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Université de Toulouse, UPS, INSA, INP, ISAE, LAAS

F-31077 Toulouse, France
{sisbot, rrosespi, alami}@laas.fr

Abstract— In daily human interactions spatial reasoning
occupies an important place. With this ability we can build
relations between objects and people, and we can predict the
capabilities and the knowledge of the people around us. An
interactive robot is also expected to have these abilities in order
to establish an efficient and natural interaction.

In this paper we present a situation assessment reasoner,
based on spatial reasoning and perspective taking, which
generates on-line relations between objects and agents in the
environment. Being fully integrated to a complete architecture,
this reasoner sends the generated symbolic knowledge to a fact
data base which is built on the basis on an ontology and which
is accessible to the entire system. This work is also part of a
broader effort to develop a complete decisional framework for
human-robot interactive task achievement.

I. INTRODUCTION

With the recent advances in robotics, robots have begun
to appear in our daily lives. From intelligent cars to robotics
vacuum cleaners, they are now sharing the environment with
humans. The world of a robot, which was once fixed and
structured, is now very dynamic and populated with humans
with whom to interact.

An important challenge for researchers is to adapt the
robot’s reasoning capabilities to this new world, which
is by default shaped for humans. In general, the internal
representation of a robot is quite different from the one used
by humans. For instance, while a robot perceives a scene
in terms of numbers and coordinates, a person observes the
same scene through symbolic locations and relations between
objects. As a consequence, the way humans communicate
will be shaped by this abstraction. When a person describes
something, she uses abstract descriptions, e.g. “the book on
the table”, and abstract capabilities, e.g. “the restaurant can
be seen from the station”. Thus, a robot who will interact
with humans should be able to extract, compute or infer these
relations and capabilities in order to communicate efficiently
in a natural way.

In this paper we present a situation assessment reasoner
that generates relevant symbolic information from the ge-
ometry of the environment with respect to relations between
objects and human capabilities. Moreover, the notion of
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Perspective Taking [1] is employed in the heart of the system
to provide the robot with the ability to put itself at the
human’s place and to reason about the world from different
perspectives.

This work is part of a broader effort to develop a decisional
framework for human-robot interactive task achievement,
embedded in a cognitive architecture, involving a knowledge
base, a task planner, a motion planner and a supervisor.
The approach introduced in this work not only facilitates
the interaction between robots and humans, but also bridges
the gap between high level tasks and low level movement
actions.

Section II briefly describes related work. Section III
presents the proposed reasoner describing a set of relations
for HRI. Section IV presents the integration of the reasoner
into a complete architecture. Finally, Section V illustrates
examples of the approach and Section VI concludes the
paper.

II. PERSPECTIVE TAKING AND SPATIAL REASONING

Perspective Taking is a human ability which allows one
to put him/herself in another person’s point of view. Studied
deeply in psychology literature [1], [2], this ability is crucial
when interacting with people by allowing one to reason
on others’ understanding of the world in terms of visual
perception (“what is visible for me, might not be visible
for you”), spatial descriptions (“this is on my left from my
view, but it’s on you right from your view”), abilities (“I can
reach this, but you can’t”), beliefs, etc.

Therefore, in the last years these notions have been grad-
ually employed in Human-Robot Interaction. [3] present a
learning algorithm that takes into account information about
a teacher’s visual perspective in order to learn a task. [4] ap-
ply visual perspective taking for action recognition between
two robots. [5] use both visual and spatial perspective taking
for finding out the referent indicated by a human partner.

Spatial reasoning [6], on the other hand, has been used
for natural language processing for applications such as
direction recognition [7], [8] or language grounding [9]. [10]
presented a spatial reasoner integrated in a robot which
computes symbolic positions of objects by using sonars. [11]
present a formal computation of the on relation and validate
the system through stereo vision based object acquisition.



[12] propose the use of a dynamic field approach to reason
on the spatial relations occurred within a dialog.

III. SITUATION ASSESSMENT

In order to acquire a correct symbolic knowledge of the
world, the robot should extract useful knowledge from the
environment. In this work we are interested in extracting
meaningful relations between entities which are involved in
common and simple scenarios where a human interacts with
a robot. More precisely, we focus on fundamental capabilities
of agents, and spatial relations between objects and agents.

A. Capabilities

There are a number of common properties for a robot and
a human related to their capabilities in a given situation:
they can both reach, grasp, look, point, etc. In our context,
we group robots and humans into a single category. Thus,
we define agents as entities that can act in the environment
and manipulate it. In this work we focus on the following
capabilities from each agents’ perspective1.

1) Sees: An important ability to know about an agent is
to predict “what it can see”, i.e. what is within its field of
view (FOV). A robot being able to compute this information
can then act accordingly. A typical example would be a
clarification scenario where the human is searching for an
object and the robot is able to infer that she is looking for
the one that is not visible (otherwise the user would not be
searching for it).

The sees relation is computed through a model-based
approach within the 3D world representation. We place a
virtual camera on the “eyes” of the agent parametrized with
the agent’s FOV2. To determine if an agent A sees an object
O, the object alone is projected into the image obtained from
the virtual camera, Pfov(O). A second projection is then
obtained by projecting the object within the environment
(with occluding objects, if any), Pfov(E). The ratio of visible
to invisible pixels between the intersection of these two
projections and the object projection alone determines if A
sees O. Formally:

seesA(O, δ) =

{
true if pixels(Pfov(E)∩Pfov(O))

pixels(Pfov(O)) > δ

false otherwise
(1)

where the function pixels computes the number of pixels
within an image and δ corresponds to an arbitrary threshold.

In figure 1 the field of view of a person is illustrated with
a grey cone (broader one). While he is able to see the two
small boxes on the table in front of the him, the big box on
his right is out of this FOV, and therefore, he is not able to
see it.

1Note that each of the capabilities described are computed from each
agent point of view, and therefore, also stored in different models for further
use at the decisional level.

2In the case of a human agent, the FOV corresponds to 180 degrees
horizontal and 135 degrees vertical (although the FOV of the human eye is
narrower, we model it as 180 degrees to compensate eye movements). For
the robot, the FOV corresponds to the specifications of its sensors.

Fig. 1: Representation of the field of view (FOV) and the
field of attention (FOA) of the human.

2) Looks At: The looksAt relation corresponds to what
the agent is focused on, i.e., where its focus of attention is
directed to. To compute it, we use the same model as the one
used for the sees relation, but based on a narrower field of
view: the field of attention (FOA). For a robot, its FOA is
modeled as the overlapping region in the images captured
from both cameras. In the case of the human, it corresponds
to 30 degrees. The relation looksAt is formulated with the
following equation:

looksAtA(O, δ) =

{
true if pixels(Pfoa(E)∩Pfoa(O))

pixels(Pfoa(O)) > δ

false otherwise
(2)

Figure 1 shows the field of attention of a person with a
green cone (narrower one). In this example only the grey
box satisfies the looksAt relation.

3) Points At: The relation pointsAt verifies if an object
is pointed at by an agent. This relation is particularly useful
during interaction when one of the agents is referring to an
object saying “this” or “that” while pointing at it.

We define the Pointing Field (PF) as the region where
the finger is most likely to point at modeled as a cone.
Thus, the computing method for this relation is similar to the
previous ones except that the virtual camera is placed on the
agent’s pointing finger. The angular opening for the camera
is arbitrarily set to 30 degrees. The relation pointsAt is
formulated with the following equation:

pointsAtA(O, δ) =

{
true if pixels(Ppf (E)∩Ppf (O))

pixels(Ppf (O)) > δ

false otherwise
(3)

Figure 2 illustrates two agents, a human and a robot,
pointing at the same object. If a big object occludes a
smaller one, and an agent is pointing at them, the out-
come of the evaluation will result only in one relation, i.e.,
Agent pointsAt BigObject since the small one is
not visible to the agent. On the contrary, if the small object
is in front of the big one, then both objects will be pointed
at by the human, generating an ambiguity which should be
solved through higher level reasoning (e.g. context analysis).



Fig. 2: Both agents, the human and the robot, point at the
same object.

4) Reachable: Reachability is an important property to
compute since it allows the robot to estimate the agents
capability to reach an object, which is fundamental for task
planning. E.g., if the user asks the robot to give her an object,
the robot must compute a transfer point where the user is able
to get the object.

Instead of relying on a simplistic agent-object distance
function, or computing costly full grasp paths, we propose
an intermediate method to compute reachability. We em-
ploy Generalized Inverse Kinematics with pseudo inverse
method [13], [14] to find a collision free posture for the
agent where its end-effector is at the center of the object
within a given tolerance The evaluation function returns
success if at least one end-effector (in the case of humans, we
usually have two hands) reaches the object with a collision
free posture. If the algorithm finds a posture with collision,
the functions returns a “false+”, meaning that the object
is reachable, but producing a collision. Since the approach
corresponds to an estimation based on a direct path to the
object, it could be the case that in fact, the agent may
reach the object avoiding collisions while adapting its posture
(specially human agents, who have a very flexible body).
Finally, if the object is too far to reach, then a “false-” is
returned. Thus, the reachability relation between an agent A
and an object O with tolerance τ , is modeled as:

reachable(O,A, τ) =
true if (poseef − poso < τ) ∧ (IK(poseef ) ∈ Cfree)
false+ if (poseef − poso < τ) ∧ (IK(poseef ) /∈ Cfree)
false− otherwise

(4)
where poseef , poso correspond to the agent’s end-effector
and object position, Cfree to a set of collision free postures
and IK() to the inverse kinematics solver.

Figure 3 shows different reachability postures for each
object on the table. In the example, the bottle and the box
are both reachable by the human, but the teddy bear is too
far. Instead, from the robot’s perspective, the teddy bear is
reachable, while the bottle is not.

B. Locations

As humans, one way of referring to the object’s positions
is based on their symbolic descriptors instead of using their

Fig. 3: Different reaching postures for the human: the bottle
and the box are reachable, while the teddy bear is not.

precise position. In fact, in many cases, this information is
the most precise one that we can give since we do not store
the numeric coordinates of objects. The following relations
are computed with respect to the position of the agents and
the objects.

1) Location according to an agent: The relation
isLocatedAt represents spatial locations between agents
and objects. For example we say “it is on my right, on your
left,...” We can compute these spatial locations by dividing
the space around the referent (an agent) into n regions based
on arbitrary angle values relative to the referent orientation.
For example, for n = 4 we would have the space divided
into front, left, right and back. Additionally, two proximity
values, near and far, may also be considered. The number
of regions and proximity values can be chosen depending on
the context where the interaction takes place.

2) Location according to an object: We can also refer
to object locations with respect to other objects in the
environment, such as, above, next to, in, etc. These types of
relations are widely studied in language grounding (e.g. [15]
presented different models to define the above relation). In
this work we use similar models based on the bounding
boxes and center of mass of the objects to define three main
relations (Figure 4):
• isOn: computes if an object O1 is on another object O2

by evaluating the center of mass of O1 according to the
bounding box of O2.

isOn(O1, O2) =


true if mx

O1
∈ BBx

O2
∧

my
O1
∈ BBy

O2
∧

mz
O1

> argmaxz(BB
z
O2

)

false otherwise
(5)

where mx
Oi

corresponds to the x coordinate of the
center of mass of Oi, and BBx

Oi
the occupancy of Oi’s

bounding box in the x axis (the same for the rest of
axis).

• isIn: evaluates if an object O1 is inside another object
O2 based on their bounding boxes BBO1

and BBO2
:

isIn(O1, O2) =

{
true if BBO1

⊂ BBO2

false otherwise
(6)
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Fig. 4: Spatial relations between two objects: A) isOn
relation, B) isIn relation, and C) isNextTo relation.

• isNextTo: indicates whether an object O1 is next to
another object O2. We cannot use a simple distance
threshold to determine if two objects are next to each
other since the relation is highly dependent on the
dimensions of the objects. For instance, the maximum
distance between large objects (e.g. two houses) to
consider them as being next to each other is much larger
than the maximum distance we would consider for two
small objects (e.g. two bottles).
An object O1 is evaluated as next to object O2 if part
of the bounding box of O2, BBO2 , is closer than half
of the largest dimension of the bounding box of O1,
BBO1

. The relationship is formulated as follows:

isNextTo(O1, O2) =
true if BBO2 ∩ (BBO1 +maxi(BB

i
O1

)) 6= ∅
∨ BBO1 ∩ (BBO2 +maxi(BB

i
O2

)) 6= ∅
false otherwise

(7)

IV. INTEGRATION

The situation assessment system is integrated into Move3D
platform [16], which provides with a 3D world representation
that we can reason on. The reasoner computes the relations
with the 3D object and agent models which are placed in
Move3D (figures 2 and 3 illustrate the 3D environment of
Move3D).

The system is integrated in Jido and HRP-2 robots. The
module is linked to a number of perception modules in order
to maintain a consistent representation of the real world and
the virtual 3D world of the robot.

The system supports multiple agents (multiple robots and
humans) and is sufficiently generic, which allows to transport
it to other type of robots.

Three types of input are crucial for the system:
• Human information. In order to build a correct model

of the human we used different sensors: motion capture
(providing the position and orientation of human head
and hands), or stereo camera and laser (providing leg,
head and hands positions). The different incoming data

is used to build the complete human model by using
Generalized Inverse Kinematics.

• Object information: objects in the environment are
localized and identified with 2D visual tags base on
the ARToolkit [17]. The situation assessment module
constantly updates the objects’ positions’ according to
the vision data.

• Robot information: the actuators provide the configura-
tion of the robot.

The situation assessment module, having a synchronized
environment model with the help of the perception data,
computes on-line the spatial and perspective relationships.
The computation is triggered by a motion of the objects, the
human or the robot. All relations except the reachability are
computed in 200ms. The reachability relation is computed
on demand due to its computationally expensive inverse
kinematics operation.

The resulting relations are sent to the symbolic knowledge
of our architecture, the OpenRobots Ontology3 [18], for
storage, maintenance and further inferences. For example,
based on the isIn relation the system can infer its inverse
relation contains. Moreover, we can also define rules such
as: if an agent looks at an object and also points at it, then
the agent is focused on the object. Thus, the focusesOn
relation can be automatically inferred at a symbolic level in
the ontology.

The ontology server maintains the knowledge produced
by the situation assessment module and makes it available
to the whole system. Furthermore the relations for each agent
are stored separately in order to build a separate cognitive
model for each agent. The supervision system as well as the
task planner (which are both out of the scope of this paper)
use the information generated by the situation assessment
reasoner through the ontology.

V. EXAMPLES

Figure 5 illustrates a complete example of the situation
assessment reasoner in a real scenario. A person, Achile,
and a robot, Jido, are face to face around a table. Objects on
the table are marked with tags, and the robot uses its stereo
cameras to recognize and localize them. Achile, on the other
hand, carries a helmet and a bracelet equipped with markers
to be tracked by the motion capture system.

The symbolic information generated by the situation as-
sessment reasoner is described next. At each step new rela-
tions are added, and previous ones are updated or removed,
or maintained if no changes take place.

A. Figure 5.1

There is a pink box on the table. The box and Achile are
detected and placed in the 3D model of the environment4.
The following relations are computed:
PINK_BOX isOn TABLE

3The situation assessment system and the ontology are open source and
can be accessed through http://www.openrobots.org.

4In the robot’s virtual world, one side of the pink box has been removed
to allow the reader to see inside the box.



Fig. 5: An example human-robot face to face interaction scenario. Each subfigure shows the real situation on top and the
robot’s 3D virtual world at the bottom. The complete video can be found at http://www.youtube.com/watch?v=7oxjAOZfsBo.

PINK_BOX isLocated in FRONT of ACHILE and JIDO5

PINK_BOX isVisible6 true to ACHILE and JIDO

PINK_BOX isReachable true to ACHILE and JIDO

JIDO looksAt PINK_BOX

B. Figure 5.2

Achile lifts the pink box revealing three objects previously
hidden. The appearance of these new objects generates:
GREY_BOX isOn TABLE
GREY_BOX isLocated in FRONT of ACHILE and JIDO
GREY_BOX isVisible true to ACHILE and JIDO
GREY_BOX isReachable true to ACHILE and JIDO
GREY_BOX isNextTo GREY_TAPE

GREY_TAPE isOn TABLE
GREY_TAPE isLocated in FRONT of ACHILE and JIDO
GREY_TAPE isVisible true to ACHILE and JIDO
GREY_TAPE isReachable true to ACHILE and JIDO
GREY_TAPE isNextTo GREY_BOX

ORANGE_BOX isOn GREY_BOX
ORANGE_BOX isLocated in FRONT of ACHILE and JIDO
ORANGE_BOX isVisible true to ACHILE and JIDO
ORANGE_BOX isReachable true to ACHILE and JIDO
ORANGE_BOX isNextTo GREY_BOX

JIDO looksAt GREY_BOX & GREY_TAPE & ORANGE_BOX

remove: all relations of the PINK_BOX

C. Figure 5.3

Achile moves the orange box and places it next to the
grey box. The isOn relationship between the orange box
and the grey tape is now transformed into a isNextTo
relation. Since the PINK_BOX is detected again by the
robot, the relations of fig 5.1 are regenerated in addition to
the following facts:
remove: ORANGE_BOX isOn GREY_BOX

ORANGE_BOX isNextTo GREY_TAPE

ORANGE_BOX isOn TABLE

5Identical relations for different agents are grouped to save space.
6If agent an A sees an object O then O is visible to A. We adopt

this predicate to be coherent with the information stored in the knowledge
module.

D. Figure 5.4

This time Achile puts the big pink box on top of the
objects on the table, thus hiding them all. When the sees
relation is now tested, the outcome is false since they
are now occluded from the agents’ views. However, the
relations among the hidden objects are not deleted since the
reasoner will maintain their last state until a new one is
computed. In other words, “if you cannot see, you cannot
tell” and we decided to adopt the assumption that the state
remains until otherwise computed or indicated. Thus, the
pink box covering the two objects generates the following
relations:
ORANGE_BOX isIn PINK_BOX

ORANGE_BOX isVisible false to JIDO and ACHILE

ORANGE_BOX isReachable false to JIDO and ACHILE

GREY_BOX isIn PINK_BOX

GREY_BOX isVisible false to JIDO and ACHILE

GREY_BOX isReachable false to JIDO and ACHILE

E. Figure 6

Figure 6 illustrates different situations for the reachable
relation in another example. In this case, Jido and Achile
are placed face to face around a table with a different set of
objects (Figure 6.1).

The robot first estimates if the small grey box is reachable
to itself. After finding a collision free posture to reach the
object (Figure 6.2), the relation reachable is satisfied and the
following statement is generated:

SMALL_GREY_BOX isReachable true to JIDO

Next the robot switches to the human’s perspective to
estimate if the same object is reachable to Achile as well.
Since a collision free reaching posture (Figure 6.3) is found,
the following statement is generated:

SMALL_GREY_BOX isReachable true to ACHILE

In the last scene, Achile moves towards his left, farther
from the object (Figure 6.4). The situation is then reeval-
uated. In this occasion though, the reasoner cannot find a
satisfactory posture for the human to reach the box because
he is too far from the target. The following relation is
updated:



Fig. 6: An example illustrating the reachable relation. The relation is computed from the perspectives of both the robot and
the agent. The computed posture at each step is illustrated with a global view of the scene (top), and from a closest view
(bottom). The complete video can be found at http://www.youtube.com/watch?v=8ZBoE8HILIg

SMALL_GREY_BOX isReachable false to ACHILE

VI. CONCLUSION

In this paper we have presented a geometric reasoner that
generates symbolic relations between objects and agents by
using perspective taking and spatial reasoning. The spatial
relations have been computed in a 3D model of the environ-
ment, which is kept synchronized with the real world. They
are then stored, and further inferred in an ontology, where
the relations become available for the whole architecture. The
situation assessment system is also integrated to our robot,
Jido, and runs on several exemplary scenarios.

These relations not only contribute to generating an effi-
cient symbolic representation of the world state, but also to
creating a natural dialog and a bridge between symbolic and
geometric planning, which we plan to do in the future. We
also plan to integrate new relations into the reasoner, such as
“graspability”, to compute if an agent can grasp an object,
and additional spatial descriptors. Relations involving the
field of attention of the human can be fed by a more efficient
estimation (e.g. [19]) in order to represent Visual Focus of
Attention. Moreover, we will also include dynamic relations,
such as ”object O is moved by agent A” which will help to
better understand continuous changes in the environment and
will allow to predict future states of the world.
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