a high-level dependability model

Once the high-level model is built, it can be refined in order to have more accurate depend-
ability measures. In [5] we define rules for model refinement according to three perspectives:
a) Component decomposition, b) State and event fine-tuning and c) Distribution adjustment.

They are not specifically addressed in this paper.

11



3 Presentation of the Considered 1&C Systems

In this section, we present the main functions of an 1&C system and its functional-level model.

Then, we present examples of three very different candidate systems to show how, with our

modelling approach, they can be easily modelled in an homogeneous way. We have defined these

three hypothetical systems based on real-life I1&C systems in order to form a set of different

possible realisations for the considered I1&C application. The dependability of these systems is

modelled and compared in Section 4.

3.1 Functional Description

An I&C system performs five main functions: Human-machine interface (HMI), processing (PR),

archiving (AR), management of configuration data (MD), and interface with other parts of the

I& C system (IP) Figure 8. The arrows in the figure represent the interactions between these

functions.

AR } HM| }

}PR%\HD\

MD

Fig. 8. Five main functions of an 1&C system

The functions are linked by the partial dependencies given in column 1 of Table 1. Taking

into account the fact that a system’s failure is defined by:

MHEMI) =1 vV MPR)=1 Vv M(IP)=1

the above dependencies can be simplified as given in column 2 of Table 1.

Table 1. Functional dependencies of 1&C systems

Functional dependencies

Simplified dependencies

HMI « {PR, AR, MD}

HMI « {AR, MD}

PR « {HMI, MD, 1P}

PR < MD

AR « {HMI, MD}

AR < MD

IP + {PR, MD}

IP <> MD

12



These relations are translated by the functional model depicted in Figure 9, where the dotted
rectangles identify the five partial dependencies of Table 1’s column 2. The model for each

function corresponds to the one given in Figure 2.

Fig. 9. Functional-level model for I&C systems

3.2 Three Examples of 1&C Systems

The three 1&C systems’ architectures considered in our study are depicted in Figure 10.

System_1 (Figure 10(a)) is composed of thirteen nodes connected by a Local Area Network
(LAN). Note that each node executes a single function. Nodes 1 to 10 are composed of a computer
each. Nodes 11, 12 and 13 are fault-tolerant: They are composed of two redundant computers
each. Also, nodes 12 and 13 are complementary (i.e., they interface complementary parts of the
I&C system).

System_2 is composed of five nodes connected by a LAN. The mapping between the various
nodes and functions is given in Figure 10(b). Note that while HMI is executed on four nodes,
node 5 runs three functions. Nodes 1 to 4 are composed of one computer each. Node 5 is fault-
tolerant: It is composed of two redundant computers.

Nodes 1 to 3 of System_3 (Figure 10(c)) are composed of a single computer each running a
single function. Node 4 is fault-tolerant: It is composed of three redundant computers (usually

referred to as a TMR — Triple-Modular Redundancy).

13



Nodel1ll Node12 Node 13
Node 1 Node8 Node9 Node 10
PR PR P P ] P
HMI | *** | HMmI AR MD
(a) System_1
LAN
Node 5
Nodel Node2 Node3 Node4 AR AR
HMI PR PR
(b) System 2 HMI HMI HMI MD P P
LAN
Node 4
Nodel Node2 Node3 VD VD VD
PR PR PR
(C) System 3 HMI HMI AR P P P
LAN

Fig. 10. Three examples of 1&Cs’ systems
These systems were chosen for their diversity of architectures and of redundancy techniques.
For example in System_1, every component executes a single function, while in System_2 and
System_3, some components execute more than one function.

The three techniques of replication used in the above architectures are [12]:

e Passive replication: Only one of the n parallel replicas (n > 2) processes the input messages
and provides output messages (active replica). The other (passive) replicas do not process
the input messages. In case of unavailability of the active replica, one of the passive replicas
becomes active;

e Semi-active replication: Only one of the two replicas processes all input messages and pro-
vides output messages (primary replica). The other replica (secondary) is active since it also
processes the input messages even though it does not provide any output messages. In case
of fault occurrence or activation in the primary, a switch from the primary to the secondary
replica is performed;

e Active replication: The three replicas process all input messages concurrently so that their
internal states are closely synchronised — in the absence of faults, outputs can be taken from
any replica as long as at least two replicas are in the nominal state. In case of fault occurrence

or activation, the error is masked.
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For the two later cases, the switch/masking is done with a given probability of success,
referred to as coverage factor.

Table 2 summarises the redundancy type (if existing) of each node. Non-redundant nodes are
referred to as single nodes. We assume that each hardware component hosts a single software
component. A hardware component with its associated software replica is referred to as a unit.
To conclude, at this level of detail all redundancy cases are modelled by one of these three cases
of replication/error recovery. Thus, we will refer to them respectively as: Passive redundancy,

semi-active redundancy, and active redundancy or TMR.

Table 2. Node and redundancy type for the three studied architectures

Redundancy

System ||Node
Replication |Recovery

#1-8 passive —
#9 single —
System_1 || #10 single -

#11 ||semi-active| switch

#12 ||semi-active| switch

#1-3 passive —
System_2 || #4 single -

#5 ||semi-active| switch

#1-2 passive -

System_8 || #3 passive -

#4 active | masking

4 Modelling of the 1&C systems

To simplify the model’s construction for the three systems, we have built a library of basic
models which, with minimal modifications, allow the efficient modelling of the given systems.
Before giving an overview of the global model of the three defined systems, we present the

models’ library.

4.1 Basic Models

The basic models are given for a single function at a high-level. They can be refined according

to the rules given in [5]. These models correspond to the four redundancy types identified in

15



Table 2; respectively: i) A single unit, ii) passive redundancy, iii) semi-active redundancy, and
iv) active redundancy. These models are presented in the rest of this section. For a complete

description of the replica management see e.g. [12].

Single Unit This first model is given in Figure 11.

F

T2

T
) r
S

T

Hio t

#Sﬁﬁ

'n; g
3

Transition|Rate Definition
T1 An |hardware’s fault occurrence
T vy, |hardware’s repair
Ts As |software’s fault activation
Ty vs |software’s reinitialisation after software’s failure
Trs ps |software’s restart after hardware’s repair

Fig. 11. High-level dependability model of a single unit

The rates, corresponding to the timed transitions managing the state changes, are given in
the figure’s table.

In this case, when a hardware component becomes unavailable (timed transition T;), the
associated software component is stopped. This is modelled by place Sg; and immediate transition
t. The software will be restarted (timed transition T,s) once the hardware’s repair has finished.

It is worth noting that we distinguish the case where the software component fails (corre-
sponding to place Sgqi), from the one where the software is stopped following a hardware’s
unavailability (corresponding to place Sg;). Indeed in the first case, the software’s failure may

need a longer maintenance intervention, compared to the software’s restart needed after a hard-

16



ware failure. Thus, place Sg,, representing the unavailability state of the software component, is

marked either when the software component is stopped or when it fails.

This model completes the one of Figure 4. In particular, places Hyx, Sor, Hro and Sg, are

the same.

Passive Redundancy Function F is performed as long as at least one unit is up — Figure 12.

I BV
Sok
Ty
Stail
E
Transition Rate Definition
T, An M(H,k) |hardware’s fault occurrence

Ty |73 hardware’s repair

Ty As M(Sor) |software’s fault activation

Ty Vs software’s reinitialisation after software’s failure

T,s Ps software’s restart after hardware’s repair

Fig. 12. High-level dependability model for passive redundancy

As in the previous case, when a hardware component becomes unavailable, the associated

software component is stopped.

The main difference between this model and the previous one is that, in this case, we need a
buffer to collect the software components that are stopped following a hardware unavailability
(place Sg1) and another one to allow software’s restart (place S;s). Note that this model is a

generalisation of the one depicted in Figure 11.

17



Semi-Active Redundancy There is a primary unit and a secondary one, their model is
presented in Figure 13. This model is obtained by composition of two models of Figure 11 and

a switch model.

=4~

Tou .
Hlok% . S10k
3
T R LS
tsnt T Hio Sis {
tl—li—’—ft Elfajl
5
4HL $ 1ko

Transition |Rate Definition

T1/Ts | An |primary/secondary hardware’s fault occurrence

T2/Te | vn |primary/secondary hardware’s repair

Ts/T7 | As |primary/secondary software’s fault activation

T4/Ts | vs |primary/secondary software’s reinitialisation after software’s failure

Trs1/Trs2| ps |primary/secondary software’s restart after hardware’s repair

Tew B |switch from the primary to the secondary
Transition |Probability Definition
ts c switch success following a primary hardware failure
t4 c switch success following a primary software failure
ts 1—c¢ |switch failure

Fig. 13. High-level dependability model for semi-active redundancy

If the primary unit fails due to the failure of one of its components, the internal fault tolerance
mechanisms switch over to the secondary unit that becomes primary. The switching time is 1/
and the associated transition is Tg,. The coverage factor (i.e., the conditional probability that
the switch succeeds given the failure of the primary) is ¢ (immediate transitions t3 and t4). Thus,

the switch fails and the function is lost with probability 1 — ¢ (immediate transition ts).

18



Active Redundancy The last basic dependability model considered in our library corresponds
to the active replication technique with masking error compensation (TMR) — Figure 14.

In this case, the function is performed as long as there are at least two units in the ok state.
The model of Figure 14 is an adaptation of the one in Figure 12. The main difference between
this model and the one depicted in Figure 12 is the token number in places Hy and S,x and the

weight of the arcs that manage the failure and restoration of function F.

Transition Rate Definition
Ty An M(Hor) |hardware’s fault occurrence
Ty Vh hardware’s repair

Ts As M(Sor) |software’s fault activation

Ty Vs software’s reinitialisation after software’s failure

Tys Ps software’s restart after hardware’s repair

Fig. 14. High-level dependability model for a TMR

4.2 Adaptation of the Basic Models

It is worth mentioning that the model given in Figure 12 is a generalisation of Figure 11, the
one of Figure 13 is a composition of two models of Figure 11, and finally, the model of Figure 14
corresponds to the one given in Figure 12 with a slight modification.

Before giving the respective high-level dependability models of the three systems, we present
an example of the modifications that can be made to the basic models to take into account
more than one function (the basic models are given for a single function). Let us consider two

functions implemented on the same hardware computer.

19



Two Functions on the Same Hardware Component The general model for this case is
given in Figure 15. This model is obtained by composition of two models of Figure 11 but the
hardware model is not duplicated. To built this model we follow the interface rules given in
Section 2.3.

In this model, we consider each function executed by a single software component.

Transition Rate Definition
T, An M(H,k) |hardware’s fault occurrence
Ty |73 hardware’s repair

Ts As M(Sor) |software’s fault activation

Ty Vs software’s reinitialisation after software’s failure

T,s Ps software’s restart after hardware’s repair

Fig. 15. High-level dependability model for two functions on the same hardware component

4.3 Models of the Three Systems

Using the above presented basic models (with or without modification), we built the complete
high-level dependability model for each architecture. Table 3 recalls the composition of these
architectures as given in Table 2, and shows the associated basic model’s figures. System_2’s
node 5 and System_3’s node 4 models are adaptations of Figure 13 and Figure 14 respectively.
Their adaptations are done in a similar way as the one presented in Figure 15.

Note that we have considered the LAN as a single net. If it is redundant, its model is either
similar to the one of Figure 12 with n = 2 (if it is in passive redundancy) or to the one of

Figure 13 (if it is in semi-active redundancy).
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Table 3. Corresponding models for the three studied architectures

‘ System H Node H Model
#1-8 Figure 12 with n=8
9,#10 Figure 11
System._1 #9.# &
F#11, #12, #13 Figure 13
LAN Figure 11
#1-3 Figure 12 with n=3
4 Figure 15
System_2 # s
#5 Figure 13, with 3 functions
LAN Figure 11
#1-2 Figure 12 with n=2
3 Figure 11
System_3 # §
#4 Figure 14, with 3 functions
LAN Figure 11

4.4 Comparison of the Three Systems

Once the high level dependability models are built, several comparative analysis can be per-
formed. For example, the systems’ dependability measures (like availability or reliability) or the
choice of redundancy (like the number of HMI nodes) can be compared.

Regarding the comparison of dependability measures, appropriate values should be given to

the dependability models’ parameters. We consider two classes of parameters:

e Those referring to the components’ failure and restoration rates;

e Those referring to the fault tolerance mechanisms (e.g., coverage factors).

For rates like failure or restoration we can rely on statistical data obtained by feedback
information on similar components or systems. Indeed, most of the time, the proposed systems
are mainly composed of Components-Off-The-Shelf. For instance, this is the case for the current
System_1, System_2 and System_3.

When it comes to parameters directly related to the fault tolerant mechanisms, a sensitivity
study enables the identification of the most impacting ones. Specific analyses are required to
measure them. Such analyses might involve experimentation on the real or a prototype system,
using fault injection, if necessary.

We have performed a comparative analysis of the systems, regarding two parameters: i) The

switching time between the primary and the secondary units (parameter 1/4) and ii) the coverage
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factor (parameter c) (both parameters of Figure 13). Note that the analysis concerns System_1
and System_2 given that System_8 has no components with semi-active redundancy.

Our goal is only to show the kind of results that can be provided to the stakeholder when
using the modelling approach presented in this paper. To this end, we used classical values for
the models’ parameters. Results have where obtained using the SURF-2 tool [2]

Figure 16 presents the annual unavailability of System_1 and System_2, as a function of the
switching time (1/5) for ¢ = 0.95. It is expressed in hours per year, to make the interpretation

easier that when it is expressed in terms of probabilities.

¢ L’ ) m - & -System_1
£ Pl - —#— System_2
P
L

Switching time

Fig. 16. Annual unavailability of System_1 and System_2 with ¢ = 0.95

We notice that when the switching time is increased, System_1 is more sensitive to this
variation than System_2. This can be explained by the fact that System_1 has three components
dependent on these two parameters, whilst System_2 has only one.

Also, we notice that for a small switching time (1/8 = 30s or 1min), the value of System_1’s
annual unavailability is smaller than System_2’s. However, when we increase the switching time
(1/8 = 5min or 10min), this trend is reversed.

When we increase the coverage (¢ = 0.98, Figure 17),

e The difference between the two systems when the switching time is small (1/8 = 30s) is
more significant, 8h against 2h when ¢ = 0.95;

e The trend is reversed for a longer switching time, 1/ = 5min instead of 1/8 = 1 min when
c = 0.95;

e Also, after the trend’s reverse, the gap between the annual unavailability values of both

systems is shorter (14h against 20h when ¢ = 0.95).
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Fig. 17. Annual unavailability of System_1 and System_2 with ¢ = 0.98

Finally, considering the same system for the two values of ¢, it can be seen that System_1I is
more sensitive to ¢ than System_2. Improving ¢ from 0.95 to 0;98, the unavailability is reduced
by at least 10 hours per year for System_1, while it is only reduced by 2 to 3 hours for System_2.
Hence the values of ¢ and 1/ impacts more System_1 than System_2.

All these analyses show that it is really important to have the most realistic values for the
parameters, to allow a fair and relevant comparison of the systems.

Assuming that the considered failure and repair rates are not far from reality, the kind of

conclusions the stakeholder can make are, for example:

— If 1/8 = 10 mn, then for all values of the ¢ parameter, the safest case is obtained for System_2;

— If 1/8 = 5 mn, the value of parameter ¢ has an important role in the conclusions. The safest

case is still System_2;

— If 1/ < 1mn, then for all values of the ¢ parameter, the safest case is obtained for System_1;

However, the above results should be consolidated by sensitivity analyses to i) Identify the
most significant parameters and ii) evaluate the impact of these parameters.

These examples of results also show the kind of analysis we can provide to the stakeholder
and the conclusions he/she can make based on the results as well as their knowledge about
their specific system. Indeed, the stakeholder usually has more information about the specific
class of systems he/she is interested in and most of the time he/she can obtain complementary
information from the possible contractors. Thus, more comparative analyses could be made. They
might suggest contradictory choices according to the parameters considered. The stakeholder

might have to make some choices based on some trade-offs.
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5 Conclusions

In this paper we have briefly presented a modelling approach for comparing the dependability of
candidate systems for an 1&C system and illustrated it on three I&C systems. To make system’s
modelling efficient, a library of basic models is created, allowing us to model all the components
of the considered systems’, with minimal modifications. Some results concerning the comparison

of the three systems are given.

Even though the starting point of our work was a particular I1&C system, the modelling
approach presented in this paper is applicable to other categories of systems. One of the main
features of this approach is its ability for modelling a set of candidate systems, for a given
application, in a homogeneous way to make the comparison as fair as possible. The first step
consists in building a functional-level model based on the system’s specifications that are common
to all candidate systems. This functional-level model is thus independent from any system’s
realisation. Then this model is transformed into a high-level dependability model, based on the
integration of information related to the system’s structure. Hence, all candidate systems are
modelled starting from the same functional-level model, at the same level of details and based
on harmonised assumptions. This does not mean that the assumptions should be identical.
Indeed, they should be as realistic as possible with respect to each candidate system. Also, a
fair comparison requires realistic parameter values. This is made possible by the fact that most
of the systems are based on Off-the-Shelf components (commercial or not), for which some field

feedback could be available.

Our modelling approach follows in the footsteps of the existing work on dependability mod-
elling. Its innovation concerns the add of functional specifications into the dependability model.
We tried to make modelling as systematic as possible to allow experimented, but not necessarily
specially-trained, modellers to analyse several systems and compare their dependability at the

same level of modelling abstraction, if required.

Incidentally, this modelling approach can be integrated into a framework for dependabil-
ity benchmarking, based on dependability evaluation [11]. In which case, modelling should be
supported by experimentation for evaluating model parameters, mainly those related to fault

tolerance.
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