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Abstract

This paper presents a stepwise approach for depend-
ability modeling, based on Generalized Stochastic Petri
Nets (GSPNs). The first-step model called functional-level
model, can be built as early as system functional specifica-
tions and then completed by the structural model as soon
as the system architecture is known, even at a very high
level. The latter can be refined according to three differ-
ent aspects: Component decomposition, state and event
fine-tuning and distribution adjustment to take into account
increasing event rates. We define specific rules to make
the successive transformations as easy and systematic as
possible. This approach allows the various dependencies
to be taken into account at the right level of abstraction:
Functional dependency, structural dependency and those
induced by non-exponential distributions. A part of the ap-
proach is applied to an instrumentation and control system
(I&C) in power plants.

1. Introduction

Dependability evaluation plays an important role in criti-
cal systems’ definition, design and development. Modeling
can start as early as system functional specifications, from
which a high-level model can be derived to help in analyz-
ing dependencies between the various functions. However
the information that can be obtained from dependability
modeling and evaluation becomes more accurate as more
knowledge about the system’s implementation is incorpo-
rated into the models.

The starting point of our work was to help (based on de-
pendability evaluation) a stakeholder of an I&C system in
selecting and refining systems proposed by various contrac-
tors in response to a Call for Tenders. To this end, we have
defined a stepwise modeling approach that can be easily

used to select an appropriate system and to model it thor-
oughly. This modeling approach is general and can be ap-
plied to any system, to model its dependability in a progres-
sive way. Thus, it can be used by any system’s developer.

The process of defining and implementing an I&C sys-
tem can be viewed as a multi-phase process starting from
the issue of a call for tenders by the stakeholder. The
call for tenders gives the functional and non-functional
(e.g., dependability) requirements of the system and asks
candidate contractors to make offers for possible sys-
tems/architectures satisfying the specified requirements. A
preliminary analysis of the numerous responses by the
stakeholder, according to specific criteria, allows the pre-
selection of two or three candidate systems. At this stage,
the candidate systems are defined at a high level and the
application software is not entirely written. The compara-
tive analysis of the pre-selected candidate systems, in a sec-
ond step, allows the selection of the most appropriate one.
Finally, the retained system is refined and thoroughly ana-
lyzed to go through the qualification process. This process
is illustrated in Figure 1. Even though this process is spe-
cific to a given company, the various phases are similar to
those of a large category of critical systems.

Dependability modeling and evaluation constitute an ef-
ficient support for the selection and refinement processes,
thorough analysis and preparation for the system’s qualifi-
cation. Our modeling approach follows the same steps as
the development process. It is performed in three steps as
described in Figures 1 and 2:

Step 1. Construction of a functional-level model based on
the system’s specifications;

Step 2. Transformation of the functional-level model into
a high-level dependability model, based on the
knowledge of the system’s structure. A model is
generated for each pre-selected candidate system;

Step 3. For the retained system, refinement of the high-



level model into a detailed dependability model.
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Modeling is based on Generalized Stochastic Petri Nets
(GSPN) [2] due to their ability to cope with modularity and
model refinement. The GSPN model is processed to obtain
the associated dependability measures (i.e., availability, re-
liability, safety, ...) using an evaluation tool such as SURF-
2 [4].

The relevance of our approach lies in supplying a set
of coherent techniques, allowing to master step by step de-
pendability model construction, based on GSPNs. It allows
the progressive incorporation of the newly available infor-
mation into the existing model, changing its initial organiza-
tion according to a well identified set of rules. Model refine-
ment can be achieved to take into account: component de-
composition, event fine-tuning and distribution adjustment.
In particular, the same set of rules is used for generating
the high-level model from the functional-level model and
for component refinement. We have adapted the method of
stages (used for simulating increasing failure rates) to take
into account dependencies between interacting components
without changing their initial models.

This modeling approach has been applied to three differ-
ent I&C systems, to help select the most appropriate one.
In this paper we illustrate our approach on a small part of
one of them. This paper is an elaboration of our previous
work [3] that was devoted only to the functional-level model
construction and did not address at all the structural model
refinement.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the functional-level model. The high-level
dependability model is presented in Section 3. Section 4
deals with the structural model’s refinement and Section 5
presents a small example of application of the proposed ap-
proach to an I&C system. Finally, Section 6 concludes the
paper.

2. Functional-level model

The derivation of the system’s functional-level model is
the first step of our method. This model is independent of
the underlying system’s structure. Hence, it can be built
even before the call for tenders, by the stakeholder. It is
formed by places representing possible states of functions.
For each function, the minimal number of places is two
(Fig. 3): One represents the function’s nominal state (F) and
the other its failure state (F).
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Figure 3. Functional-level model related to a
single function

In the following, we assume only one failure mode, but
it is applicable in the same manner when there are several
failure modes per function. Between states F and F, there
are events that manage changes from F to F and vice-versa.
These events are inherent to the system’s structure that is not
specified at this step, as it is not known yet. The model con-
taining these events and the corresponding places, is called
the link model (ML). Note that the set fF, ML, Fg, that con-
stitutes the system’s GSPN model, will be completed once
the system’s structure is known.

However, systems generally perform more than one
function. In this case we have to look for dependencies be-
tween these functions due to the communication between
them. We distinguish two degrees of dependency: Total de-
pendency and partial dependency. Figure 4 illustrates exam-
ples of the two degrees of functional dependency between
two functions F1 and F2. F3 is independent from both F1
and F2.

Case (a) Total dependency – F2 depends totally on F1
(noted F2" F1): If F1 fails, F2 also fails;

Case (b) Partial dependency – F2 depends partially on F1
(noted F2  - F1): F1’s failure does not induce



F2’s failure. In fact, F1’s failure puts F2 in a de-
graded state that is represented by place F2d that
is marked whenever F1 is in its failure state and
F2 in its nominal one. In Figure 4(b), the token
is removed from F2d as soon as F1 returns to its
nominal state, however other scenarios might be
considered.
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Figure 4. Functional dependencies

3. High level dependability model

The high level dependability model is formed by the
function’s states and the link model that gathers the set of
states and events related to the system’s structural behavior.
This behavior is modeled by the so-called structural model
and then it is connected to F and F places through an inter-
face model. The link model is thus made up of the structural
model and of the interface model.

The structural model represents the behavior of the hard-
ware and software components taking into account fault-
tolerance mechanisms, maintenance policies as well as de-
pendencies due to the interactions between different com-
ponents.

The interface model connects the structural model with
its functional state places by a set of immediate transitions.

In this section we concentrate mainly on the interface
model. In particular, we assume that the structural model
can be built by applying one of the many existing modular
modeling approaches (see e.g., [5, 9, 10, 11]), and we focus
on its refinement in section 4. Note that the structural mod-
els presented in this section are not complete. We present
simple examples to help understand the notion of interface
model before presenting the general interfacing rules.

3.1 Examples of interface models

For sake of simplicity, we first consider the case of a
single function then the case of multiple functions.

Single Function: Several situations may be taken into
account. Since the two most important cases are the series
and the combination series-parallel components, we limit
the illustrations to these two basic cases which allow mod-
eling of any system. More details are given in [3].

Series case: Suppose function F carried out by a software
component S and a hardware component H. Then,
F and F places’ markings depend upon the mark-
ings of the hardware and software components models
(Fig. 5).
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The behavior of H and S is modeled by the structural model
and then it is connected to places F and F through an inter-
face model. Note that there is only one interface model. We
split it into two parts, an upstream part and a downstream
part, so that it is constructed in a systematic way. This al-
lows our approach to be re-usable, facilitating the construc-
tion of several models related to various architectures. Also,
the case of simultaneous failures is not treated at this level.

Series-parallel case: Consider function F implemented by
two redundant software components S1 and S2, run-
ning on the same hardware component H. F’s up state
is the combined result of H’s up state and S1 or S2’s up
states and F’s failure state is the result of H’s failure or
S1 and S2’s failure, as indicated in Fig. 6.

Multiple Functions: Consider two functions (the gen-
eralization is straightforward) and let fC1ig (resp. fC2jg)
be the set of components associated to F1 (resp. F2). We
distinguish the case where functions do not share resources
(such as components or repairmen), from the case where
they share some. Examples of these two cases are presented
hereafter.
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Figure 6. Two redundant software compo-
nents on a hardware component

F1 and F2 have no common components:
fC1ig \ fC2jg = ;. The interface models re-
lated to F1 and F2 are built separately in the same
way as explained for a single function. There are no
structural dependencies, only functional ones.

F1 and F2 have some common components:
fC1ig \ fC2jg 6= ;. This corresponds to the ex-
istence of structural dependencies, in addition to
functional dependencies. This case is illustrated on a
simple example:

� F1 done by three components: A hardware com-
ponent H and two redundant software compo-
nents S11 and S12. F1’s model corresponds to
Fig. 6.

� F2 done by two components: The same hardware
component H as for F1 and a software component
S21. F2’s model corresponds to Fig. 5.

The global model of F1 and F2 is given in Fig. 7. It can
be seen that i) both interface models (MI1 and MI2)
are built separately, and ii) in the global model, the
common hardware component H is represented only
once by a common component model. Sharing of H
thus creates a structural dependency. The functional
dependencies are not represented in this figure.

3.2. Interfacing rules

The interface model MI connects the system’s compo-
nents with their functions by a set of transitions. This model
is a key element in our approach. Particular examples of in-
terface models have been given in Figures 5 to 7. In this
section the general organization of the interface model is
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presented. Interfacing rules have been defined in formal
terms. However, the main rules are stated here in an in-
formal manner.

Upstream and downstream MI have the same number
of immediate transitions and the arcs that are connected to
these transitions are built in a systematic way:

� Upstream MI: It contains one function transition tF
for each series (set of) component(s), to mark the func-
tion’s up state place, and one component transition tCx
for each series, distinct component that has a direct im-
pact on the functional model, to unmark the function’s
up state place.

- Each tF is linked by an inhibitor arc to the function’s
up state place, by an arc to the function’s up state
place and by one bidirectional arc to each initial
(ok) component’s place;

- Each tCx is linked by an arc to the function’s up state
place and by one bidirectional arc to each failure
component’s place.

� Downstream MI: It contains one function transition
t’F for each series (set of) component(s), to unmark
the function’s failure state place, and one component
transition t’Cx for each series, distinct component that
has a direct impact on the functional model, to mark
the function’s failure state place.

- Each t’F is linked by an arc to the function’s failure
state place and by one bidirectional arc to each
initial (ok) component’s place;

- Each t’Cx is linked by an inhibitor arc to the func-
tion’s failure state place, by an arc from the func-
tion’s failure state place and by one bidirectional
arc to each component’s failure place.



4. Refinement of the structural model

We assume that the structural model is organized in a
modular manner, i.e., it is composed of sub-models repre-
senting the behavior of the system’s components and their
interactions. For several reasons, the first model that is built,
starting from the functional-level model, may be not very
detailed. One of these reasons could be the lack of informa-
tion in the early system’s selection and development phases.
Another reason could be the complexity of the system to be
modeled. To master this complexity a high level model is
built and then refined progressively.

As soon as more detailed information is available con-
cerning the system’s composition and events governing
component evolution, the structural model can be refined.

Another refinement may be done regarding event distri-
butions. Indeed, an assumption is made that all events gov-
erning the system’s behavior are exponentially distributed,
which, in some cases, is not a good assumption. In partic-
ular, failure rates of some components may increase over
time.

Model refinement allows detailed behavior to be taken
into account and leads to more detailed results compared
to those obtained from a high level model. In turn, these
detailed results may help in selecting alternative solutions
for a given structure. For our purpose, we consider three
types of refinement: Component, state/event and distribu-
tion. Given the fact that the system’s model is modular,
refinement of a component’s behavior is undertaken within
the component sub-model and special attention should be
paid to its interactions with the other sub-models. However,
in this paper due to the lack of space, we will mainly address
the new dependencies created by the refinement, without
discussing those already existing.

Component refinement consists in replacing a compo-
nent by two or more components. From a modeling point
of view, such a refinement leads to the transformation of the
component’s sub-model into another sub-model. Our ap-
proach is to use the same transformation rules as those used
for the interface model presented in section 3.

State/event fine-tuning consists in replacing, by a sub-
net, the place/transition corresponding to this state/event.
We define basic refinement cases, whose combination cov-
ers most usual possibilities of state/event refinement.

For distributionadjustment, we use the method of stages.
Consider an event whose distribution is to be transformed
into a non-exponential one. This method consists in replac-
ing the transition associated with this event, by a subnet. We
have adapted already published work to take into account
dependencies between the component under consideration
and components with which it interacts. This is done with-
out changing the sub-models of the latters.

A section is devoted to each refinement type.

4.1. Component decomposition

Consider a single function achieved by a single software
component on a single hardware component. Suppose that
the software is itself composed of N components. Three
basic possibilities are taken into account (combinations of
these three cases model any kind of system):

� The N components are redundant, which means that
they are structurally in parallel;

� The N components are in series;

� There are Q components in parallel and R+1 compo-
nents in series (with Q+R=N).

Our goal is to use refinement rules identical, as far as
possible, to the ones used in Section 3.

In the following we explain how a single component is
replaced by its N components. These decompositions are
respectively called parallel, series and mixed.

4.1.1. Parallel decomposition. Consider software S’s de-
composition into two redundant components S1 and S2.
Thus, S’s up state is the result of S1 or S2’s up states, and
S’s failure state is the combined result of S1 and S2’s failure
states.
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Figure 8. Parallel decomposition

Figure 8 gives a GSPN model of this case. The gen-
eralization to N components is straightforward. It is worth
mentioning that the interface model between the system and
its components is built exactly in the same manner as the
interface model between a function and its associated com-
ponents.

4.1.2. Series decomposition. Consider the decomposition
of software S into two series components S1 and S2. Hence,
this case is identical to the one presented in Fig. 5 when
replacing F by S, H by S1 and S by S2.



4.1.3. Mixed decomposition. Suppose S is composed of
three components: S1, S2 and S3, where S3 is in series with
S1 and S2, that are redundant. This case is identical to the
example presented in Fig. 6 when replacing F by S and H
by S3.

4.1.4. Conclusion. In all the cases illustrated above, we
have considered only one token in each initial place. K
identical components can be modeled by a simple model
with K tokens in each initial place. When refining the be-
havior of such components, a dissymmetry in their behavior
may appear. Indeed, this is due to the fact that some com-
ponents that have the same behavior at a given abstraction
level, may exhibit a slightly different behavior when more
details are taken into account. If this is the case, one has to
modify the model of the current abstraction level before re-
finement. This may lead to changing the interface model ei-
ther between the functional-level and the structural model,
or between two successive structural models. This is the
only case where refinement leads to changing the model at
the higher level.

4.2. State/Event fine-tuning

In GSPNs, places correspond to system’s states and
timed transitions to events that guide state changes. The
fine-tuning of places/transitions allows more detailed be-
havior to be modeled. Refinement has been studied in Petri
nets ([13, 12]) and more recently in Time Petri Nets [8].

Our goal is to detail the system’s behavior by refining the
underlying GSPN. Our sole constraint is to ensure that the
net’s dynamic properties (aliveness, boundness and safe-
ness), at each refinement step, are preserved. The main
motivation for model refinement is to have more detailed
results about system behavior, that better reflect reality.

We define three basic refinement cases. Combinations
of these three cases cover most usual situations for depend-
ability models’ refinement. They are given in Table 1.

TR1 allows the replacement of one event by two com-
peting events. It allows the event’s separation into two other
events with different rates. TR2 allows a sequential refine-
ment of events, while TR3 allows the refinement of a state
into two or more states. These transformations are illus-
trated on the following simple example.

Consider the hardware model given in Fig. 9(a). Several
successive refinement steps are depicted in Figures 9(b), (c)
and (d).

After a fault activation (T1) two types of faults are dis-
tinguished: Temporary and permanent, with probability a

and 1 � a respectively. Using TR3, we obtain the model
depicted in Fig. 9(b).

To take into account error detection latency (1/�) for
hardware components, we apply TR2 to transition T21 of

Table 1. State/Event refinement

Initial model T

TR1: Separation
into two events 1

T
2

Two competing
events

TR2: Sequence
of events

2

T1

T

Refinement of the
action represented
by transition T

TR3: State re-
finement

1 t 2t

T

t1 = p1 � prob. of
firing t1,
t2 = p2 � prob. of
firing t2 and
p1 + p2 = 1

Fig. 9(b). The resulting model is presented in Fig. 9(c).
Finally, we model the error detection efficiency by ap-

plying TR3. Detected errors allow immediate system’s re-
pair. We then add a perception latency (transition T2122),
Fig. 9(d). This latency is important to be modeled because,
as long as the non-detected error is not perceived, the sys-
tem is in a non-safe state. Repair can be performed only
after perception of the effects of such errors.

This is a small example of a state/event refinement ap-
plication. Other details can be added to the model using the
cases presented in this section.

4.3. Distribution adjustment

It is well known that the exponential distribution as-
sumption is not appropriate for all event rates. For example,
due to error conditions accumulating with time and use, the
failure rate of a software component might increase.

The possibility of including timed transitions with non-
exponential firing time is provided by the method of stages
[7]. This method transforms a non Markovian process into
a Markovian one, by decomposing a state (with a non expo-
nential firing time distribution) into a series of k successive
states. Each of these k states will then have a negative ex-
ponential firing time distribution, to simulate an increasing
rate. In GSPNs, a transition, referred to as extended transi-
tion, is replaced by a subnet to model the k stages.

The transformation of an exponential distribution into
a non-exponential one might create new timing dependen-
cies. Indeed, the occurrence of some events in other compo-
nents might affect the extended transition. For example, the
restart of a software component might lead to the restart of
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the component under consideration (that has an increasing
failure rate) and thus stop the accumulation of error condi-
tions, bringing back the software under consideration to its
initial state.

In previously published work [1, 2], the dependency be-
tween events is modeled only by concurrent transitions en-
abled by the same place. This is not very convenient when
several components interact with the component under con-
sideration, as it could lead to changing their models. We
have adapted this extension method to allow more flexibil-
ity and take into account this type of dependency.

The salient idea behind our approach is to refine the
event’s distribution without changing the sub-models of the
components, whose behavior may affect the component un-
der consideration (when assuming a non-exponential distri-
bution).

In the rest of this section, we first present the extension

method presented in [2] and then present our adapted exten-
sion method.

4.3.1. Previous work. Concerning the transitions’ timers,
three memory policies have been identified and studied in
the literature, namely, resampling, age memory and en-
abling memory. The latter is well adapted to model the kind
of dependency that is created when modeling system’s de-
pendability as mentioned above. It is defined as follows: At
each transition firing, the timers of all the timed transitions
that are disabled by this transition are restarted, whereas the
timers of all the timed transitions that are not disabled hold
their present values.

In [1] and [2] an application of the enabling memory pol-
icy in structural conflict situations has been given. It con-
cerns the initial model of Fig. 10, in which transition T1 to
be extended is in structural conflict with transition Tres.

T1

res

S S

Figure 10. Initial model

When applying the enabling memory policy as given in
[2] to transition T1 of Fig. 10, the resulting model is pre-
sented in Fig. 11. In this figure, the k series stages are mod-
eled by transitions tc1, tc2, T1

1
and T2

1
and places P1, P2 and

P3. Token moving in these places is controlled by the con-
trol places Pc1, Pc2 and P4.
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Figure 11. Enabling memory with structural
conflict

After removal of the token from S by firing of transition
Tres, the clearing of places P1, P2 and P3 is accomplished
in two steps. As soon as S becomes empty, immediate tran-
sitions t1, t2 and t3 are fired as many times as needed to



remove all tokens from these three places. At the end of
this step, places Pc2 and P4 are marked with one token each.
The return to the initial state is then performed by immedi-
ate transition t4 that puts one token in place Pc1, after places
P1, P2 and P3 are empty.

4.3.2. Enabling memory with external dependencies.
Our approach replaces the transition to be extended by two
subnets: One internal to the component, to model its inter-
nal evolution, and a dependency subnet, that models its in-
teraction with other components. The initial model is given
in Figure 12(a). In this model we assume that T1, Tdis1 and
Tdis2 are exponentially distributed. Suppose that in refining
T1’s distribution, its timer becomes dependent on on Tdis1

and Tdis2. The transformed model is given in Fig. 12(b).
A token is put in Pdep each time the timer of transition T1

has to be restarted, due to the occurrence of an event that
disables the event modeled by T1 (firing of Tdis1 or Tdis2 in
other components models). Like in the previous case, this is
done in two steps. As soon as place Pdep is marked, t’1, t’2
and t’3 are fired as many times as needed to remove all to-
kens from these three places. The return to the initial state is
performed by transition t4 that removes a token from place
Pdep and puts one token in place Pc1, after places P1, P2 and
P3 are empty.

Note that transitions t’1, t’2 and t’3 replace respectively
t1, t2 and t3. Also, we simplified Fig. 12(b), by replacing
place P4 by an inhibitor arc between t’4 and Pc1. Thus, the
two major differences between Figures 11 and 12(b) are: 1)
Place P1 of Fig. 12(b) is replaced by an inhibitor arc going
from place Pc1 to immediate transition t; 2) Place Pdep, that
manages dependencies between this net and the rest of the
model, is added.

5. Application to I&C systems

In this section we illustrate our modeling approach. Due
to space limitations we only present a small part of it.

We start by presenting the functional-level model for a
general I&C system. Then we describe how the high-level
dependability model is built for one of the I&C systems.
Finally we show some results concerning a small part of a
detailed dependability model.

An I&C system performs five main functions: Human-
machine interface (HMI), processing (PR), archiving (AR),
management of configuration data (MD), and interface with
other parts of the I&C system (IP). The functions are
linked by the partial dependencies : HMI  - fAR, MDg,
PR - MD, AR - MD and IP - MD. These relations are
modeled by the functional-level model depicted in Fig. 13.

To illustrate the second step of our modeling approach,
we consider the example of an I&C system composed of
five nodes connected by a Local Area Network (LAN). The
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Figure 12. Enabling memory with external de-
pendencies

mapping between the various nodes and their functions is
given in Fig. 14. Note that while HMI is executed on four
nodes, Node 5 runs three functions. Nodes 1 to 4 are com-
posed of one computer each. Node 5 is fault-tolerant: It is
composed of two redundant computers. The initial struc-
tural model of this I&C is built as follows:

� Node 1 to Node 3 – in each node, a single function
is achieved by one software component on a hardware
component. Its model is similar to the one presented
in Figures 5 and 15 (that will be explained later);

� Node 4 – has two functions that are partially depen-
dent. Its functional-level model will be similar to F1

and F2’s functional-level model given in Fig. 4(b). Its
structural model will be similar to the one depicted
in Fig. 7, followed by a model slightly more complex
than the one of Figure 15;

� Node 5 – is composed of two hardware components
with three independent functions each. Its structural
model is more complex than the one given in Figure 15
due to the redundancy.
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� LAN – the LAN is modeled at the structural level by
the structural dependencies that it creates.

The complete high level dependability model for this
system is composed of 41 places and 19 tokens. The other
two I&C systems of our case study are composed of 76
places and 38 tokens and of 27 places and 13 tokens. It is
worth mentionning that these model sizes correspond to the
high-level models. After refinement, the models are much
larger, as it is illustrated on the following example.

Let us consider the simple case of Fig. 5. The associated
detailed structural model is given in Fig. 15 in which the
Sko place of Fig. 5, corresponds to either place Sed or Sri.
The detailed GSPNs presented are obtained using the rules
described in section 4.2. The following assumptions and
notations are used:

� The activation rate of a hardware fault is �h (Tr1), and
of a software fault is �s (Tr6);

� The probability that a hardware fault is temporary is t
(tr1). Such faults will disappear with rate " (Tr2);

� A permanent hardware fault (resp. software) is de-
tected by the fault-tolerance mechanisms with prob-
ability dh (resp. ds for software faults). The detection
rate is �h (Tr3) for the hardware, and �s (Tr7) for the
software;

� The effects of a non detected error are perceived with
rate �h (Tr4) for the hardware, and rate �s (Tr8) for the
software;

� Errors detected in the hardware component require its
repair: repair rate is � (Tr5);

� Permanent errors in the software may necessitate only
a reset. The reset rate is � (Tr9) and the probability
that an error induced by the activation of a permanent
software fault disappears with a reset is r (tr7);

� If the error does not disappear with the software reset,
a re-installation of the software is done. The software’s
re-installation rate is � (Tr10).

Note that a temporary fault in the hardware may propa-
gate to the software (tr11) with probability p. We stress that
when the software component is in place Sed or Sri, it is in
fact not available, i.e., in a failure state.

Also, when the hardware is in the repair state, the soft-
ware is on hold. The software will be reset or re-installed as
soon as the hardware repair is finished. Due to the size of
the subsequent model, this case is not represented here.

Thus, from the original 4 places model, we have a 15
places model after refinement.

6. Conclusions

Our modeling approach follows in the footsteps of most
of the existing work on dependability modeling. Where this
approach is unique is in the inclusion of the system’s func-
tional specifications into the dependability model, by means
of a functional-level model. Also, it allows modeling of one
system from its functional specification up to its implemen-
tation. The existing refinement techniques are conceived in
order to preserve the result values. On the contrary, ours
provides more accurate models and associated results.

Thus, the modeling approach presented in this papers
gives a generally-applicable process for system’s analysis,
based on generalized stochastic Petri nets. This process in-
volves a stepwise refinement in which dependencies are in-
troduced at the appropriate level of refinement. A careful
and precise definition of the constructs and of the refinement
process is given. Indeed, we have shown how starting from
functional specifications, a functional-level model can be
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Figure 15. Structural model of a software and
a hardware components

transformed progressively into a dependability model tak-
ing into account the system’s structure. We have also shown
how the structural model can be refined to incorporate more
detailed information of the system’s behavior. Refinement
is a very powerful tool for mastering progressively model
construction. It will allow experimented, but not necessar-
ily specially-trained, modelers to analyze the dependability
of one or several systems and compare their dependability
at the same level of modeling abstraction, if required.

The approach was illustrated here on simple examples
related to a specific structure of an instrumentation and con-
trol system in power plants. However, we have applied this
approach to three different I&C systems to identify their
strong and weak points, in order to select the most appro-
priate one.
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