
HAL Id: hal-01977501
https://laas.hal.science/hal-01977501

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards multi-state visuo-spatial reasoning based
proactive human-robot interaction

Amit Kumar Pandey, Muhammad Ali, Matthieu Warnier, Rachid Alami

To cite this version:
Amit Kumar Pandey, Muhammad Ali, Matthieu Warnier, Rachid Alami. Towards multi-state visuo-
spatial reasoning based proactive human-robot interaction. 15th International Conference on Ad-
vanced Robotics (ICAR), Dec 2011, Tallinn, Estonia. �hal-01977501�

https://laas.hal.science/hal-01977501
https://hal.archives-ouvertes.fr


 

 

  

Abstract—Robots are expected to co-operate with humans in 

day-to-day interaction. One aspect of such co-operation is 

behaving proactively. In this paper, our robot will exploit the 

visuo-spatial perspective-taking of the human partner not only 

from his current state but also from a set of different states he 

might attain from his current state. Such rich information will 

help the robot in better predicting ‘where’ the human can 

perform a particular task and how the robot could support it.  

We have tested the system on two different robots for the 

tasks of giving and making an object accessible to the robot by 

the human partner. Our robots equipped with such multi-state 

visuo-spatial perspective-taking capabilities show different 

proactive behaviors depending upon the task and situation, 

such as reach out proactively and to a correct place, when 

human has to give an object to the robot. Primary results of 

user studies show that such proactive behaviors reduce the 

human’s ‘confusion’ as well as ‘the robot’ seems to be more 

‘aware’ about the task and the human. 

I. INTRODUCTION 

S robots are moving towards being co-operative and 

social, the challenges of incorporating the basic 

ingredients of such behaviors are becoming more prominent. 

Behaving proactively is one of such desirable characteristics. 

Proactive behavior could be at various levels of abstractions 

as well as in various ways ranging from simple verbal 

interaction [11, 12] to proactive task selection [1-4, 5, 7, 19].  

In this paper our focus will be on the situations where 

human is required to perform a task for the robot. In this 

context we identify that for behaving proactively, robot 

needs to predict (i) ‘what’ the human is intended to do? (ii) 

'When' the human can or want to do it? (iii) ‘How’ the 

human might do it? (iv) ‘Where’ the human might or might 

not perform it. Study in [8] shows human’s abilities of 

predicting ‘what’, ‘when’ and ‘where’ of others actions and 

its usefulness in online action coordination, in the context of 

joint actions. 

Predicting ‘what’ has been addressed in various ways. 

Robot estimates what human wants and selects a task using 

probability density function, [1, 5], whereas in [7] it 

performs anticipatory action selection for improving joint 

task coordination. Predicting 'when' and ‘how’ have also 

been addressed in various ways: temporal Bayesian 
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networks for proactive action selection to minimize wait 

time, [4], robot wheel chair taking control when human 

needs it, [17], activity constraints violation based scheduler 

to remind human, [12], using switching hidden semi-Markov 

model to learn house occupant’s daily activities and to alert 

the caregiver in case of abnormality, [18].  

On the other hand the domain of predicting ‘where’ the 

human can perform the task and to show proactive behavior 

accordingly, has not been explored enough in robotics. In 

[16], robot wheel chair, using POMDP, predicts where the 

human is trying to go and drives him there.  

Predicting where human can perform a task is helpful for 

sharing attention with others [9], to predict spatial 

characteristics of the others actions [10], for building robot’s 

theory of mind [13] and consequently could help guide 

human behavior towards robot, [14, 15]. 

 In this paper we will address this issue of predicting the 

places ‘where’ human can perform a task. The task might 

have been predicted by the robot or already known to the 

robot. For example, if human wants to give some object to 

the robot, the robot will predict where human can perform 

that task as well as where robot can take the object, then it 

will move its hand proactively to support the task as well to 

guide the human to achieve the joint task of hand over. Such 

behavior will also make the human ‘aware’ about the 

‘awareness’ of the robot for the current task. As shown in 

fig. 1 (a), the robot requested, “Please give me the toy dog.” 

and remained in the rest position. This might create 

confusion for human about how and where to give it to the 

robot: “Should I move and reach near to the robot or should 

I stand and put the object in the hand of the robot or should I 

put it at a place somewhere on the table for the robot to take 

it?” But if the robot along with the request to give, also 

moves its hand towards probable place to take, as shown in 

fig 1(b), it will greatly guide the human about how and 
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Fig. 1: The Robot asks to the human “give me the toy dog” (a) by 

maintaining its rest position, (b) by proactively moving its hand to 

appropriate place to guide human’s action.  



 

 

where to give. In this context it is important for the robot to 

be aware about human’s capabilities and move its hand to 

appropriate place, which reduces the human’s effort as well. 

Moreover, robot moving its arm to a location will induce 

human goal anticipatory response as demonstrated in [6].     

 To facilitate such reasoning our robot will use visuo-

spatial perspective taking of the human. The key is, it does 

such reasoning not only from his current state but also from 

a set of different states the human might attain. Furthermore 

it performs similar analysis for itself.  

In the next section we will first briefly describe the 

different states for which robot estimates visuo-spatial 

abilities of the agent. Then we will briefly explain the 

robot’s understanding of a task from the visuo-spatial 

perspective. Then the task dependent analysis of the 

common or mutually exclusive abilities will be explained to 

predict the probable places for human to perform the task 

and assign an intuitive level of comfort. Then we explain 

different proactive behaviors depending on the task and the 

scenario. Then the conclusion and pointer will follow the 

experimental results and analysis to future works. 

II. METHODOLOGY 

A. Multi-state visuo-spatial analysis 

As explained earlier, our robots are capable of analyzing 

various abilities of an agent 

not only from the current 

position of the agent but 

also from a set of different 

possible positions the agent 

might attain. Table I shows 

the list of different states 

for calculating reachability and visibility of an agent.  Such 

abilities are calculated in terms of cells of the discretized 3D 

workspace and at objects’ level in workspace, which we 

termed as Mightability Maps (MM), [20] and Object 

Oriented Mightabilities (OOM) respectively. Such analyses 

enable the robot to reason about: if the agent will stand up 

and lean forward, which are the visible and reachable places 

and objects, and so on.  

B. Categorizing efforts 

As the robot is having a rich multi-state visuo-spatial 

perception of the agent’s ability, we categorize efforts to 

attain one state from the current state in terms of the joints 

involved in such transitions. Table II shows such 

categorization. It is motivated from the studies of human 

movement and behavioral psychology, [21], where different 

types of reach actions of the human have been identified and 

analyzed, as shown in fig. 2, reach involving simple arm 
extension (arm-only reach), shoulder extension (arm-and-
shoulder reach), leaning forward (arm-and-torso reach) and 
standing reach. Such categorization could be further 

enhanced based on the studies of musculoskeletal kinematics 

and dynamics models such as [23]. 

C. Robot’s Understanding of a task  

In [25] we have presented an approach, which facilitates 

the robot to understand a task from human-human 

demonstration. The idea is that as the robot understands task 

semantics from the point of view of desirable effects in 

terms of visuo-spatial abilities, as an attempt to make the 

understanding independent of how to perform the task. The 

agent for whom the task is being performed, we termed it as 

‘target-agent’. As such understanding will partially serve 

our robot to decide the way to behave proactively, in table 

III we have summarized the robot’s understanding for a set 

of tasks. The table is from the target-agent’s perspective at 

the end of the task for the ‘target-object’, i.e. the object on 

which the task has to be performed. For example the task of 

‘making accessible’ has been understood by the robot that 

after the task the object should be easier to be seen and 

reached by the ‘target-agent’ as well as it should be 

graspable and visibility of the object should be increased. 

Our robot is further equipped with the geometric 

interpretation of each symbolic descriptor. This task 

understanding will be used by various blocks of the 

proactive planner presented in this paper, as shown in fig. 3.  

We prefer to use our robot’s capability to understand a set 

of basic tasks, however, in the absence of such capability or 

such capability being insufficient for a task, one can also 

provide a pre-scripted meaning to a task.  

TABLE I 
STATES FOR MULTI-STATE VISUO-SPATIAL PERSPECTIVE TAKING 

TABLE II 

EFFORT CLASSES FOR VISUO-SPATIAL ABILITIES 

Fig. 2. Taxonomy of reach 

actions:(a) arm-shoulder reach, (b) 
arm-torso reach, (c) standing reach. 

TABLE III 

TASK UNDERSTANDING FROM MULTI-STATE VISUO-SPATIAL 

PERSPECTIVE FOR THE TARGET AGENT 



 

 

D. Proactive decision making 

Fig. 3 shows the overview of the overall reasoning 

process for proactive decision-making. We will explain it 

with an example. As shown in fig. 3, SHARY is the robot 

supervisor, [27], which monitors the environment, decides 

and generates appropriate planning/re-planning and controls 

requests and executes them appropriately. Symbolic level 

plans for a particular task are generated by HATP, [19], a 

HTN based task planner, with two-way handshaking with its 

geometric counterpart, [26].  

The example scenario shown on top-right of the fig. 3 is 

for a co-operative task of ‘clean the table’ of the CHRIS 

project [28]. The goal is to put all the objects laying on the 

tables in the trash bin on the right of the robot. Some objects 

are reachable and visible by the robot and some are 

exclusively by human. HATP generates the shared plan to 

achieve the task. In the plan, one co-operative action 

generated is to ask human to give the toy dog to the robot, 

which is currently not reachable by the robot, so that robot 

can put it into to trash bin. As the robot ‘understands’ the 

semantics of the task that human will try to make the 

object’s reachability and visibility easy for it and also the 

way human is expected to perform it i.e. by giving it in the 

robot’s hand, the robot will try to proactively support the 

task, as will be explained below. 

The robot will reason about ‘where’ the human can 

perform the task by setting different level of efforts for 

human starting from the lowest, as shown in table II, as an 

attempt to reduce the human’s effort. As the object is not 

already in human’s hand so robot will skip the test for 

no_effort_required  and will set human effort level in ‘f’ 

block of fig. 3 as arm_effort for reachability of human and 

head_effort for visibility of human. This means that robot 

predicts if the human will stretch out the arm and only turn 

the head around, which are the places where he can give an 

object to someone. Fig. 4(a) shows the candidate points for 

giving the object by human for this level of effort. Green, 

red and yellow points show giving possibilities by right, left 

and both hands respectively, for the current level of human’s 

effort. As robot does a similar multi-state visuo-spatial 

analysis for itself also, in block ‘h’ of fig. 3, robot sets its 

maximum level of effort for the current task. This level is 

decided by the HATP, based on task, mutual effort 

balancing, social constraints, human’s preferences etc., and 

could be reset dynamically if required. For the current 

example this is set as arm_effort, which means robot should 

not turn or move its base, it can only move its arm for 

achieving current sub-task of getting the object from human. 

With this level of effort for itself, robot tests the feasibility 

of achieving the task, block ‘i’ of fig. 3. Depending upon the 

task, it performs different set of feasibility tests. For the 

current task in which robot has to take an object from 

Fig. 4:  Candidate points for giving an object by the human (green: by right hand, red: by left hand, yellow: by both hands) (a) from his current position, 

(b) if the human will make effort to move (lean forward or turn) his torso while remain seated. (c) Candidate points from where the robot can take the 

object for the effort level of (b) for the human, (d) weight assignment on the candidate points based on the closeness to the target-object, toy dog. 

Fig. 3: Control flow of the overall system. Proactive planner takes the task requests from supervisor and returns appropriate proactive behaviors to it. 
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human, it performs feasibility test in the following way: 

(i) Finds the points in the candidate points obtained for the 

human for his current effort level, which are also reachable 

and visible by robot with its maximum allowed effort.  

(ii) Then it assigns weights to the resultant candidate 

points. Currently we assign weight based on the closeness to 

the target-object position, with the hypothesis that human 

need to put less effort in giving the object to the robot if he 

has to carry the object for less distance.   

(iii) Then starting from the highest weighted candidate 

point it finds a possible collision free placement 

configurations of the object at that point. Fig. 5(a) shows all 

possible placement configurations of toy horse in free space. 

(iv) Then for that placement of the object, it finds a grasp 

of the robot for that object. Since it is a task of handing over 

an object, it ensures that the selected grasp allows the human 

to grasp the object simultaneously.  Fig. 5(b) shows a sub-set 

of dual grasps for the toy horse object. 

In fact, all possible placement configurations independent 

of where to put as well as all possible grasps of an object are 

already known to the robot, for a collision free environment. 

This is a one-time computation for each new object the robot 

encounters in its ‘lifetime’, [22]. Then depending upon the 

environment, collision, visibility constraints, etc., robot just 

filters out the unwanted placements and grasps by putting 

the object at a particular point in a particular configuration.  

(vi) Then the robot tries to find a collision free path for 

reaching to that point, [24].  

If a particular candidate point passed all the feasibility 

tests for a particular task, then that particular point is 

considered to show the proactive behavior and the smooth 

trajectory is generated, [29], for execution.  

For our current example, the robot fails to find the 

candidate points for test (i) itself as there was no point 

reachable by the robot with its current effort level for the 

points of fig 4(a). Hence the robot reached the block ‘k’ of 

fig. 3. Now it sets next effort level of human, which is 

arm_torso_effort for reachability and head_torso_effort for 

visibility and loop back to block ‘g’. Fig. 4(b) shows the 

candidate points for giving the object by human for this new 

level of effort, in which human can lean forward or turn 

around while remain seated. Then again by setting the same 

maximum allowed effort level for itself, the robot tests the 

possibility to support human’s effort. This time robot finds a 

set of candidate points from where the robot can take an 

object from the human, green point cloud in fig. 4(c). Then 

as mentioned previously in point (ii), the resultant candidate 

points after the weight assignment have been shown in fig. 

4(d). Blue point, having highest weight, will be preferred 

over the red points, having lowest weights. The robot obtains 

winner-feasible point, pointed in fig. 4(d), i.e. the first 

highest weighted candidate point, which has passed rest of 

the feasibility tests, and the algorithm reaches to block ‘j’.  

Block ‘j’, depending upon the task, returns appropriate 

data for showing proactive behaviors. For the current task it 

returns, the winner feasible 

point obtained in fig. 4(d), 

the corresponding levels of 

efforts for the human and 

for the robot, the trajectory 

to reach the point, the 

predicted end configuration 

of the robot for planned 

proactive behavior, as 

shown in fig. 6.  

Depending upon the situation the supervisor will 

appropriately control the robot. In most of the situations the 

robot looks at the human and speaks “please give me the toy 

dog” and simultaneously moves the robot’s arm on the 

trajectory towards the place to take. Supervisor actively 

monitors the environment during execution and if the 

human’s intention or attention has changed or human is 

carrying the object away from the current feasible point, 

supervisor may decide to send appropriate re-planning 

requests either to symbolic or to proactive planner, 

depending upon the level of re-planning required. The object 

handing-over movement is identified by robot through its 

touch and force sensors associated with the gripper, which 

triggers to close the gripper for taking the object.  

E. Adaptation for Make-Accessible task 

Fig. 7 shows another scenario of clean the table demo. 

Fig. 5. (a) Different placement configurations of toy horse. (b) Sub-set of 
dual grasp by the human hand and the robot’s gripper. 

a 
b 

Fig. 6: Anticipated final configuration 

for the robot’s proactive reach. 

Fig.7: Task of making an object accessible by the human to the robot. (a) Places on the support planes where the human can put the object, by right 

(green), both (yellow) and left (red) hands. (b) Candidate points where the robot can support human, blue has the highest weight requiring least effort from 

human. (c) Robot anticipates possible placement of the object on the box, from where it is feasible to take, while ensuring least effort from the human. 



 

 

Our HTN based task planner, HATP is capable of 

maintaining two streams of the plans: one for the human and 

another for the robot. Based on the temporal independency 

of sub-tasks at some particular point of execution, robot 

supervisor could decide to execute a part of plan in parallel 

by both: the human and the robot. For this it will generate a 

co-operative request like “Can you please make the grey-

tape accessible to me, meanwhile I will put black tape in the 

trash bin?” In the absence of any proactive feedback from 

the robot, human can take and put the grey tape anywhere on 

the table, perhaps thinking about where to put so that robot 

can take. But if supervisor consults the proactive planner to 

know ‘where’ the human can put the grey tape with least 

effort, it generates the co-operative request as “Can you 

please make the grey-tape accessible to me, you can put it on 

the box, meanwhile I will put black tape in the trash bin?” 

Hence human is better guided about where to put. 

The verbal proactive behavior mentioned above is 

achieved by using the same framework of the proactive 

planner of fig. 3, where instead of finding ‘where’ the 

human can hold the object, it finds ‘where’ the human can 

put the object for the robot to take it. Our robot is able to 

find the horizontal surfaces in the environment as the 

candidate points to place some object. So, it found that the 

human could put some object on the top of the toolbox, the 

candidate points have been shown in fig. 7(a). Fig. 7(b) 

shows the candidate points at step ‘i’ of the algorithm of fig 

3. In this case robot modifies the feasibility tests of ‘give’ 

object described in section II-D. Now since human is not 

required to hand-over the object, robot will not perform the 

test of simultaneous dual grasp. Furthermore since now the 

placement on a support is required; robot will only consider 

the stable placement configurations on the corresponding 

support plane. We have dedicated modules to filters out the 

unstable placements configurations at a point on a support 

plane, based on the shape and size of object and of the 

support plane. Furthermore our robot is equipped with inter-

object spatial relation reasoning capability, such as ‘on’, ‘in’, 

‘covered by’, ‘supported by’ etc., hence it can symbolically 

ground the candidate placement at a point of the support 

plane with ‘on object’. Fig. 7(c) shows the anticipated 

configuration of the robot to take the object and the possible 

placement of the object by the human for the candidate point 

of highest weight, on the box.  

This is another aspect of proactive behavior: verbal 

proactive behavior, in which robot is trying to reduce the 

uncertainty in the human’s behavior as well as the human’s 

effort by verbally guiding where to perform the task by 

anticipating ‘where’ he can perform the task with least effort 

and the robot could support with its desired effort level. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

We have tested our system on different robots: JIDO and 

PR2. Robot uses Move3D, an integrated planning and 

visualization platform and through its various sensors 

maintains and updates the 3D world state. For object 

identification and localization it uses tags based stereovision 

system. For localizing human it uses data from Kinect 

motion sensor mounted on it.  

Fig. 8(a) and (b), show the initial and final scenarios for 

the task of giving an object by human without proactive 

behavior. Human is standing to give the object, hence 

putting the Whole_Body_Effort. Fig 8(c) shows same task 

but robot is proactively reaching to take the object, hence 

reducing the human effort to Arm_Torso_Effort and 

Arm_Effort in fig. 8(d) having different spatial arrangement. 

Fig. 9(a), shows another scenario for giving the object to 

the robot. One interesting observation is that without any 

proactive reaching behavior this particular user is holding 

the object and waiting for the robot to take. Whereas, as 

shown in fig. 9(b), in the presence of proactive behavior 

reaching behavior of the robot human is putting some effort 

to lean and give the object to the robot. This validates the 

Fig.10: (a) Initial scenario for giving an object by the human to the PR2 

robot. (b) The human is putting more effort in the absence of any proactive 

reach towards object behavior by robot. (c) The human is giving with less 

effort when robot is reaching out the object proactively. 

Fig.9: Task of giving an object to robot (a) In the absence of any proactive 

behavior this particular user is holding the object and waiting for the robot 

to take. (b) With proactive reach user is putting effort to give. 

Fig.8: (a) Initial scenario for giving the object marked by red arrow. (b) The human is trying to give it to the robot by standing, Whole_Body_Effort, in the 

absence of proactive reach by the robot. In presence of proactive reach by robot’s arm (c) the human is giving it just by leaning forward, Arm_Torso_Effort 

and (d) giving it by stretching out his arm only, Arm_Effort in a different scenario, where the robot was able to support the Arm_Effort of the human. 



 

 

studies of human-behavioral psychology that goal 

anticipation during action observation is influenced by 

synonymous action capabilities [6]. 

We have also tested our system on another robot PR2. 

Fig. 10(a), shows initial scenario. Fig. 10(b) shows user 

giving the object with Arm_Torso_Effort in the absence of 

robot’s proactive reach behavior, whereas fig. 10(c) shows 

human is giving the object with less effort, Arm_Effort to the 

robot when it has proactively moved its arm. 

Fig. 11 shows the task of making an object accessible by 

the human to the robot. When the robot does not behave 

proactively, human is putting the object closer to the robot 

with Whole_Body_Effort, Fig. 11(a). In the case of proactive 

behavior, the robot calculated the least effort places by the 

human to put, from where it can take the object and 

proactively says to put on the white box. In this case the 

human puts with less effort, Arm_Torso_Effort, fig. 11(b).  

IV. DISCOVERIES BY PRELIMINARY USER STUDIES 

We have performed preliminary user studies to validate as 

well as to refine the system. We will briefly discuss the user 

study of the task of giving some object by the human to the 

robot. We setup different scenarios having different relative 

positions of the robot, human and object. Broadly the 

scenario could be divided into two categories: (i) Human is 

sitting away from the robot and there are some furniture 

between them, similar to fig. 8(a). (ii) Human is sitting 

relatively close to the robot and there is no furniture between 

them, similar to fig. 9(a).  

Each user has been exposed to two different behaviors of 

the robot, NPB (Non Proactive Behavior): Robot just asks to 

the user “Please give me the <object name>” and waits in its 

current state, PB (Proactive Behavior): robot asks the same 

but also starts moving its arm along the trajectory returned 

by the proactive planner. The order to exhibit PB or NPB to 

a particular user was random. The users were of three 

different categories based on their exposure to the human 

interactive robots: no, little or rich exposure. Users were told 

that robot will interact with them and they are expected to 

behave in their ways. They were not informed about the 

robot’s behaviors. There were a total of 12 participants. 

After being demonstrated to both behaviors, each user 

was requested to fill a questionnaire with reference to first 

behavior B1 and the second behavior B2. Note that for some 

users B1 was NPB (Non Proactive Behavior) and for some 

B1 was PB (Proactive Behavior). Table IV shows answer to 

one of the questions about the types of confusions the robot 

behavior has caused to the user. Table V summarizes the 

main observations from the user studies in terms of NPB and 

PB. The overall response was that with proactive behavior 

human was in less confusing states and also the human effort 

compared to non-proactive behavior has been reduced. Also 

users have reported that the robot seems to be more aware 

about the users’ capabilities in the cases it behaved 

proactively.  

Note that the sums of % in these tables are not 100 as the 

users were allowed to mark multiple options or none. 

Apart from the observations from the direct responses 

from users, we found the following interesting observations: 

- For the cases where proactive behavior of robot has been 

demonstrated first, users seem to be biased towards 

expecting similar behavior for the later demonstration in 

which non-proactive behavior has been demonstrated. In 

such cases users’ responses were: “I thought that experiment 

had failed, since the robot didn’t move”, “I was waiting for 

the robot to take it from me.” 

- For the cases where non-proactive behavior has been 

shown first, few users have been found ‘searching’ for the 

object to give, if the table-top environment was somewhat 

cluttered, even if the robot has asked to give the object by 

name. This suggests that such proactive behaviors also help 

in fetching the human’s attention to the object of interest. 

But further user studies are absolutely required to validate 

these hypotheses. 

V. CONCLUSION AND FUTURE WORKS 

In this paper we have enabled our robot with an 

complementary issue of analyzing ‘where’ in order to 

behave proactively. This is achieved through multi-state 

TABLE IV 

USERS’ RESPONSES ABOUT THE TYPE OF CONFUSION  

TABLE V 
SUMMERY OF THE USERS’ EXPERIENCE ABOUT BOTH BEHAVIORS 

Fig.11: Human makes an object 

accessible to the robot. (a) In 

absence of verbal proactive 

behavior about where to put, 

human is putting with more 

effort, Whole_Body_Effort. (b) 

Human is putting with less 

effort Arm_Torso_Effort, when 

robot is proactively saying to 

put on the box. Red arrows 

show the initial positions of the 
object to make accessible. 



 

 

visuo-spatial perspective 

taking based reasoning on 

‘where’ the human can 

perform the task with 

different level of efforts. 

These are the novelties of 

our paper. Our research is 

inspired by studies of human 

behavioral psychology, 

which suggests that 

prediction of ‘where’ is an 

important aspect for co-

ordination. Our proactive planner generates verbal and non-

verbal proactive behaviors. We have explored proactive 

behaviors for two tasks by the human: ‘give’ and ‘make 

accessible’. The same framework will be used to enable the 

robot with the proactive behavior for other tasks such as 

‘show’, ‘hide’, ‘put away’, etc. The robot is able to 

anticipate where the human can perform these tasks with 

different level of efforts, as fig. 12 shows the candidate 

places where the human can hide some object from the 

robot, which enables the robot to involve in hide-and-seek 

like games. Also such capabilities will enable the robot to 

proactively decide to put some object, about which the 

human is oblivious, away from the human, to avoid to be hit 

by the human accidently while doing something else. 

Preminilarly user studies show encouraging and 

supporting evidences to our intuition and hypotheses. But we 

feel the need of further user studies in same direction for 

establishing the observations as facts. Also we think that 

further user studies with a robot having two arms may revel 

some entirely different confusing situations for the human 

user. Such as: if the robot does not show any proactive 

behavior, then which hand of the robot, the user has to select 

to give the object? Will there be any ambiguity? Will there 

be any improvement with proactive behavior, if yes then 

which types of proactive behaviors are required?  

Such proactive behaviors are in fact essential building 

blocks of basic actions for complex socio-cognitive 

behaviors by incorporating expectation and intention. Hence 

validation and enhancement of such behaviors on long-term 

interaction with the users for a series of tasks are required. 
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