
HAL Id: hal-01976690
https://laas.hal.science/hal-01976690

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependability Assessment of GUARDS Instances
Jean Arlat, Tahar Jarboui, Karama Kanoun, David Powell

To cite this version:
Jean Arlat, Tahar Jarboui, Karama Kanoun, David Powell. Dependability Assessment of GUARDS In-
stances. 4th IEEE International Computer Performance and Dependability Symposium (IPDS’2000),
Mar 2000, Chicago, United States. �hal-01976690�

https://laas.hal.science/hal-01976690
https://hal.archives-ouvertes.fr

4th IEEE International Computer Performance and Dependability Symposium (IPDS'2000), Chicago (USA), 27-30 mars
2000, pp.147-158

Dependability Assessment of GUARDS Instances
Jean Arlat, Tahar Jarboui, Karama Kanoun and David Powell

LAAS-CNRS

7 avenue du Colonel Roche

31077 Toulouse Cedex 4 – France

E-mail: {arlat, jarboui, kanoun, dpowell}@laas.fr

Abstract
The generic architectural concepts developed in the framework of the European ESPRIT project

GUARDS (Generic Upgradable Architecture for Real time Distributed Systems) provide a

comprehensive framework from which specific instances can be derived to meet the dependability

requirements of various application domains. Three main application domains are considered

(railway, nuclear propulsion and space) that correspond to the fields of the three end-user partners of

the project.

This paper presents the modeling method supporting the assessment of GUARDS instances. The goal is

to assist the designers in making objective decisions for defining a specific instance from the generic

architecture.

After a short summary of the main architectural concepts of GUARDS, the paper describes the major

assumptions considered for the modeling that concern: i) component types (both hardware and

software), ii) fault types, where special attention is paid to potentially correlated faults, and iii) the

generic fault tolerance features of GUARDS. The main architectural characteristics of the target

instances (one for each application domain) are briefly described. The modeling strategy is

summarized and examples of models (stochastic Petri nets) are given. Selected results are then

presented and discussed; they exemplify the usefulness of the modeling and evaluation method, in

particular in the light of sensitivity analyses with respect to model parameters.

2

1- Introduction

The development and validation of fault-tolerant computers for critical real-time applications are

currently both costly and time-consuming in particular as a result of the very specialized, and often

hardware-intensive solutions that are classically considered. To tackle these issues, a consortium of

European companies and academic partners has been formed to design and develop a Generic

Upgradable Architecture for Real-time Dependable Systems (GUARDS), together with an associated

development and validation environment [1].

The end-user companies in the consortium currently deploy ultra-dependable real-time embedded

computers in their systems, but with very different requirements and constraints resulting from the

diversity of their application domains: railway, nuclear propulsion, and space systems. The overall aim

of the GUARDS project is to significantly decrease the lifecycle costs of such embedded systems. The

intent is to be able to configure instances of a generic architecture that can be shown to meet the very

diverse requirements of these (and other) critical real-time application domains.

The project has carried out an extension set of validation activities, including formal verification,

analytical modeling and fault injection (e.g., see [2], [3] and [4]). This paper focuses on analytical

modeling work aimed at assessing the dependability of GUARDS instances. The goal is to assist the

designers in making objective decisions for defining a specific instance of the generic architecture, a

need that is exemplified by related work carried out on previous modular fault-tolerant architectures

(e.g., see SIFT [5], FTPP [6] or Delta-4 [7]). An insightful effort tackling system-level modeling and

sensitivity analyses was also reported in [8]. The novelty of the study reported here concerns i) the

enhanced scope of the generic modeling effort where explicit attention has been paid to the various

levels of the generic architecture and ii) the practical dimension of the target instances considered

originating from three distinct applications domains.

Our main concern is to capture the appropriate level of detail of the architecture encompassing fault

types, redundancy management policies and maintenance strategies, so as to be able to derive

evaluation models suitable for carrying out extensive sensitivity analyses to support meaningful and

clear design choices.

The modeling of large complex fault-tolerant systems is faced with the problem of mastering

complexity and state explosion resulting from the large number of (hardware and software)

components, and of the multiplicity and intricacy of their interactions. Several studies have been

reported that tackled this issue by means of simulation (e.g., see [9, 10]) or by analytical techniques

3

using either approximate or exact solutions based on stochastic binary decision diagrams, stochastic

Petri nets or Markov chains (e.g., see [11-16]). In this paper, in accordance with the genericity principle

that led to the design of the GUARDS architecture, a generic modeling framework, inspired by the

modular approach developed in [17], is considered.

Special attention has been paid to model the impact of common mode failures among the various

redundancy dimensions of the architecture — whether these failures induced by hardware or by

software faults [18] [8]. The models also take into account the coverage of the various embedded error

detection mechanisms. This allows identification of a restricted set of parameters that are common to

all instances, which makes it possible for their assessment to be carried out on a fair basis. The

evaluation strategy relies on the use of stochastic Petri nets. The evaluation of dependability measures

and sensitivity analyses were supported by the software package SURF-2 [19].

This paper extends a preliminary work published in [20]. The main extensions concern the provision

of more detailed models and additional dependability measures. It is structured as follows. Section 2

sketches the main features of the generic architecture. Section 3 defines the modeling assumptions that

elaborate on an abstract view of GUARDS architecture; it also identifies the components modeled, the

fault types considered and the fault tolerance features exhibited by the generic architecture. The three

target instances (railway, nuclear propulsion, and space) are then briefly described in Section 4. The

modeling strategy is described in Section 5. Section 6 provides examples of evaluations and sensitivity

analyses that can be carried out. Finally, Section 7 concludes the paper.

2- The GUARDS Architecture

To cut development costs and cope with obsolescence, the GUARDS architecture favors the use of

commercial off-the-shelf (COTS) hardware and software components, with application-transparent

fault-tolerance implemented primarily by software. It uses a limited number of specific, but generic,

hardware and software components to implement an architecture that can be configured into a wide

variety of instances along three architectural dimensions — redundant channels, redundant lanes and

integrity levels — that also form three dimensions of fault containment (Figure 1):

• Channels constitute the primary physical-fault containment regions.

• Lanes form the secondary physical-fault containment regions.

• Integrity levels support design-fault containment regions at the application level.

4

COTS components
Generic GUARDS components
Application-specific components

1
1 2

3

2

Application Fault-tolerance and
integrity management

Inter-channel
communication

network

Inputs and
unconsolidated

outputs

Consolidated
outputs

Output data
 consolidation

Software
integrity
levels

Channel
redundancy

Intra-channel lanes

Local operating systems
4
3

I

2
1

M

C

Figure 1 — The generic architecture

Channels provide the ultimate line of defense within a single instance for physical faults that affect

a single channel. Fault tolerance is based on active replication of application tasks over the set of

channels. It must be ensured that replicas are supplied with the same inputs in the same order, despite

the occurrence of faults. Then, as long as replicas on fault-free channels behave deterministically, they

should produce the same outputs. Error processing can thus be based on comparison or voting of

replica outputs.

The lanes dimension can be used to improve the capabilities for fault diagnosis within a channel,

e.g., by comparison of computation replicated on several nodes. There is also scope for improving

coverage with respect to design faults by using intra-channel diversification. Alternatively, lanes can be

used to improve the availability of a channel, e.g., by making passive a node that is diagnosed to be

permanently faulty.

The integrity dimension aims to provide containment regions with respect to software design faults.

The intent is to protect critical components from the propagation of errors due to residual design faults

in less-critical components.

A particular instance of the architecture is defined by the dimensional parameters {C, M, I} (see

Figure 1), a reconfiguration strategy, and an appropriate selection of generic hardware and software

GUARDS components. These generic components implement mechanisms for:

• Inter-channel communication.

• Output data consolidation.

• Fault-tolerance and integrity management.

5

The two dimensions of physical redundancy allow for a wide variety of instances to be defined with

different fault-tolerance strategies. The management of system fault-tolerance and integrity is software-

implemented through a distributed set of generic system components (shown as a “middleware” layer

on Figure 1). This layer is itself fault-tolerant (through replication and distribution of its components)

with respect to faults that affect channels independently (e.g., physical faults). Although the tolerance

of design faults in this system layer was not explicitly, correlated faults are included in the models used

to assess the dependability of instances of the architecture.

3- Modeling Assumptions

The models are based on an abstract view of the components and layers that compose the GUARDS

architecture depicted in Section 1. We identify in this section the main components considered, the

related fault types, and the fault tolerance features common to the three instances.

3.1- The Modeled Components

The aim is to model instances of the generic architecture and evaluate their behavior in the face of both

physical and design faults. The granularity of the modeling is selected in terms of the possible effects

of faults and the independence assumptions that can be made.

From the modeling viewpoint, the generic architecture can be described by four basic layers (Figure

2), which, from the bottom-up, are:

1.hardware layer: mostly off-the-shelf physical components, potentially affected both by physical

faults and design faults;

2.executive layer: off-the-shelf operating systems on each processor;

3.system layer: GUARDS-specific components supporting the fault tolerance mechanisms;

4.application layer: end-user application programs — this layer is divided into sub-layers

corresponding to the I integrity levels.

6

channel C

channel 1
channel 2

lane 2 lane Mnucleus

hardware

executive

system

application

integrity
level I
integrity
level 2
integrity
level 1

lane 1
Figure 2 —Modeling viewpoint of generic architecture

The layers are partitioned horizontally to account for the two dimensions of redundancy included in

the architecture:

1. a set of C channels,

2. a subdivision of each channel into:

• a set of M lanes,

• a channel nucleus corresponding to its ICN manager, the ICN link by which it sends information

to the other channels, its I/O interfaces, etc.

Since there is no explicit means to tolerate design faults affecting the executive and system software

supported by the ICN manager, the channel nucleus is considered as a monolithic component from the

modeling viewpoint.

An instance of the architecture is characterized by the values of C, M and I, and a corresponding

fault tolerance strategy (two instances of the architecture could have identical values of C, M and I, but

different fault tolerance strategies).

The fault tolerance strategies that are envisaged allow instances to be degraded by making passive

channels, lanes or integrity levels. Therefore, the current configuration of an instance may be defined

by a vector of three state variables, { ic, im, ii}, with:

• ic ∈ [1,C] indicating the current number of active channels (initially C),

• im ∈ [1,M] indicating the current number of active lanes (initially M),

• ii ∈ [1,I] indicating the current lowest active integrity level (initially 1).

In the three instances considered, we have C=2, 3 or 4, M=1 or 2, and I=2.

7

3.2- Independent and Correlated Faults

Diversification across channels is not currently considered, so we will assume that fault rates of the

various components are identical across channels.

The architecture considers both physical faults (that can only affect hardware, i.e., the nucleus and

the hardware layer) and design faults (that can affect both hardware and software, i.e., the nucleus and

any layer). Physical faults are assumed to occur independently on different components. Some design

faults can also manifest themselves as if they were independent faults, even on identical components, if

the pointwise conditions necessary for their activation occur independently on the different components

(i.e., Heisenbugs [20]).

We therefore distinguish independent faults affecting the nuclei [ψN] and the faults affecting each

layer X of the processing part of the architecture [ζX(m)] where X ∈ {H, E, S, Ai} (hardware, executive,

system, integrity level i of the application).

However, common-mode failures due to correlated design faults must also be considered. Here, we

consider the following possible correlated faults (Figure 3):

1. channel correlated faults (i.e., across all lanes),

2. lane or nuclei correlated faults (i.e., across all channels),

3. global correlated faults (i.e., across all lanes and all channels).

correlated

faults
of

nuclei

channel C

channel 1

channel 2

lane 1 lane 2 lane M nucleus

correlated faults
of layer x

across channels
of lane m

correlated faults
of layer x

across lanes
of channel c

globally
correlated

faults
of layer x

[�α �] N [�γ �] X][�α �(m) X][�β �(c) X

Figure 3 — Summary of correlated faults

Other than global correlated faults, we do not consider faults that simultaneously affect a processor

in channel c, lane l, and another processor in channel d≠c and lane m≠l (i.e., we do not consider

8

“diagonal” correlated faults, since components are either common to all processors, or redundantly

distributed across channels or lanes).

The notion of correlated faults depends of course on the particular configuration of the architecture.

For example, there can be no “correlated” faults within a channel if the configuration only has a single

lane. So, to be able to represent different configurations and compare different instances of the

architecture on a common basis, attention has been paid to the identification of rates of independent vs.

correlated faults. Table 1 depicts the respective impact of these parameters on the

independent/correlated faults for various configurations.

Table 1 — Modeled events and relationship to basic fault rates

Modeled Event iC=1 & im=1 iC=1 & im>1 iC>1 & im=1 iC>1 & im>1

Nucleus
Independent fault
on channel c

ψN + αN ψN + αN ψN ψN

Correlated fault
 αN αN

Layer X ∈ {N, H, E, S, Ai}
Independent fault
on channel c, lane m

≡ Global
correlated
fault

ζX(m) + αX(m) ζX(m) + βX ζX(m)

Correlated fault of lane m
(i.e., across all channels)

 ≡ Global
correlated
fault

αX(m)

Correlated fault of
channel c
(i.e., across all lanes)

 ≡ Global
correlated
fault

 β X

Global
correlated fault

γX + αX(m)
+ βX + ζX(m)

γX + βX γX + αX(m) γX

3.3- Temporary and Permanent Faults

Faults can be classified as either temporary or permanent, according to whether or not their presence

is related to particular point-wise conditions [21]. Fault treatment depends on whether the fault is

diagnosed to be a permanent fault or a temporary fault, according to the conclusion of a self-test carried

out on a channel after it has been isolated from the pool. If a fault is diagnosed to be permanent, an

explicit repair action must be carried out, whereas in the case of a temporary fault, certain fault

treatment strategies may authorize automatic re-integration of the faulty component.

9

Therefore, we need to be able to distinguish the proportions of faults that are temporary or

permanent. To do so, we must consider whether the faults are independent or correlated, and whether

they are of physical origin or due to erroneous design.

Independent faults of the nuclei or of the hardware layer may correspond to either physical faults or

design faults. However, independent faults of the executive, system and application layers can only be

design faults. Also, by definition, design faults leading to independent manifestations must be

temporary faults, since their manifestation is related to point-wise system activity conditions.

Consequently, for the nuclei and the hardware layers, we have considered the proportion of

independent faults that are permanent as an important parameter of the model.

Correlated faults may be considered as either temporary or permanent, according to the fault

treatment and maintenance policy that is adopted.

3.4- The Common Fault Tolerance Features

Besides the specific fault tolerance strategies inherent to each target instance, it can be assumed that the

generic architecture supports a set of fault tolerance features that can be considered on a common basis.

In particular, each channel has intra-channel or local mechanisms that provide error detection in

addition to that provided by inter-channel error processing. The efficiency of the local error detection

mechanisms depends on the corresponding error source (Nucleus, Hardware, Executive, System,

integrity levels of the Application) and is characterized by coverage factors cX,

X ∈ {N, H, E, S, A1, A2}. Although in the analyses, we did not discriminate the application integrity

levels with respect to the efficiency of local error detection, they are distinguished in the modeling.

Inter-channel error processing depends on the number of operational channels. As long as there are

at least three operational channels, any errors due to a single faulty channel are assumed to be masked

(and detected) by majority voting. In the case when two operational channels are available, a two-out-

of-two vote is considered and single channel errors are assumed to be detected. Let the coverage of

these assumptions be defined as cVc, where index c ∈ {2,3,4}. Since a 4-channel configuration is

capable of tolerating arbitrary faults, cV4 can reasonably be assumed to be 100%. The other coverages

should be considered non-perfect; for example, the non-coverage includes the case of a Byzantine fault

leading to failure of the clock synchronization mechanism.

Detected errors trigger fault diagnosis to determine which channel is at fault. Any faulty channel is

isolated from the operational channels to execute a self-test aimed at determining whether the fault is

10

permanent or temporary. Let the execution rate of the self-test be defined as δ and let the coverage of

the self-test with respect to permanent faults be defined as cST . If the fault is judged to be permanent, it

is repaired with rate µ . If the fault is judged to be temporary, the channel is reintegrated with rate ρ .

With probability 1-cST , a permanent fault is erroneously judged to be a temporary fault; in this case,

we (pessimistically) assume that a catastrophic failure occurs. The permanent faults represent a

proportion π of the independent faults affecting the nuclei and the hardware layer.

Any correlated faults, except those occurring at integrity level 1, are assumed to lead to a

catastrophic failure1. Correlated faults at integrity level 1 should be confined to that level by the

integrity policy (IP) enforcement mechanisms. Let the coverage of these mechanisms be cIP . Detected

violations of IP cause the incriminated layer to be discarded.

All undetected errors are assumed to lead to catastrophic failures.

4- The Target Instances
Three instances of the GUARDS architecture were modeled and evaluated. These were meant to match

the prototypes being developed by each end-users according to the needs identified for their respective

application domains: railway, nuclear propulsion and space.

4.1- The Railway Instance
Figure 4 depicts the railway instance evaluated. It features Motorola 68040 or 68360 processors, each

running a Posix-compliant VxWorks operating system.

OS: VxWorks

Integrity level 1:
Monitoring, diagnostic
and supervision functions
(language C, C++)

Integrity level 2:
Interlocking logic
(safety nucleus)
(language C, C++)

68040 or 68360 processors

GUARDS FT and integrity
management (language C)

ICN

Figure 4 — Railway target instance (C=3, M=1, I=2)

1 Only two integrity levels are considered for the three target instances.

11

Compared to currently deployed systems, the innovative aspect of this architecture is the co-existence

of two levels of application software of very different degrees of criticality:

1. the highly-critical interlocking logic or safety nucleus, which is at the highest integrity level,

2. the monitoring, diagnostic and supervision functions, which are of the lowest criticality.

This is a significant departure from current practice in railway applications, where these two levels

of integrity would normally be implemented on separate instances. However, there is an appreciable

economic advantage to be gained when it is possible to share the same hardware between both levels

(e.g., for small railway stations).

As long as there are three operational channels, any errors due to a single faulty channel are

assumed to be masked (and detected) by majority voting. While there are only two operational

channels, the instance operates in a two-out-of-two mode. If a fault should occur while in this mode,

the instance is switched to a safe state if the errors caused by the fault are detected (either locally within

a channel or by two-out-of-two comparison).

4.2- The Nuclear Propulsion Instance

The targeted nuclear propulsion application is a secondary protection system. The prototype for this

application is a 2-channel architecture with two Pentium processors in each channel (Figure 5). To

prevent common-mode failures of both channels due to physical damage, the channels are

geographically separated one from the other by a distance of 10 to 20 meters. Like the railway

application, this instance hosts two levels of integrity.

An innovative aspect of this prototype is the use of two processors in each channel, with two

different Posix-compliant operating systems: QNX and VxWorks. Apart from the operating systems,

both processors run identical software to implement duplication-and-comparison within each channel.

The aim is to be able to detect errors due to design faults in these commercial off-the-shelf operating

systems.

All application software components are executed on both processors in both channels. Within a

channel, the copies of an application component on lanes 1 and 2 are provided with the same inputs in

the same order. In the absence of faults, both copies should provide identical results. These are

compared by a bit-to-bit comparator implemented as a GUARDS system-level component [21]. All

application components within a channel are thus configured as self-checking pairs to provide detection

of errors due to faults activated independently on each lane.

12

In particular, this includes physical faults (of the processors) and design faults of the processors and

their operating systems. Note that, in this instance, an assumption of independent activation for design

faults of the operating systems can be based on the fact that their designs are diversified. For design

faults of the processors, an assumption of independent activation can be based on their diversification

of utilization (due to loose coupling and diversification of operating systems).

As long as both channels are operational, they operate in a two-out-of-two mode. Results of

computations that are declared as error-free by the intra-channel mechanisms are compared and, in case

of disagreement, the instance is put into a safe state. Let the coverage of the two-out-of-two vote be

defined as cV 2 . However, if errors are detected locally by intra-channel mechanisms, the channel

declares itself to be faulty and the instance switches to 1-channel operation. Note that this strategy is

different to that of the railway instance that has degraded to 2-channel configuration: in that case, the

instance switches to a safe state whether the error is detected locally or by comparison.

10
 to

 20
 m

OS1: QNX

Integrity level 1:
(language C, C++)

Integrity level 2:
(language C, C++)

ICN Pentium processors

OS2: VxWorks

GUARDS FT and integrity
management (language C)

Figure 5 — Nuclear propulsion target instance (C=2, M=2, I=2)

4.3- The Space Instance

The instance considered for space applications is the most complex of the three prototypes. It is a full

4-channel instance of the architecture capable of tolerating arbitrary faults at the inter-channel level

(Figure 6). Degradation to 3-, 2- and 1-channel operation is possible. As for the railway and nuclear

applications, this instance also features two levels of integrity.

13

Trusted OS: Restricted
 VxWorks

Integrity level 1:
Nominal application
with self-monitoring
(language Ada 83)

Integrity level 2:
Backup application
plus safety monitoring
(language Ada 83)

SPARC v7 processors

GUARDS FT and integrity
management
(language Ada 83)

ICN

Untrusted OS:
Full VxWorks

Figure 6 — The space target instance (C=4, M=2, I=2)

Like the prototype for the nuclear propulsion application, this instance also possesses two lanes, but

for a different reason. However, for the nuclear instance, the aim was to allow diversified but

equivalent operating systems to be used so that errors due to design faults could be detected. Here, the

objective is to have one of the lanes act as a backup for the other lane.

We refer to the two lanes as the primary and secondary lanes. Each lane supports a different

operating system and different application software:

1. The primary lane runs a full-functionality version of VxWorks and a nominal application that

provides full control of the spacecraft and its payload. The application includes built-in self-

monitoring based on executable assertions and timing checks.

2. The secondary lane runs a much simpler, restricted version of VxWorks and either a safety-

monitoring application or a simple back-up application. The purpose of the latter is to provide

control of the spacecraft in a very limited “survival” mode (e.g., sun-pointing and telemetry/remote

functions).

The idea is that neither the full VxWorks nor the nominal application supported by the primary lane

can be trusted to be free of design faults. However, the restricted version of VxWorks and the

application software supported by the back-up lane are assumed to be free of design faults and thus

trustable. The aim is to allow continued (but severely degraded) operation in the face of a correlated

fault across all processors of the primary lane. Errors due to such a correlated fault can be detected in

two ways:

• self-monitoring functions included within the nominal application,

• a safety-monitoring application executed by the secondary lane while the primary lane is

operational.

14

In view of the differing levels of trust of the applications supported by the primary and secondary

lanes, they are placed at different levels of integrity. The nominal application (on the primary lane) is

not trusted, so it is assigned to integrity level one. The back-up application is assumed to be free of

design faults and is placed at integrity level two. This separation of the integrity levels on different

lanes provides improved segregation (“firewalling”) between the two levels of integrity.

5- The Modeling Strategy

As in [17], a global model that is made of abstract block models is built first. Second, each block model

is refined as a Generalized Stochastic Petri Net (GSPN). Then the Markov chain is derived.

We will present in the following subsections the modeling blocks and a brief description of the fault

tolerance strategies specific to each instance.

Due to space limitations, it is not possible to present the various block models for all considered

instances. Nevertheless, as an illustration of the type of models used, we will concentrate on some

block models of the railway instance.

5.1- The Modeling Blocks

Although they are derived from the same generic architecture, the three instances considered differ by:

• the number of hardware and software components which ensure both the services required of the

system in nominal (fault free) operation and the fault-tolerance functions;

• the global strategy for fault tolerance (and maintenance);

• the type of correlated faults (see Figure 3), that in turn, depends on the fault tolerance strategy.

Three main modeling blocks have been distinguished (Figure 7). The first block model is used to

represent the architecture of each channel, including lanes and self-tests for diagnosis. The second

block model represents the fault tolerance strategy. The third one models the effects of correlated

faults.

15

Figure 7 — The main block models

Each channel block is divided into two parts:

• the top part which models the occurrence of independent hardware and software errors within the

channel;

• the bottom part which models the self-test diagnosis that determines whether the fault is

permanent or temporary.

Erreur ! Source du renvoi introuvable. gives the number of places, transitions and states of the

models of the three instances. The significant number of states obtained for the Markov chain

describing the space instance results from the larger number of timed transitions in the GSPN that are:

i) induced by the high number of successive faults that can be tolerated by the instance, and ii) needed

to model the recovery strategy implemented by the two diversified lanes.

Table 2 — Complexity of the models

 Railway Nuclear Space
Generalized stochastic
Petri nets

Places 88 65 84
Transitions (timed) 178 (51)* 153 (40)* 699 (260)*
Markov chains
States 352 150 21944
* Values in parenthesis give the number of timed transitions in the GSPN

A verification of the structural properties (such as liveness, boundedness, etc.) of the GSPNs was

carried out independently for each of the block models. Furthermore, extensive sensitivity analyses

were performed to validate the global model obtained for each instance; selected results of these

analyses are presented in section 6.2. These verification and validation tasks were supported by the

SURF-2 tool [19].

16

