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Abstract— For a versatile human-assisting mobile-
manipulating robot such as the PR2, handing over objects to
humans in possibly cluttered workspaces is a key capability.
In this paper we investigate the motion planning of handovers
while accounting for the human mobility. We treat the human
motion as part of the planning problem thus enabling to find
broader type of handing strategies. We formalize the problem
and propose an algorithmic solution taking into account the
HRI constraints induced by the human receiver presence.
Simulation results with the PR2 robot illustrate the efficacy of
the approach.

I. INTRODUCTION

Robots and humans working together in cooperation can

accomplish more sophisticated tasks beneficing from the

combined power/precision of the robot and the reasoning

of the human. This relationship brings new problems and

challenges to robotics research.

In this paper we focus on the particular problem of finding

good object handover configurations, that is formulated as a

special instance of the motion planning problem [5], [11],

[12]. We consider robots such as the PR2, with navigation

and manipulation capabilities and introduce the notion of

”shared effort” in the handover plan.

Human-aware motion planning is a rather active area of

research [9], [10], [13], [16], [20]. These works generally use

a costmap approach in order to account for the human pref-

erences according to the proxemics theory [6]. Other work

aim at making humanoid robots motions more human-like

[1], [17], [21], [22] to increase the robot-motion legibility.

However we are not aware of motion planners that account

for the human motions for generating more comfortable robot

behaviors.

Human-robot handovers have been studied through sev-

eral aspects such as relative placement [8], arm motion

trajectory and dynamics [18], coordination and signaling [7],

human safety, acceptance or comfort. Recently, Edsinger

and Kemp, demonstrated in [4] that humans tend to adapt

to the robot shape and its limited grasping capacities by

selecting handover positions to ease the transfer of the object

to be exchanged. In the paper they discuss the importance

of geometrical features to be taken into account such as the

notion of private space [6] to generate the reaching gestures.

They claim that taking into account such constraints would

result in more intuitive, more comfortable, and more efficient

handovers. Cakmak et al [3] have introduced the notion of

contrast to design the handover posture. This was motivated

by observing that robot poses are often not conveying the

Fig. 1. A young person that is in a hurry to get the object will express
more comfort getting the object above the cluttered table while an older
person will take the object from the side even with a longer wait.

intent because of the ambiguous boundary between carry and

handover postures.

In this work we propose to consider the human motion

while planning for robot-human handovers in a workspace

possibly cluttered by obstacles. Our aim is to better account

for human preferences such as eagerness to get the object

or physical capacities. We introduce a number of criteria

for the exchange to be safe, legible and fluent, and pro-

pose a formulation of the underlying planning problem. We

also introduce a new parameter named mobility to balance

between ”shared effort” and comfort. We have developed

an efficient algorithmic solutions to this planning problem.

Figure 1 presents an example of a handover task solved by

our planner with different settings of the mobility parameter.

The paper is organized as follows. Section II gives a

formal definition to the handover planning problem. Section

III introduces a simple but yet computationally efficient al-

gorithm based on a combination of grid-based and sampling-

based methods. Section IV presents the simulation and

experimental results obtained using this approach.



II. THE HUMAN-ROBOT HANDOVER PLANNING PROBLEM

In this section we propose a formal definition of the

handover planning problem. We first introduce the input and

output of the problem, then we define the search space along

with the feasibility and interaction constraints to be taken into

account.

A. Inputs and outputs

In order to account for the human’s motion we consider

motion plans that are composed of two paths: the giver’s and

the receiver’s paths that take them from their initial posture

to a feasible handover goal posture.

Formally the inputs of the problem are the initial con-

figurations of the robot qinit
r and of the human qinit

h . The

problem also takes as input their kinematic model and the

representation of the workspace W . The output plan will

consist of the two paths τr and τh represented as parametric

curves in their respective configuration space.

Next, we define the handover configuration space as the

space of all feasible handover postures and further present

a set of properties that are used to assess the quality of the

output plan in terms of interaction constraints.

B. The handover configuration space

Let us consider the configuration space formed by the

cartesian product between the robot configuration space Cr

and the human configuration space Ch:

C = Cr × Ch

The configuration space C contains all configurations

allowed by the kinematics of both the robot and the human.

Thus solving the handover problem implies to find a han-

dover configuration qhand = (qr, qh) ∈ C. The configuration

qhand belongs to a feasible subspace Cfeas ∈ C. This

subspace is a restriction of C regarding the constraints listed

below:

a) Collision free: at the handing configuration qhand,

the robot and the human have to be collision free regarding

self collision, collision with obstacles and with each other.

This subspace is named Cfree.

b) Reachability: at the handing configuration qhand, the

object to be exchanged has to be reacheable by both partners

i.e. the gripper of the robot and the hand of the human must

grasp the object. This subspace is named Creach.

c) Stability: at the handing configuration qhand, the

robot and the human have to be stable regarding newton

law of mechanics. This subspace is named Cstab.

d) Accessibility: this constraint corresponds to the ex-

istence of a collision free path between the handing posture

qhand and the initial configuration qinit = (qinit
r , qinit

h ). The

set of handing configuration accessible from qinit defines the

subspace named Caccess.

The set of all feasible handover configurations Cfeas is

the intersection of these four subspaces:

Cfeas = Cfree ∩ Creach ∩ Cstab ∩ Caccess.

Cfeas only restricts the configuration space to feasible

handover motions where the robot and the human can meet

in a handing posture. In this possibly large subspace of C

many configurations may be undesirable because they do not

respect social protocols or do not consider explicitly human

preferences. In the next subsection we detail some important

properties that have to be accounted for in order to generate

valid human-robot handovers regarding intuitive social rules

and the more formal proxemics theory.

C. HRI constraints

In order to account for the safety of the interaction and the

legibility of the robot’s intentions, we have introduced in [20]

and [13] a set of HRI constraints that rely on notions from

the proxemics theory [6] as well as user studies such as [8].

These constraints have been introduced and used in [20] to

generate navigation human-aware motions. They have also

been used in [13] to generate comfortable handover motions

in cluttered environments. Each interaction constraint is

associated to a function that assesses the constraint. These

constraints can be summarized in three sets.

First, we consider comfort constraints that prevent gener-

ating discomfortable configurations. They integrate criteria

such as robot proximity [6], robot visibility [8] to limit the

effect of surprise and musculoskeletal comfort of a given

posture [14]. We referred to the corresponding cost as ccomf

in the rest of the paper.

Second, we consider motion constraints to generate rea-

sonable effort on the human side. These constraints depend

on two parameters: displacement, and standing. The length of

the path τh that the human will have to walk and wether the

human needs to stand up are used to assess this constraint.

We will refer to the corresponding cost as cmot.

Finally, we also account for fluency constraints, limiting

the total duration of the handover, and favoring efficient

plans. For this, we consider a cost clength related to the

maximum value of the time taken by either the robot or

the human to reach the handover configuration.

Some of these desired proprieties such as the human

displacement and the action duration may contradict one

another. To balance the impact of the different properties on

the output plan, we introduce a mobility parameter reflecting

the giver’s physical capabilities and his eagerness to obtain

the object.

Indeed, the handover duration may generate discomfort

if it does not match with the human possible eagerness

or urgency to get the object. High mobility values will

balance motion and comfort constraints to favor quicker

plans, resulting in the final cost defined as :

c = (cmot + cconf ) ∗ (1 − m) + clength ∗ m

where m ∈ [0 1] is the mobility factor. As explained

in next section these interaction constraints and their cor-

responding cost functions are evaluated during the planning

process and are combined together according to the human

preferences modeled by the mobility parameter.



III. ALGORITHM

This section presents the handover planner that was devel-

oped to compute human-robot handovers while accounting

for the interaction constraints introduced above. The ap-

proach relies on a combination of grid-based and sampling-

based algorithms that consider the workspace obstacles and

the kinematics models of both the human and the robot.

After some grid based preprocessing, the method consists of

iteratively sampling feasible handover configurations, evalu-

ating their cost and finally returning the minimal cost plan

obtained.

The main steps of the handover planner are sketched

in Algorithm 1. An initialization phase, called initGrids,

computes the accessibility of the human and the robot in the

plane which are stored in two planar grids. These grids also

contain the navigation distance to the robot and human initial

position (see Figure 2). In this phase, two preselected sets

of human-robot handover configurations are also loaded for

a standing and sitting human (see Figure 3).

After the initialization phase, each iteration consists of

computing a handover configuration qhand that encodes for

the robot and the human DoFs.

The navigation parameters p = (x, y, θ) of the human at

qhand, are first generated in the SampleHumanPos function

by sampling a random position in the human accessible

space. The navigation path of the human τh to reach this

position is computed by using a standard technique [11]

consisting of descending the distance gradient in the prepro-

cessed human grid. Note that the robot path τr is computed

similarly by descending the distance gradient in the robot

grid.

The position p is then transformed into to a fully specified

handover configuration qhand in the BestFeasibleConf

function that iterates through the set of preselected human-

robot handing configurations loaded in the initialization

phase. Then if no feasible robot path τr is found between

the robot initial position and the handover configuration

the algorithm returns to step one. Otherwise the cost of

the solution plan is evaluated and stored if it improves

the minimum cost solution found by previously computed

handover plans.

The method loops over these steps until the stopping cri-

terion is satisfied. In the current implementation the stoping

conditions combines two stoping criteria : maximum time or

a minimal improvement of the best current solution. The final

robot path τr consists of a set of way points corresponding

to the trasversed cells centers interpolated by straight lines.

The orientation θ along τr is selected implicitly by facing

the robot to the next way point.

In the next subsections we further detail the processing

done during the initialization phase and the three steps of the

algorithm. We also describe some additional pre-processing

that can be done to speed-up the sampling of constrained

handover solutions.

Algorithm 1: Computing handover plans

input : Human initial position : ph

Robot initial position : pr

Mobility of the human : m

output : The human and robot handover conf : qhand

Human path : τh

Robot path : τr

begin
costbest ← ∞
G ← initGrids(ph, pr, m);
while StopCondition() do

p ← SampleHumanPos()

τh ← DescendOnHumanGrid(p)
qhand ← BestFeasibleConf(p)
if qhand == NULL then

continue

prob ← GetRobotPos(qhand)
τr ← DescendOnRobotGrid(prob)
if not τr == NULL then

continue

cost ← ComputeCost(m,τh,τr ,qhand)
if cost > costbest then

continue

else
costbest ← cost
StoreBest(qhand,τh,τr)

return

end

(a) Human distance grid (b) Robot distance grid

Fig. 2. The distance propagation (a) is human centered and (b) is robot
centered. the green cells correspond to nearest positions, and the red the
farthest.

A. Distance propagation and initialization

In order to facilitate the computation of feasible handover

configurations and the cost evaluation of those solutions,

the method integrates a precomputing phase in which two

dimensional grids are constructed and processed. Two grids,

depicted on Figure 2, one for the robot and one for the

human, provide an approximation of the free-space and the

navigation distance to the initial position. This enables to

determine which region of the workspace are accessible to

the human and the robot at a very low computational cost.

The free-space grids are computed using bounding cylin-

ders of the robot and the human in resting postures. The

resting postures, also depicted in Figure 2, correspond to



Fig. 3. The preselected configurations of the robot relative to the human
standing (similar configurations are generated for the human sitting).

navigation configuration of the arms. A cell is marked as

free if when placed at its center, the corresponding bounding

cylinder does not overlap with the workspace obstacles.

The accessible space and the navigation distance to the

initial position of a cell are simultaneously computed with

a standard wave propagation technique. Figure 2 shows the

propagated distance of the robot and the human from their

initial position, where green cells are close to the initial

position and red cells are far.

The initialization phase also loads a set of predefined

handing configurations illustrated in Figure 3. These human-

robot handover configurations are named QHR in the rest

of the paper. They are selected offline and do not depend on

the workspace nor on the absolute position of the human and

the robot. Thus each configuration is defined relatively to the

human position and consists of the human’s and the robot’s

arm DoFs. The selection of these configurations can be done

by sampling relative human-robot positions and using them

to compute the associated handover configurations.

B. Sampling human positions

The first step of each iteration consists of sampling a

human position and orientation p = (x, y, θ) inside the

accessible space stored in the pre-processed grid. In order to

sample this triplet a cell is selected then a point is sampled

inside the cell and finally an orientation is randomly sampled.

Since each sampled position p leads to one and one only

best handover plan, it is important to sample the positions

that yield better solutions. We provide in Section III-D, two

enhancements of the preprocessing phase to bias both the

selection of the cell and the orientation of the human.

C. Returning the best feasible configuration

The configurations QHR illustrated in Figure 3 are sorted

according to the ccomf cost (see Section II-C). When search-

ing for the best feasible handover configuration at human

position p, the first feasible configuration is selected (i.e.

collision free and accessible to the robot).

This process enables to find constrained handover configu-

rations, e.g. a small slot in a wall that separates disconnected

parts of the workspace. Moreover, since the configurations

are sorted, the best configuration regarding comfort cost is

quickly determined without recomputing cost.

(a) Robot Access (b) Human Access (c) Fused Grid

Fig. 4. The human and the robot lie in separated part of a workspace,
parted in two by a table. The accessible space of the robot (a) and human
(b) and the fused grid (c) are computed.

(a) Crown region (b) Solution on the side

Fig. 5. The estimated handover positions of the robot, feasible (in blue)
and closest feasible cellmin (in red) for a given human position according
to the reaching capabilities of the human and the robot.

D. Reduce the search space and biasing sampling

When the human and the robot lie in separated parts of the

workspace, such depicted in Figure 4, the algorithm samples

the human accessible space without considering the robot

accessibility and reaching capacity. The human direction is

also sampled randomly which is often away from the robot

approaching direction.

In order to speed-up and ameliorate the generation of fea-

sible handover configurations we propose two enhancements

to the basic version. First, we construct a smaller fused grid

which contains only human cells that can lead to potentially

valid handovers by discarding cells that are unreachable to

the robot. Secondly, a value which approximates the total

cost of the candidate handover solution is precomputed and

stored in the grid. Human position sampling is then biased to

low cost regions of the accessible space stored in the fused.

The sampling of the human direction is also biased to an

estimate of the robot approaching direction.

1) Fused grid: To generate the fused grid of the human

and robot accessible space the minimal and maximal human-

robot distances in the preselected set of handing config-

uration QHR are computed. These min and max values

are used to define a crown region around the human such

as illustrated in Figure 5. Then each accessible cell in the

human grid which crown region does not overlap any cell

in the robot grid (i.e. that can not yield a valid handover

configuration) are suppressed from the human grid.

Hence, by discarding the cells that are not within reaching

distance from the robot accessible space a smaller fused grid

is obtain, such as depicted in Figure 4.c. Note that the fused

grid does not account for 3D collision checking which is



(a) m = 0 (b) m = 0.35 (c) m = 1

(d) m = 0 (e) m = 0.35 (f) m = 1

Fig. 6. Three values of the mobility parameters are used to generate three handover startegies. The first three pictures depict the resulting trajectories
while the three bottom pictures show the final handover configuration that accounts for the 3D obstacles.

performed in the exploration phase.

2) Bias sampling: In order to bias the sampling of human

position to candidates that will yield better handover config-

urations, each cell in the fused grid is filled with path length

cost and motion length cost as follows:

cB = cmot ∗ (1 − m) + clength ∗ m

where m is the mobility parameter, this value cB approx-

imates the final c presented in Section II-C that is used

evaluate the quality of the candidate handover solution.

In order to bias the human direction sampling, the valid

cell that minimizes the robot motion from its initial position

to the crown region (in red in Figure 5) is stored in the

fused grid. When sampling θ, directions facing this cell are

favored.

Next section provides simulation results of this algorithm

with different settings of the m parameter. We also present a

user study that has been conducted to validate this approach.

IV. RESULTS

In this section we report the capability of the algorithm

to find handover plans in workspaces containing home fur-

niture such as tables and shelves. We report the strategies

produced by the planner using different values of m and

the convergence rate of the algorithm when using different

pre-processing variants and their sampling schemes. We also

discuss discretization issues.

In order to assess its performance, the algorithm has

been implemented, along with test environments, into the

path planning software Move3D [19] and simulation were

performed on a 2.26GHz INTEL processor.

A. Influence of the mobility parameter

Figure 6 shows three handover strategies that have been

computed for the same problem using three values of the m

parameter. For low values of m, the human is supposedly

less involved, asked as little effort as possible, on the

contrary high values of m supposedly require more effort

and participation of the human resulting in quicker handover

strategies.

• m = 0 : Generates a long path for the robot to reach

the handover position and the human does not move.

• m = 0.35: A shorter robot path to a feasible handover

position over the table is allowed by small displacement

of the human.

• m = 1: Shared effort between robot and human enables

a constrained handover position through the shelves.

Note that the planner is able to find different feasible

handover positions for the same initial position of the human

and the robot in the same environment. The resulting plan

accounts for the feasibility of the handover position and

motion using the 3D models of the human and the robot

even though planning of navigation motion is performed in

2D cartesian space.



Fig. 7. Unique convergence curve, with two settings of m, using the three
pre-processing variants yielding three sampling strategies over the scenario
depicted in Figure 6 (m=0.35 right, m=1 left)

Fig. 8. Averaged convergence curve over 300 runs, with the same settings
as shown in Figure 7 (m=0.35 right, m=1 left)

B. Performance of preprocessing variants

Figures 7 shows the cost improvement over two seconds

on a single run corresponding to approximately one thousand

sampled positions and five hundred hundred fully tested

handover strategies. The figure illustrates the interest of the

proposed fused grids and bias variants.

The simplest case (m=0) is not shown in a figure since

all variants converge to the displayed solution after a couple

of iterations. However for the two more complex cases the

basic pre-processing shows difficulty to find handover over

the table (m=0.35) or through shelves (m=1). In order to

generate more direct (and lower cost) handovers the basic

version requires much more iterations than the other variants.

The basic method keeps sampling handover configurations in

the free space similar to the ones shown in Figure 6.a and

6.d, but placed elsewhere in the free-space.

Thanks to fused grids the algorithm generates more sam-

ples on the boundary of the free space (close to the tables)

and thanks to bias it discovers more easily the solution

through the shelves. Figure 8 shows similar results averaged

over 300 runs of the planner which confirms these results.

In average a good quality solution is obtained in less than 1

sec with the fused grid and bias sampling preprocessing.

C. Influence of discretization

Figure 9 shows for the case m=1 that the grid size has little

influence on the performance of the handover sampling stage.

The influence is limited to the preprocessing stage for which

distance propagation and fused grid computation depend

on the resolution. Note that the preprocessing is problem

dependent (initial position of the robot and the human) and

has to be performed for each query.

In terms of preprocessing time, the basic preprocessing

requires 200msec (resp. 660msec) for a resolution of 20cm

(resp. 10cm) and the additional cost of computing the fused

grid is 68msec (resp. 1109msec). Thus, using a resolution

of 20cm, the preprocessing stays below 1sec, however it may

become higher for discretization bellow 10cm.

Fig. 9. Averaged convergence over 300 runs on the scenario of Figure 6
with m=1. Three distinct grid sizes 10, 15 and 20 cm are superposed

The performance above tend to indicate that this approach

could be used to dynamically adapt the computed handover

motion plan during execution in order to account for possible

human motions or to adapt the mobility factor if the human

motion does not look compatible with the proposed handover

location.

V. IMPLEMENTATION AND USER STUDY

We have conducted an HRI experiment confronting the

participants to choices of handover configurations that are

outputs of our planner: the shortest-time feasible plan at the

cost of substantial effort asked to the human, or the plan

that minimizes the human effort, at the cost of low global

performance.

The handover planner has been implemented on the PR2

robot. The trajectories of the arm were planned within

Move3D and executed with a SoftMotion controller [2]

limiting the motion in jerk, accelerations and velocity. The

moving objects were localized with a tag detection module

based on ARToolKit [15]. We made use of an external Kinect

to localize humans in the scene we also controlled the head

of the robot and diffused sound on the robot speakers.

Figure 10 shows two participants being handed the object

in two distinct settings of the m parameter. The 34 subjects

recruited at the LAAS-CNRS in Toulouse, France were

faced with one handover only. At their arrival, the subjects

were briefed before the interaction, the handover was video

recorded and the participants were finally handed a survey.

We expected that accounting for the human mobility

resulted in more fluent and more efficient hand-overs. We

also expected that the mobility of the human receiver

depended on the task and intrinsic parameters. Hence we

hypothesized that appropriate matching and tuning of the

mobility parameter regarding the human preferences would

result in a smoother and a more comfortable human-robot

interaction.

The environment was built such that to put the planner in

a ”substantially difficult” situation: save time at the cost of

human effort and unease to perform the task. The robot was

able too build a shared plan where it hands over the object

through a hole that is not large enough to allow the robot

nor the human to cross.

The participants were assigned to four distinct cases.



Fig. 10. Two participants of the HRI handover experiment. The first one
is handed the object with a low mobility and the second one with a high
mobility.

• Shortest hand-over plan with chronometer

• Shortest hand-over plan with ’sudoku’

• Less effort hand-over plan with chronometer

• Less effort hand-over plan with ’sudoku’

Where sudoku and chronometer corresponded to two dis-

tinct tasks, that supposedly increased or decreased the mo-

bility of the participant. Objective and subjective measures

(timing and survey) were used to validate the hypothesis.

The results lent support to the hypothesized role of the

mobility parameters and also corroborated the proxemics

theory which has been the basis of this work.

VI. CONCLUSIONS AND FUTURE WORKS

This paper was motivated by the need for robot to plan

for handover motions in possibly cluttered scenes while

accounting for the human safety and comfort. Hence we have

introduced a new type of path planning problem that we call

the handover planning problem. The novelty of this approach

is to account for human motions for planning the robot

motion and the associated handover configuration. We have

formalized this problem and proposed a simple but efficient

algorithm. This algorithm is based on a combination of

simple sampling-based and grid-based techniques providing

a time efficient solution. In order to account for the human

motion we introduce a new parameter to qualify the human

state we call mobility.

We have used this framework to compute handover so-

lution while considering the human static. However the fast

convergence times indicate that it can be used to dynamically

adapt handover configuration while the human is moving. In

future work we also aim to further formalize and generalize

this approach to new human-robot interactions problems. We

also plan to perform a more realistic user-study accounting

for the human motion during execution of planned motion.
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