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Abstract 
The generic architectural concepts developed in the framework of the European ESPRIT project 

GUARDS (Generic Upgradable Architecture for Real time Distributed Systems) provide a 

comprehensive framework from which specific instances can be derived to meet the dependability 

requirements of various application domains. Three main application domains are considered 

(railway, nuclear propulsion and space) that correspond to the fields of the three end-user partners of 

the project.  

This paper presents the modeling method supporting the assessment of GUARDS instances. The goal is 

to assist the designers in making objective decisions for defining a specific instance from the generic 

architecture.  

After a short summary of the main architectural concepts of GUARDS, the paper describes the major 

assumptions considered for the modeling that concern: i) component types (both hardware and 

software), ii) fault types, where special attention is paid to potentially correlated faults, and iii) the 

generic fault tolerance features of GUARDS. The main architectural characteristics of the target 

instances (one for each application domain) are briefly described. The modeling strategy is 

summarized and examples of models (stochastic Petri nets) are given. Selected results are then 

presented and discussed; they exemplify the usefulness of the modeling and evaluation method, in 

particular in the light of sensitivity analyses with respect to model parameters. 
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1- Introduction 

The development and validation of fault-tolerant computers for critical real-time applications are 

currently both costly and time-consuming in particular as a result of the very specialized, and often 

hardware-intensive solutions that are classically considered. To tackle these issues, a consortium of 

European companies and academic partners has been formed to design and develop a Generic 

Upgradable Architecture for Real-time Dependable Systems (GUARDS), together with an associated 

development and validation environment [1]. 

The end-user companies in the consortium currently deploy ultra-dependable real-time embedded 

computers in their systems, but with very different requirements and constraints resulting from the 

diversity of their application domains: railway, nuclear propulsion, and space systems. The overall aim 

of the GUARDS project is to significantly decrease the lifecycle costs of such embedded systems. The 

intent is to be able to configure instances of a generic architecture that can be shown to meet the very 

diverse requirements of these (and other) critical real-time application domains. 

The project has carried out an extension set of validation activities, including formal verification, 

analytical modeling and fault injection (e.g., see [2], [3] and [4]). This paper focuses on analytical 

modeling work aimed at assessing the dependability of GUARDS instances. The goal is to assist the 

designers in making objective decisions for defining a specific instance of the generic architecture, a 

need that is exemplified by related work carried out on previous modular fault-tolerant architectures 

(e.g., see SIFT [5], FTPP [6] or Delta-4 [7]). An insightful effort tackling system-level modeling and 

sensitivity analyses was also reported in [8]. The novelty of the study reported here concerns i) the 

enhanced scope of the generic modeling effort where explicit attention has been paid to the various 

levels of the generic architecture and ii) the practical dimension of the target instances considered 

originating from three distinct applications domains. 

Our main concern is to capture the appropriate level of detail of the architecture encompassing fault 

types, redundancy management policies and maintenance strategies, so as to be able to derive 

evaluation models suitable for carrying out extensive sensitivity analyses to support meaningful and 

clear design choices. 

The modeling of large complex fault-tolerant systems is faced with the problem of mastering 

complexity and state explosion resulting from the large number of (hardware and software) 

components, and of the multiplicity and intricacy of their interactions. Several studies have been 

reported that tackled this issue by means of simulation (e.g., see [9, 10]) or by analytical techniques 
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using either approximate or exact solutions based on stochastic binary decision diagrams, stochastic 

Petri nets or Markov chains (e.g., see [11-16]). In this paper, in accordance with the genericity principle 

that led to the design of the GUARDS architecture, a generic modeling framework, inspired by the 

modular approach developed in [17], is considered. 

Special attention has been paid to model the impact of common mode failures among the various 

redundancy dimensions of the architecture — whether these failures induced by hardware or by 

software faults [18] [8]. The models also take into account the coverage of the various embedded error 

detection mechanisms. This allows identification of a restricted set of parameters that are common to 

all instances, which makes it possible for their assessment to be carried out on a fair basis. The 

evaluation strategy relies on the use of stochastic Petri nets. The evaluation of dependability measures 

and sensitivity analyses were supported by the software package SURF-2 [19]. 

This paper extends a preliminary work published in [20]. The main extensions concern the provision 

of more detailed models and additional dependability measures. It is structured as follows. Section 2 

sketches the main features of the generic architecture. Section 3 defines the modeling assumptions that 

elaborate on an abstract view of GUARDS architecture; it also identifies the components modeled, the 

fault types considered and the fault tolerance features exhibited by the generic architecture. The three 

target instances (railway, nuclear propulsion, and space) are then briefly described in Section 4. The 

modeling strategy is described in Section 5. Section 6 provides examples of evaluations and sensitivity 

analyses that can be carried out. Finally, Section 7 concludes the paper. 

2- The GUARDS Architecture 

To cut development costs and cope with obsolescence, the GUARDS architecture favors the use of 

commercial off-the-shelf (COTS) hardware and software components, with application-transparent 

fault-tolerance implemented primarily by software. It uses a limited number of specific, but generic, 

hardware and software components to implement an architecture that can be configured into a wide 

variety of instances along three architectural dimensions — redundant channels, redundant lanes and 

integrity levels — that also form three dimensions of fault containment (Figure 1): 

• Channels constitute the primary physical-fault containment regions. 

• Lanes form the secondary physical-fault containment regions. 

• Integrity levels support design-fault containment regions at the application level. 
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Figure 1 — The generic architecture 

Channels provide the ultimate line of defense within a single instance for physical faults that affect 

a single channel. Fault tolerance is based on active replication of application tasks over the set of 

channels. It must be ensured that replicas are supplied with the same inputs in the same order, despite 

the occurrence of faults. Then, as long as replicas on fault-free channels behave deterministically, they 

should produce the same outputs. Error processing can thus be based on comparison or voting of 

replica outputs. 

The lanes dimension can be used to improve the capabilities for fault diagnosis within a channel, 

e.g., by comparison of computation replicated on several nodes. There is also scope for improving 

coverage with respect to design faults by using intra-channel diversification. Alternatively, lanes can be 

used to improve the availability of a channel, e.g., by making passive a node that is diagnosed to be 

permanently faulty. 

The integrity dimension aims to provide containment regions with respect to software design faults. 

The intent is to protect critical components from the propagation of errors due to residual design faults 

in less-critical components. 

A particular instance of the architecture is defined by the dimensional parameters {C, M, I} (see 

Figure 1), a reconfiguration strategy, and an appropriate selection of generic hardware and software 

GUARDS components. These generic components implement mechanisms for: 

• Inter-channel communication. 

• Output data consolidation. 

• Fault-tolerance and integrity management. 
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The two dimensions of physical redundancy allow for a wide variety of instances to be defined with 

different fault-tolerance strategies. The management of system fault-tolerance and integrity is software-

implemented through a distributed set of generic system components (shown as a “middleware” layer 

on Figure 1). This layer is itself fault-tolerant (through replication and distribution of its components) 

with respect to faults that affect channels independently (e.g., physical faults). Although the tolerance 

of design faults in this system layer was not explicitly, correlated faults are included in the models used 

to assess the dependability of instances of the architecture. 

3- Modeling Assumptions  

The models are based on an abstract view of the components and layers that compose the GUARDS 

architecture depicted in Section 1. We identify in this section the main components considered, the 

related fault types, and the fault tolerance features common to the three instances.  

3.1- The Modeled Components 

The aim is to model instances of the generic architecture and evaluate their behavior in the face of both 

physical and design faults. The granularity of the modeling is selected in terms of the possible effects 

of faults and the independence assumptions that can be made.  

From the modeling viewpoint, the generic architecture can be described by four basic layers (Figure 

2), which, from the bottom-up, are: 

1.hardware layer: mostly off-the-shelf physical components, potentially affected both by physical 

faults and design faults; 

2.executive layer: off-the-shelf operating systems on each processor; 

3.system layer: GUARDS-specific components supporting the fault tolerance mechanisms; 

4.application layer: end-user application programs — this layer is divided into sub-layers 

corresponding to the I integrity levels. 
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The layers are partitioned horizontally to account for the two dimensions of redundancy included in 

the architecture: 

1. a set of C channels, 

2. a subdivision of each channel into: 

• a set of M lanes, 

• a channel nucleus corresponding to its ICN manager, the ICN link by which it sends information 

to the other channels, its I/O interfaces, etc. 

Since there is no explicit means to tolerate design faults affecting the executive and system software 

supported by the ICN manager, the channel nucleus is considered as a monolithic component from the 

modeling viewpoint. 

An instance of the architecture is characterized by the values of C, M and I, and a corresponding 

fault tolerance strategy (two instances of the architecture could have identical values of C, M and I, but 

different fault tolerance strategies). 

The fault tolerance strategies that are envisaged allow instances to be degraded by making passive 

channels, lanes or integrity levels. Therefore, the current configuration of an instance may be defined 

by a vector of three state variables, { ic, im, ii}, with: 

• ic ∈ [1,C] indicating the current number of active channels (initially C), 

• im ∈ [1,M] indicating the current number of active lanes (initially M), 

• ii ∈ [1,I] indicating the current lowest active integrity level (initially 1). 

In the three instances considered, we have C=2, 3 or 4, M=1 or 2, and I=2. 
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3.2- Independent and Correlated Faults  

Diversification across channels is not currently considered, so we will assume that fault rates of the 

various components are identical across channels.  

The architecture considers both physical faults (that can only affect hardware, i.e., the nucleus and 

the hardware layer) and design faults (that can affect both hardware and software, i.e., the nucleus and 

any layer). Physical faults are assumed to occur independently on different components. Some design 

faults can also manifest themselves as if they were independent faults, even on identical components, if 

the pointwise conditions necessary for their activation occur independently on the different components 

(i.e., Heisenbugs [20]). 

We therefore distinguish independent faults affecting the nuclei [ψN] and the faults affecting each 

layer X of the processing part of the architecture [ζX(m)] where X ∈ {H, E, S, Ai} (hardware, executive, 

system, integrity level i of the application). 

However, common-mode failures due to correlated design faults must also be considered. Here, we 

consider the following possible correlated faults (Figure 3): 

1. channel correlated faults (i.e., across all lanes), 

2. lane or nuclei correlated faults (i.e., across all channels), 

3. global correlated faults (i.e., across all lanes and all channels). 
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Figure 3 — Summary of correlated faults 

Other than global correlated faults, we do not consider faults that simultaneously affect a processor 

in channel c, lane l, and another processor in channel d≠c and lane m≠l (i.e., we do not consider 



8 

“diagonal” correlated faults, since components are either common to all processors, or redundantly 

distributed across channels or lanes). 

The notion of correlated faults depends of course on the particular configuration of the architecture. 

For example, there can be no “correlated” faults within a channel if the configuration only has a single 

lane. So, to be able to represent different configurations and compare different instances of the 

architecture on a common basis, attention has been paid to the identification of rates of independent vs. 

correlated faults. Table 1 depicts the respective impact of these parameters on the 

independent/correlated faults for various configurations. 

Table 1 — Modeled events and relationship to basic fault rates 

Modeled Event iC=1 & im=1 iC=1 & im>1 iC>1 & im=1 iC>1 & im>1 

Nucleus 
Independent fault  
on channel c 

ψN + αN ψN + αN ψN ψN 

Correlated fault 
  αN αN 

Layer  X ∈ {N, H, E, S, Ai} 
Independent fault  
on channel c,  lane m 

≡ Global 
correlated 
fault 

ζX(m) + αX(m) ζX(m) + βX ζX(m) 

Correlated fault of lane m 
(i.e., across all channels) 

  ≡ Global 
correlated 
fault 

αX(m) 

Correlated fault of 
channel c  
(i.e., across all lanes) 

 ≡ Global 
correlated 
fault 

 β X 

Global  
correlated fault 

γX + αX(m) 
+ βX + ζX(m) 

γX + βX γX + αX(m) γX  

 

3.3- Temporary and Permanent Faults 

Faults can be classified as either temporary or permanent, according to whether or not their presence 

is related to particular point-wise conditions [21]. Fault treatment depends on whether the fault is 

diagnosed to be a permanent fault or a temporary fault, according to the conclusion of a self-test carried 

out on a channel after it has been isolated from the pool. If a fault is diagnosed to be permanent, an 

explicit repair action must be carried out, whereas in the case of a temporary fault, certain fault 

treatment strategies may authorize automatic re-integration of the faulty component. 
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Therefore, we need to be able to distinguish the proportions of faults that are temporary or 

permanent. To do so, we must consider whether the faults are independent or correlated, and whether 

they are of physical origin or due to erroneous design. 

Independent faults of the nuclei or of the hardware layer may correspond to either physical faults or 

design faults. However, independent faults of the executive, system and application layers can only be 

design faults. Also, by definition, design faults leading to independent manifestations must be 

temporary faults, since their manifestation is related to point-wise system activity conditions. 

Consequently, for the nuclei and the hardware layers, we have considered the proportion of 

independent faults that are permanent as an important parameter of the model.  

Correlated faults may be considered as either temporary or permanent, according to the fault 

treatment and maintenance policy that is adopted.  

3.4- The Common Fault Tolerance Features 

Besides the specific fault tolerance strategies inherent to each target instance, it can be assumed that the 

generic architecture supports a set of fault tolerance features that can be considered on a common basis. 

In particular, each channel has intra-channel or local mechanisms that provide error detection in 

addition to that provided by inter-channel error processing. The efficiency of the local error detection 

mechanisms depends on the corresponding error source (Nucleus, Hardware, Executive, System, 

integrity levels of the Application) and is characterized by coverage factors cX, 

X ∈ {N, H, E, S, A1, A2}. Although in the analyses, we did not discriminate the application integrity 

levels with respect to the efficiency of local error detection, they are distinguished in the modeling. 

Inter-channel error processing depends on the number of operational channels. As long as there are 

at least three operational channels, any errors due to a single faulty channel are assumed to be masked 

(and detected) by majority voting. In the case when two operational channels are available, a two-out-

of-two vote is considered and single channel errors are assumed to be detected. Let the coverage of 

these assumptions be defined as cVc, where index c  ∈ {2,3,4}. Since a 4-channel configuration is 

capable of tolerating arbitrary faults, cV4 can reasonably be assumed to be 100%. The other coverages 

should be considered non-perfect; for example, the non-coverage includes the case of a Byzantine fault 

leading to failure of the clock synchronization mechanism.  

Detected errors trigger fault diagnosis to determine which channel is at fault. Any faulty channel is 

isolated from the operational channels to execute a self-test aimed at determining whether the fault is 
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permanent or temporary. Let the execution rate of the self-test be defined as δ  and let the coverage of 

the self-test with respect to permanent faults be defined as cST . If the fault is judged to be permanent, it 

is repaired with rate µ . If the fault is judged to be temporary, the channel is reintegrated with rate ρ . 

With probability 1-cST , a permanent fault is erroneously judged to be a temporary fault; in this case, 

we (pessimistically) assume that a catastrophic failure occurs. The permanent faults represent a 

proportion π  of the independent faults affecting the nuclei and the hardware layer. 

Any correlated faults, except those occurring at integrity level 1, are assumed to lead to a 

catastrophic failure1. Correlated faults at integrity level 1 should be confined to that level by the 

integrity policy (IP) enforcement mechanisms. Let the coverage of these mechanisms be cIP . Detected 

violations of IP cause the incriminated layer to be discarded. 

All undetected errors are assumed to lead to catastrophic failures. 

4- The Target Instances  
Three instances of the GUARDS architecture were modeled and evaluated. These were meant to match 

the prototypes being developed by each end-users according to the needs identified for their respective 

application domains: railway, nuclear propulsion and space. 

4.1- The Railway Instance 
Figure 4 depicts the railway instance evaluated. It features Motorola 68040 or 68360 processors, each 

running a Posix-compliant VxWorks operating system.  

 

OS: VxWorks

Integrity level 1:
Monitoring, diagnostic 
and supervision functions 
(language C, C++)

Integrity level 2:
Interlocking logic 
(safety nucleus)
(language C, C++)

68040 or 68360 processors

GUARDS FT and integrity
management (language C)

ICN

 
Figure 4 — Railway target instance (C=3, M=1, I=2) 

                                                
1  Only two integrity levels are considered for the three target instances.  
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Compared to currently deployed systems, the innovative aspect of this architecture is the co-existence 

of two levels of application software of very different degrees of criticality: 

1. the highly-critical interlocking logic or safety nucleus, which is at the highest integrity level, 

2. the monitoring, diagnostic and supervision functions, which are of the lowest criticality. 

This is a significant departure from current practice in railway applications, where these two levels 

of integrity would normally be implemented on separate instances. However, there is an appreciable 

economic advantage to be gained when it is possible to share the same hardware between both levels 

(e.g., for small railway stations). 

As long as there are three operational channels, any errors due to a single faulty channel are 

assumed to be masked (and detected) by majority voting. While there are only two operational 

channels, the instance operates in a two-out-of-two mode. If a fault should occur while in this mode, 

the instance is switched to a safe state if the errors caused by the fault are detected (either locally within 

a channel or by two-out-of-two comparison).  

4.2- The Nuclear Propulsion Instance 

The targeted nuclear propulsion application is a secondary protection system. The prototype for this 

application is a 2-channel architecture with two Pentium processors in each channel (Figure 5). To 

prevent common-mode failures of both channels due to physical damage, the channels are 

geographically separated one from the other by a distance of 10 to 20 meters. Like the railway 

application, this instance hosts two levels of integrity. 

An innovative aspect of this prototype is the use of two processors in each channel, with two 

different Posix-compliant operating systems: QNX and VxWorks. Apart from the operating systems, 

both processors run identical software to implement duplication-and-comparison within each channel. 

The aim is to be able to detect errors due to design faults in these commercial off-the-shelf operating 

systems.  

All application software components are executed on both processors in both channels. Within a 

channel, the copies of an application component on lanes 1 and 2 are provided with the same inputs in 

the same order. In the absence of faults, both copies should provide identical results. These are 

compared by a bit-to-bit comparator implemented as a GUARDS system-level component [21]. All 

application components within a channel are thus configured as self-checking pairs to provide detection 

of errors due to faults activated independently on each lane.  
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In particular, this includes physical faults (of the processors) and design faults of the processors and 

their operating systems. Note that, in this instance, an assumption of independent activation for design 

faults of the operating systems can be based on the fact that their designs are diversified. For design 

faults of the processors, an assumption of independent activation can be based on their diversification 

of utilization (due to loose coupling and diversification of operating systems). 

As long as both channels are operational, they operate in a two-out-of-two mode. Results of 

computations that are declared as error-free by the intra-channel mechanisms are compared and, in case 

of disagreement, the instance is put into a safe state. Let the coverage of the two-out-of-two vote be 

defined as cV 2 . However, if errors are detected locally by intra-channel mechanisms, the channel 

declares itself to be faulty and the instance switches to 1-channel operation. Note that this strategy is 

different to that of the railway instance that has degraded to 2-channel configuration: in that case, the 

instance switches to a safe state whether the error is detected locally or by comparison.  
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(language C, C++) 

Integrity level 2: 
(language C, C++) 
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OS2:  VxWorks 

GUARDS FT and integrity  
management (language C)

 
Figure 5 — Nuclear propulsion target instance (C=2, M=2, I=2) 

4.3- The Space Instance 

The instance considered for space applications is the most complex of the three prototypes. It is a full 

4-channel instance of the architecture capable of tolerating arbitrary faults at the inter-channel level 

(Figure 6). Degradation to 3-, 2- and 1-channel operation is possible. As for the railway and nuclear 

applications, this instance also features two levels of integrity. 
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Figure 6 — The space target instance (C=4, M=2, I=2) 

Like the prototype for the nuclear propulsion application, this instance also possesses two lanes, but 

for a different reason. However, for the nuclear instance, the aim was to allow diversified but 

equivalent operating systems to be used so that errors due to design faults could be detected. Here, the 

objective is to have one of the lanes act as a backup for the other lane. 

We refer to the two lanes as the primary and secondary lanes. Each lane supports a different 

operating system and different application software: 

1. The primary lane runs a full-functionality version of VxWorks and a nominal application that 

provides full control of the spacecraft and its payload. The application includes built-in self-

monitoring based on executable assertions and timing checks. 

2. The secondary lane runs a much simpler, restricted version of VxWorks and either a safety-

monitoring application or a simple back-up application. The purpose of the latter is to provide 

control of the spacecraft in a very limited “survival” mode (e.g., sun-pointing and telemetry/remote 

functions). 

The idea is that neither the full VxWorks nor the nominal application supported by the primary lane 

can be trusted to be free of design faults. However, the restricted version of VxWorks and the 

application software supported by the back-up lane are assumed to be free of design faults and thus 

trustable. The aim is to allow continued (but severely degraded) operation in the face of a correlated 

fault across all processors of the primary lane. Errors due to such a correlated fault can be detected in 

two ways: 

• self-monitoring functions included within the nominal application, 

• a safety-monitoring application executed by the secondary lane while the primary lane is 

operational. 
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In view of the differing levels of trust of the applications supported by the primary and secondary 

lanes, they are placed at different levels of integrity. The nominal application (on the primary lane) is 

not trusted, so it is assigned to integrity level one. The back-up application is assumed to be free of 

design faults and is placed at integrity level two. This separation of the integrity levels on different 

lanes provides improved segregation (“firewalling”) between the two levels of integrity. 

5- The Modeling Strategy 

As in [17], a global model that is made of abstract block models is built first. Second, each block model 

is refined as a Generalized Stochastic Petri Net (GSPN). Then the Markov chain is derived. 

We will present in the following subsections the modeling blocks and a brief description of the fault 

tolerance strategies specific to each instance.  

Due to space limitations, it is not possible to present the various block models for all considered 

instances. Nevertheless, as an illustration of the type of models used, we will concentrate on some 

block models of the railway instance. 

5.1- The Modeling Blocks 

Although they are derived from the same generic architecture, the three instances considered differ by: 

• the number of hardware and software components which ensure both the services required of the 

system in nominal (fault free) operation and the fault-tolerance functions; 

• the global strategy for fault tolerance (and maintenance); 

• the type of correlated faults (see Figure 3), that in turn, depends on the fault tolerance strategy. 

Three main modeling blocks have been distinguished (Figure 7). The first block model is used to 

represent the architecture of each channel, including lanes and self-tests for diagnosis. The second 

block model represents the fault tolerance strategy. The third one models the effects of correlated 

faults.  
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Figure 7 — The main block models 

Each channel block is divided into two parts: 

• the top part which models the occurrence of independent hardware and software errors within the 

channel; 

• the bottom part which models the self-test diagnosis that determines whether the fault is 

permanent or temporary. 

Erreur ! Source du renvoi introuvable. gives the number of places, transitions and states of the 

models of the three instances. The significant number of states obtained for the Markov chain 

describing the space instance results from the larger number of timed transitions in the GSPN that are: 

i) induced by the high number of successive faults that can be tolerated by the instance, and ii) needed 

to model the recovery strategy implemented by the two diversified lanes. 

Table 2 — Complexity of the models 

 Railway Nuclear Space 
Generalized stochastic 
Petri nets 

   

#  Places 88 65 84 
#  Transitions (timed) 178 (51)* 153 (40)* 699 (260)* 
Markov chains    
#  States 352 150 21944 
* Values in parenthesis give the number of timed transitions in the GSPN 

 

A verification of the structural properties (such as liveness, boundedness, etc.) of the GSPNs was 

carried out independently for each of the block models. Furthermore, extensive sensitivity analyses 

were performed to validate the global model obtained for each instance; selected results of these 

analyses are presented in section 6.2. These verification and validation tasks were supported by the 

SURF-2 tool [19]. 
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