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Abstract  

The aim of our work is to provide a modeling framework for evaluating performability measures of 

Multipurpose, Multiprocessor Systems (MMSs). The originality of our approach is in the explicit 

separation between the architectural and environmental concerns of a system. The overall dependability 

model, based on Stochastic Reward Nets, is composed of i) an architectural model describing the 

behavior of system hardware and software components, ii) a service-level model and iii) a maintenance 

policy model. The two latter models are related to the system utilization environment. The results can be 

used for supporting the manufacturer design choices as well as the potential end-user configuration 

selection. We illustrate the approach on a particular family of MMSs under investigation by a system 

manufacturer for Internet and e-commerce applications. As the systems are scalable, we consider two 

architectures: a reference one composed of sixteen processors and an extended one with twenty 

processors. Then, we use the obtained results to evaluate the performability of a clustered system 

composed of four reference systems. We evaluate comprehensive measures defined with respect to the 

end-user service requirements and specific measures in relation to the Distributed Shared Memory 

paradigm.  

 

 

Index terms. Dependability and Performability Evaluation, Stochastic Reward Nets, Modular Modeling, 

Multipurpose Multiprocessors Systems, Distributed Shared Memory, Clustered Systems. 
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1. Introduction 

Computer systems are becoming more and more complex. Even though particular applications 

may need the design of proprietary systems to achieve the required functions, economic reasons 

promote the use of support systems available on the market. This situation gave rise to a category of 

systems that are referred to as multipurpose systems in this paper. Such systems are — to some 

extent — application-independent support systems. Many system providers have developed generic 

support systems that can be used in several application domains, for example for instrumentation 

and control or Web related applications.  

Actually, most of the time such systems are composed of Commercial Off-The-Shelf components 

(COTS). However, despite their wide use, COTS components are far from being highly dependable. 

As a consequence, a careful design, development and validation of COTS-based systems are needed 

to provide dependability and high-performance. Indeed, the end-users of a given system want at the 

same time high dependability and performance, ease of use and low cost. Furthermore, low 

dependability or low performance of a system will ruin the manufacturer's reputation. Hence the 

importance of the evaluation of combined dependability and performance measures referred to as 

performability measures [20].  

Our work was motivated by the desire of a system manufacturer to evaluate the performability of 

a family of Multipurpose Multiprocessor Systems (MMSs) under development, intended for 

Internet and e-commerce applications. The considered MMS family is scalable, most of its 

components are COTS and it features a distributed shared memory. A reference architecture 

composed of 16 processors grouped into 4 nodes has been defined. It can be used for various 

applications requiring different performance and/or dependability levels. Based on this reference 

architecture, a whole family can be designed for applications necessitating either higher 

performance or higher dependability or both. In particular, up to 8 reference architectures can be 

grouped to form a clustered system. Our first aim was to provide a framework for modeling the 
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performability of different systems of this family. However, the approach presented in this paper is 

more general and can be used beyond this particular family of systems. 

Even though an MMS is application-independent, usually the system manufacturer targets some 

particular classes of utilization. He expects to provide high dependability and performance, at least 

for these targeted utilizations. It is thus important to take them into account for evaluating system 

performability.  

The originality of our approach is in the explicit separation between the architectural and the 

environmental concerns of a system. In this way, we can clearly analyze the impact of the 

architectural choices on system performability while the end-user context is taken into account 

explicitly. Moreover, the results can be used for supporting the manufacturer design choices as well 

as the potential end-user configuration selection. 

This approach allows us to consider two sets of performability measures:  

· Comprehensive measures, defined with respect to service accomplishment levels that are directly 

related to the end-user expectations. 

· Specific measures, related to specific features of the system, interesting particularly the system 

manufacturer for tuning the support system architecture, to study for example the impact of using 

a distributed shared memory. 

This modeling approach is presented briefly in this paper and applied to two systems pertaining to 

the MMS family defined by the system manufacturer who initiated this work. The results presented 

illustrate the kind of outcomes that can be obtained from the MMS performability evaluation. They 

show the impact of architectural solutions as well as the impact of different utilization environments 

on system performability. This paper elaborates on our previous work reported in [25, 26] ([25] was 

dedicated to the specific measures related to the distributed shared memory, while [26] has not 

addressed the clustered system and the specific measures).  

In the following, Section 2 describes our modeling approach and presents current approaches to 

model construction. Section 3 introduces the systems under consideration and Section 4 defines 
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their performability measures. Section 5 illustrates the modeling approach through an example and 

Section 6 presents some results. Finally, Section 7 concludes the paper. 

2. Modeling Approach  

The model built for evaluating system dependability and performance is always a tradeoff 

between faithfulness (i.e., correct representation of the real systems behavior) and tractability (i.e., 

ability to solve the model equations to obtain the measures) [19]. If the system to analyze is too 

large, a detailed model representing its in depth behavior may be faithful but might be non-tractable 

because of its size. The use of an appropriate modeling technique such as the Generalized 

Stochastic Petri Nets (GSPNs) [1] offers a good support. However, it is necessary to master the 

complexity of the resulting state space by the way of structured modeling approaches. This is one of 

the aims of this paper in which modeling is based on Stochastic Reward Nets (SRNs) [13], that are 

obtained from GSPNs by assigning reward rates to tangible markings. 

In the rest of this section, we present our modeling approach and outline some other modeling 

approaches.  

2.1 Separation of Concerns Approach  

Even though it is possible to model a multipurpose system without considering the end-user 

requirement in terms of expected services, the results are more accurate if the environmental aspects 

are incorporated. Hence, our modeling approach takes into account explicitly the environmental 

context together with the architectural concerns. This is done in a separate manner to allow for 

some flexibility.  

The overall dependability model is composed of two parts, one of them describes the architectural 

behavior of system components and the other one expresses the system utilization environment 

(reflecting the end-user point of view). The latter incorporates several kinds of information. A 
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model is dedicated to each kind of useful information. For our purpose, we consider two models 

corresponding to the service-level and maintenance policy models. 

The global model is thus seen as a composition of three models as depicted in Figure 1. These 

models are more detailed hereafter. The interactions between the various models is illustrated 

through a small example in Section 5. 

Service-level
model

Maintenance
policy model

Failure mode layer

Component model

Architectural Model
 

Fig. 1. Model overview 

2.1.1 Architectural Model 

The architectural model describes the behavior of system components (including all basic 

hardware and software components as well as fault tolerance mechanisms) as resulting from 

elementary failures, repairs and interactions regardless of system utilization environment.  

From a practical point of view, the failure modes of the system are defined as a function of the 

states of the system components. Each failure mode is represented by a particular place in the 

architectural model. The set of failure mode places is grouped into a separate layer, referred to as 

the failure mode layer. The architectural model is thus composed of the component model and the 

failure mode layer.  

Component model 

The component model may be built using any existing modeling method based on GSPNs, such 

as the ones we have defined in our previous work (see e. g., [6, 16, 17]). The only requirement for 

our approach is to make all failure mode states available at the failure mode layer, to facilitate 

interfacing with the service-level and maintenance policy models. In [24], we have defined rules for 
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constructing efficiently the component model. In particular, we recommend building a sub-model 

for each component or group of related components (depending on the desired level of detail) 

describing their behavior and evolution. Sub-model interfacing rules assisting model construction 

have been defined. 

Failure Mode Layer 

In addition to the places representing the architectural failure modes, the failure mode layer 

gathers places summarizing some component states for specific measure evaluation (such as the 

states of the distributed shared memory). Initially, all places in the failure mode layer are not 

marked. The failure mode layer is used to facilitate the interface between the architectural and 

environmental models. All the information considered necessary for the environmental models 

should be made available in the failure layer model. Also, the information required for component 

model from the service-level and maintenance policy models is available in the failure mode layer. 

However, in order not to duplicate unnecessarily some places we have decided to accept that the 

firing of some transitions, in the component models, could be enabled directly by the marking of 

very specific places (that are clearly defined) in the service-level and maintenance models, this is 

illustrated in Section 5. Indeed, in [24], we have defined a set of consistent rules managing the links 

between the various models.  

2.1.2 Service-Level Model 

The system service levels are defined with respect to the different service accomplishment and 

degradation state classes accepted by the considered end-user application. They reflect the 

application requirements in terms of resources and are usually established according to the 

architecture failure modes and to the application nature. The service levels are thus partitions of the 

architecture failure modes.  

In the service level model, places represent the various service levels as seen by the end-user. One 

and only one place can be marked at any time (including the initial marking) indicating the system 
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current service level. Transitions between the various service levels are entirely governed by the 

architectural model through the failure mode layer and by the maintenance policy  model. 

Indeed, the service-level model is not autonomous. Its main role is to provide a high-level vision 

of the system states according to the end-user expected services. It gives the logical behavior of the 

system as seen by the end-users.  

2.1.3 Maintenance Policy Model 

The maintenance policy model describes the maintenance types (e.g., immediate, delayed or 

programmed), repair resources availability and might include (re)booting procedures, according to 

the service level and/or the architectural failure mode. The interconnection between the service-

level and maintenance policy models represent for example calls for maintenance or notification of 

maintenance end. 

2.1.4 Benefits of our Modeling Approach 

Even though modeling is performed from a system manufacturer point of view, we incorporate 

explicitly the end-user point of view in order to evaluate comprehensive performability measures 

that are especially relevant to the end-user, in addition to specific measures that may be too detailed 

for the end-user but of prime interest for the system manufacturer.  

Indeed, the same model could be used to evaluate comprehensive and specific measures. 

Comprehensive measures are evaluated based on the service-level model whereas specific measures 

are evaluated based on the failure mode layer. 

The separation of concerns property allows reuse of the architectural model, when the same 

architecture is to be used in different environments. Obviously, changing the architectural model 

will lead to change its links with the service-level and maintenance models. However, as these links 

are clearly identified and formalized, the changes can be performed more easily than when the 

various models are not separated. 

From the end-user perspective, this approach allows the reuse of the environmental models to 

compare different architectures for choosing the most suitable one for his/her own environment.  
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Moreover, building the component model in a modular way favors reuse of some component sub-

models in the component model, which is of prime interest for both system manufacturers and the 

end-users.  

2.2 Other Modeling Approaches 

Our work is related to performability modeling of multipurpose multiprocessors systems. Several 

publications have been devoted to dependability or performance modeling of multiprocessor 

systems and more generally of complex computer systems, based on GSPNs and their off-springs.  

Considering multiprocessor systems, despite the large number of published work (see e. g., [1] 

and [22]), the manufacturer and the end-user concerns have not been explicitly addressed at the 

same time (i.e., the multipurpose paradigm was not studied in depth as in our work). 

Separation of abstraction views allows the same architecture to be studied for different service 

needs and, similarly, several architectures to be compared for the same environmental conditions, 

changing only a part of the initial model (and its links with the other parts). To the best of our 

knowledge, the hierarchical composition method [9] is the only method that considers the system 

under several points of view.  

More generally, concerning computer system dependability and performance modeling, the main 

difficulty for model construction results from the large number of states of the associated model. 

Several techniques have been published to overcome it. They can be grouped into two categories: 

largeness tolerance and largeness avoidance techniques [32]. 

The main objective of largeness tolerance techniques is to master the generation of the global 

system model through the use of concise specification methods and automated generation of 

models. The basic idea is to generate the model of a modular system by composition of the sub-

models of its components. Several other authors have published such techniques (e.g., see [21, 27]). 

Also, numerous evaluation tools using GSPNs and their off-springs have been developed (e.g., 

SPNP [12], SURF-2 [5], SHARPE [28], UltraSAN [29] and DEEM [7]). GSPNs and their off-
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springs have been used to model real-life systems such as air traffic control systems [15, 18], space 

applications [8] and RAID storage systems [30]. 

Largeness avoidance techniques try to circumvent the generation of very large models. The basic 

idea is to construct small sub-models that can be processed in isolation. The results of the sub-

models are integrated into a single overall model that is small enough to be processed. Among 

them, we have for example: the behavioral decomposition technique [4], the hybrid hierarchical 

modeling technique [3], the data structure technique for the Kronecker solution of GSPNs [11], the 

method of Superposed GSPNs [14] or of asynchronously communicating modules [10]. To the best 

of our knowledge, most of these techniques are efficient when the sub-models are loosely coupled 

and become hard to implement when interactions are too complex.  

From a practical point of view, in our modeling framework, as in [9, 23] we combine both 

techniques for modeling the considered MMS. We use a largeness tolerance technique for building 

the model of the non-clustered systems (as the various components have several inter dependencies) 

and a largeness avoidance technique for the clustered multiprocessor systems.  

3. Systems under Consideration 

We first present the reference and extended architectures of the considered Multipurpose 

Multiprocessor System (MMS) family with their failure modes, hypothetical end-users, as well as 

associated service levels and maintenance policies. Then the clustered architecture is defined. 

3.1 Reference and Extended Systems 

The reference architecture is composed of 16 processors grouped into 4 identical nodes. The 

extended architecture features a fifth node used as a spare. Since the four basic nodes of the 

extended architecture are used in the same manner as in the reference architecture and the spare 

node replaces the first failed node, the remainder of the section will focus on the reference 

architecture. 
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3.1.1 Reference Architecture 

As depicted in Figure 2, the nodes are connected through an interconnection network composed of 

two redundant rings. Each node is connected to each ring via a controller. To ensure high 

availability, all nodes are connected to a centralized redundant diagnostic equipment (DEq). Its role 

is to log and analyze all error events, initiate and control system reboots. It does not contribute to 

service delivery but the system cannot reboot without it.  

ED2

Interconnection
Network

Node 1 Node 3

Node 4DEq

ED1 Node 2
 

Fig. 2. MMS reference architecture 

The MMS has two external RAIDs (Redundant Array of Independent Disks), ED1 and ED2, with 

on-line maintenance. Each RAID is shared by two nodes. Nevertheless, if a node or its 

interconnection controller fails, the RAID can be used by the other node.  

Figure 3 shows that each node1 has: i) four independent processors (with a two-level private cache 

where data from other node memories can be replicated or migrated), ii) an internal disk (ID) 

devoted either to the operating system (nodes 1 and 3) or to the swap (nodes 2 and 4), iii) a set of 

dedicated controllers (for interruption, reboot, etc.), iv) a local Random Access Memory, RAM 

(composed of four banks), v) a Remote Cache Controller (RCC) interconnecting the node to the 

network and vi) a set of miscellaneous devices, such as local and Peripheral Component 

Interconnect (PCI) buses, etc. 

                                                

1  Even though the model of the whole architecture is not presented in this paper, the details of the architectures are briefly outlined 
to give an idea about the level of details taken into account in the models. 
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ED

Node i

external devices

four processors

power supply

DEq

local bus

controllers

ID
PCI bus

RCC IN

RAM

 

Fig. 3. Main components of a node 

3.1.2 Fault tolerance facilities 

In addition to the redundant diagnostic equipment, DEq, and to the redundancy of several 

components (interconnection network, power supply, internal and external disks), MMS includes 

other facilities to reduce system downtime following error detection, among which: 

• Architecture automatic reconfiguration: the load of a failed processor is partitioned among the 

other processors and the load of a whole node can be partitioned among the other nodes (and the 

failed node is isolated).  

• Reboot with all on-line tests (complete reboot) or with a reduced test set (fast reboot). 

It is intended that some failures (whose nature is to be determined by the system manufacturer 

according to some criteria) will lead to system automatic reconfiguration without or with fast 

reboot. However, we assume in this paper that any component failure necessitating system 

reconfiguration (for instance, node, processor, memory bank, some of the controllers failures) 

forces a complete reboot. This assumption can be easily modified for those failures needing system 

reconfiguration without or with a fast reboot. 

A node is available as long as at least one processor, one memory bank, one power supply unit, 

the local and PCI buses with their controllers are available, otherwise, the node is considered as lost 

and is isolated. The components of the isolated node become unavailable to the rest of the system. 
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For modeling purpose, we have associated a coverage factor to each fault tolerance mechanism. 

The coverage factor is defined as the probability of system recovery given the fact that a fault has 

been activated or has occurred.   

3.1.3 Architectural Failure Modes 

Given the large number of components and the various impact of their failure on system state and 

performance, a multitude of failure modes can be defined, related to the nature of the failed 

components. We have carried out a Preliminary Risk Analysis to investigate the consequences of all 

component failures, individually and in combination. The seven identified failure modes are given 

in Table 1 among which D0, DD, D1, D2 and D3 correspond to performance degradation states and 

C to system total failure. B gathers the set of states in which one or more components among the 

redundant components are lost, but the processing capacity of the architecture is not impaired. B is 

referred to as the benign failure mode. Two additional states are added for modeling purpose: the 

nominal state (OK) and the reboot state (Reb). 

The defined architectural failure modes apply to both reference and extended architectures. 

Table 1. Failure modes of the reference system 

B benign failure mode 

D0 
loss of processors, memory banks or connections 
to external devices without the loss of an entire 
node or loss of DEq 

DD loss of the two external disks 
D1, D2, D3 loss of 1, 2 or 3 nodes, respectively 

C loss of the four nodes or of a critical component 
such as the interconnection network 

 

3.1.4 Distributed Shared Memory 

The system features a distributed shared memory, composed of the four RAMs of the nodes (i.e., 

the sixteen memory banks of the system). Each bank is accessible to all nodes. However, as the 

overall memory is directory based using cache coherent non-uniform memory access (CC-NUMA), 

the access time to a remote bank is longer reducing system performance. A node can thus be 

maintained available as long as it has at least one memory bank available among the 4 local banks 
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(when the four memory banks are lost, the node is considered as unavailable). A memory bank is 

lost either due to the failure of the memory bank itself or due to the failure of other system 

components making this bank non-accessible.  

When several memory banks are lost, the overall workload is reorganized. The system takes into 

account the unavailable banks and attributes low memory consuming tasks to the nodes with several 

unavailable memory banks. Thus, we assume that the state with one failed memory bank in three 

nodes is equivalent to the state where three memory banks failed in one node.  

To evaluate system performability from the distributed shared memory point of view, we have 

defined sixteen specific failure modes, corresponding respectively to the states where i memory 

banks are lost (denoted Memi (i = {1, 2,...,16}). Nevertheless, the refinement of specific failure 

modes is possible to take into account particular unavailable memory bank combinations. 

These specific failure modes are identified explicitly to allow the evaluation of the impact of 

memory failure on system performability. 

3.1.5 End-Users and Service Levels 

The above MMS properties and the failure modes are user-independent. However, even though 

graceful degradation of the architecture is provided by the supporting architecture, this possibility 

can be exploited differently by the end-users for different application requirements. For instance, 

some applications will accept a degraded service provided by three, two or even only one node, 

while others will only accept the loss of some processors, without loosing a whole node. Indeed, the 

service levels are derived from the architectural failure modes and take into account the end-user 

application needs. 

It is worth noting that failure modes B and C have the same meaning for all applications: in B the 

entire service is delivered (ES) while in C there is no service (NS). Between B and C, several 

service degradation levels can be defined according to end-user needs and to the architecture failure 

modes. 
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To illustrate the mapping between architectural failure modes and service levels, we consider two 

examples of users, denoted X and Y (for which the mapping is given in Table 2).  

Table 2. Failure modes and service levels (reference system) 

Service  
levels 

Entire  
Service  
(ES) 

minor 
Degrad.  
(mD) 

Major 
Degrad.  
(MD) 

No  
Service  
(NS) 

Reboot 

user X OK, B D0, DD D1 D2, D3, C Reb 
user Y 

 

 

 

 

OK, B, DD — 
 

— D0, D1, D2, D3, C Reb 
 

• User X: The service is considered as entire in states OK and B. X accepts a degraded service as 

long as at least three nodes are available without a critical component failure: NS corresponds to 

D2, D3 and C. Between ES and NS, we have defined two significant service degradation levels: 

minor and major degradation levels (respectively referred to as mD and MD). X could be used as 

a Web server. In ES the full server capacity is available, in mD some transactions are not serviced 

due to service capacity reduction, in MD less transactions can be processed and in NS, we 

assume that the Web server should be repaired entirely. 

• User Y needs the entire capacity of the system and does not accept any service degradation. The 

entire service is delivered in OK, B and DD. NS gathers all other failure modes. 

The states belonging to the same service degradation level are grouped into a state class. These 

classes are denoted respectively: SES, SmD, SMD and SNS.  

3.1.6 Maintenance 

Although maintenance management is user-dependent, the system supplier usually proposes a 

maintenance contract. In order not to suspend system activities after each failure and call for a 

paying maintenance, two maintenance policies are defined:  

• Immediate maintenance: for the states where no service is available, state class SNS. However, as 

some time is needed for maintenance team arrival on site. Immediate maintenance is performed 

in two steps: maintenance arrival and system repair . 
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• Delayed maintenance: for the other states with service degradation. The system continues to be 

used until a time interval in which its activities can be stopped for repair. Different delays may be 

allocated to different service levels. Delayed maintenance is also performed in two steps: a 

maintenance delay during which a degraded service is delivered and repair itself. 

The repair is followed by a system reboot.  

3.2 Clustered Systems 

The manufacturer plans to use the reference architecture as a building block in more complex 

clustered systems. Architectures composed of 64 (and up to 128) processors distributed among 4 

clusters of 4 nodes (respectively, up to 8 nodes) were anticipated from the design stage. The 

clustered system depicted in Figure 4 is composed of 4 clusters where each cluster is an instance of 

the reference architecture.  

 

IN

N4

N2

N3N1

IN

N4

N2

N3N1

IN

N4

N2

N3N1

IN

N4

N2

N3N1

Cluster 1 Cluster 4

rc

rc

Cluster 2

rc

rc

Ni node
multiprocessor

rc ring controller

Cluster 3
Interconnection

Ring

 

Fig. 4. Clustered architecture 

The clusters have similar failure modes as the ones defined for the reference architecture. The 

clustered system failure modes are defined in Table 3. Also, we defined OKc state where all 

clusters are in their OK state and Rebc state the simultaneous reboot of all the clusters. 
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3.3 Summary of the Considered Systems  

In our study we have considered 5 systems: i) two are composed of 4 nodes each, with two 

different users, ii) two others are composed of 5 nodes each (the fifth one being a spare node) with 

the two same users X and Y and iii) the clustered architecture, composed of 4 reference systems. 

They are recalled in Table 4.  

Table 3. Failure modes of the clustered architecture  

Bc at least one cluster is in failure mode B, the 
others are in the OK state or in B. 

D0c loss of some components without loosing an 
entire cluster 

D1c, D2c, D3c loss of k clusters, k = {1, 2, 3} 
Cc loss of the four clusters or of the 

interconnection ring 

 

Table 4. Considered systems 

System Definition 
Xr reference architecture (4 nodes) for user X  
Yr reference architecture (4 nodes) for user Y  
Xe extended architecture (5 nodes) for user X  
Ye extended architecture (5 nodes) for user Y  
 Clustered system  

4. Dependability and Performability Measures 

As stated earlier, we consider comprehensive and specific measures. Comprehensive measures are 

defined according to service levels. Specific measures concern specific features of the system. In 

this study, they concern mainly the distributed shared memory.  

4.1 Comprehensive Measures 

We define for X and Y four common dependability measures: 

• two conventional measures noted: A for availability and UA for unavailability; 

• two measures refining the unavailability: UANS for the unavailability due to one of the SNS class 

state failure modes and UAReb for the unavailability due to the reboot procedure. 
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Furthermore, the availability measure for X is refined into three dependability levels 

corresponding to the three service levels (ES, mD and MD). Table 5 presents the defined measures 

for X and Y according to the partitions defined in Section 3.1.5 (where e(t) denotes the system state 

at time t). 

Table 5. Measures for the reference architecture 

a- Measure definition 
Measure Definition 

LE(t) dependability level associated with the entire 
service, ES, at time t 

Lm(t) dependability level associated with the minor 
service degradation level 

LM(t) dependability level associated with the major 
service degradation level 

A(t) overall availability 
UANS(t) unavailability due to the SNS class 
UAReb(t) unavailability due to the reboot 
UA(t) overall unavailability 

b- Measure equation in terms of Probability (Prob) 
Measure For user class X For user class Y 

LE(t) Prob {e(t) ∈ SES} Prob {e(t) ∈ SES} 

Lm(t) Prob {e(t) ∈ SmD} – 

LM(t) Prob {e(t) ∈ SMD} – 

A(t) LE(t) + Lm(t) + LM(t) LE(t) 

UANS(t) Prob {e(t) ∈ SNS} 

UAReb(t) Prob {e(t) ∈ SReb} 

UA(t) UANS(t) + UAReb(t) = 1 – A(t) 
 

The steady state measures are respectively denoted: LE, Lm, LM, A, UANS, UAReb and UA.  

These measures are usually expressed in terms of the probability that the system is considered in 

service-level state class. However, they can also be transformed into the cumulative time per year 

spent in the corresponding service-level state class. 

Since the system continues to operate in the presence of component failures, with performance 

degradation, performability measures are of prime interest as emphasized in [2], [21] and [31] for 

practical cases. We assume here that all states in a given service level have the same reward rate. 
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Let rX denote the reward rate of the service level X (corresponding to the state class SX): rX is the 

performance index in the class state SX. The expected reward rate, E[W] is defined by: 

E[W] = rES LE + rmD Lm + rMD LM + rUA UA     (1) 

The various indexes can be estimated by the end-user, according to the current application. They 

can, for example, be equal to the ratio of the maximum number of transactions that can be 

processed by the system in the given service level with respect to the maximum number of 

transactions in ES. 

In the rest of the paper, we will evaluate the steady state unavailability, UA (composed of the 

steady state unavailability due to no service class state, UANS, and the steady state unavailability due 

to system reboot, UAReb), dependability levels LE, Lm and LM and the expected reward rate at 

steady state, E[W]. When necessary, other measures such as Mean Down Time, MDT (due to SNS 

state class), or Mean Time To Failure2 (MTTF) will be evaluated.  

4.2 Specific Measures Related to the Distributed Shared Memory 

The aim is to evaluate the performance degradation due the loss of memory banks of the 

distributed shared memory. We define specific measures associated with the sixteen specific failure 

modes Memi (i = {1, 2,...,16}), corresponding to the state classes where i memory banks are lost 

(cf. Section 3.1.4).  

Let qi denotes the performance index associated with the specific failure mode Memi representing, 

for instance, the decrease of memory performance in that mode due to the loss of i memory banks.  

The expected reward rate E[Wm] at steady state is given by: 

E[Wm] = ∑i=0,16 qi Prob{Memi}       (2) 

where q0 is the performance index in Mem0 in which all memory banks are OK. 

                                                

2  Failure refers here to the No Service state class, NS. 
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5. Dependability Modeling  

The dependability model heavily depends on the evaluated measures. However, a model can be 

built in such a way that several measures can be evaluated from it. In our case, for each system we 

have built the same model of the selected measures. Moreover, for each system, we built the same 

architectural model for X and Y even though, the model of Y could be less detailed than the model 

of X, as the set of considered failure modes is reduced. Using the same model for X and Y reduces 

the modeling effort. 

The models of the reference and extended systems are detailed in [24]. The extended system 

architectural model differs by an additional node sub-model and the associated switching procedure 

taking into account the switching coverage factor.  

In the architectural model, a sub-model is associated to each component, including controllers, 

power supply units, buses, diagnostic equipment, etc. When identical components in the same node 

have the same behavior with respect to the evaluated measures, they are modeled by one sub-model. 

We thus exploit the symmetry of the components to reduce the state space, from the beginning. This 

is for example the case of the four processors and the four memory banks within a node.  

Due to the large number of components in each node, the reference architecture model is very 

complex despite the relatively small number of nodes. It is indeed composed of 40 sub-models for 

Xr and Yr (among which 19 are different). To give an idea about model complexity, the GSPN of 

the reference system has 183 places, 376 transitions and 82 tokens (in the initial marking) for Xr 

(182 places and 351 transitions for Yr). The GSPN for the extended system has 216 places, 695 

transitions and 97 tokens for Xe (214 places and 683 transitions for Ye). It has been processed using 

the SURF-2 tool [5].  

We illustrate the approach on the GSPN of the four processors of a node in Figure 5 that shows 

only the main states and transitions.  
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5.1 Model Description 

The upper part gives a simplified view of the service-level and maintenance models of Xr. Places 

in the left side represent the four service levels and places in the right side represent the 

maintenance states: 

· Pmain: call for delayed maintenance;  

· PReb: reboot state; 

· PM: the repairman availability.  

The lower part of the figure gives the architectural model with the failure mode layer, for Xr and 

Yr.  

For the sake of clarity, not all transitions are shown. In particular, in the architectural model, the 

enabling conditions C1 to C6 associated with the timed transitions are indicated at the bottom of the 

figure. Note that these conditions depend on the marking of pace PNS in the service-level model and 

places PM and PReb in the maintenance policy model. Indeed, these places are the only places that are 

used to enable firing of transitions in the component model directly, without going through the 

failure mode layer (as stated in Section 2.1.1). More generally, they are the only such places for all 

the other sub-models of the component model. 



 

 22 

tmDMD1

Tphl
C1

Tph
C2 TpsC3

Pps

P

C4

ph

pst

Pp

phrT
C5

Tphf
C6

mainP

P
Reb TReb

TMdel
P
M

tMend

Maintenance policy model

Processor model

Service level model

P
NS

tMDmD1

P
MD PmD ES

P

layer

Failure 
mode

D1oP

PD1w

PD1r PD0o

D0wP

PD0r

Pfail_x Punav_x

Architectural model
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Transition Rate Definition 

Tps M(Pp) λps software failure of a processor. 

Tphl λph hardware failure of the last processor. 

tps - one processor becomes available after 
software failure and reboot. 

Tphr µph 
processor repair after a hardware failure 
without node isolation. 

Tphf µph 
repair of one processor, reinsertion of 
the node. 

TMdel σMdel delayed maintenance. 

TReb σReb reboot. 

tMend - end of maintenance actions  
(no more failures). 

tmDMD1 - change of service level after the last 
processor failure. 

tMDmD1 - change of service level after one 
processor recovery. 

 
C1: M(Pph) = 3 & M(PNS) = M(Punav_x) = 0 
C2: M(Pph) < 3 & M(PNS) = M(Punav_x) = 0 
C3: M(PNS) = M(Punav_x) = 0 

C4: M(PReb) =1 
C5: M(PM) =1 
C6: M(PM) =1 

Fig. 5. GSPN of the four processors of a node 

The failure mode layer gathers all the architecture failure information. Figure 5 shows only 

information used or updated by the processor model. Each failure mode M (M ∈ {B, DD, DO, D1, 

D2, D3, C}) has 3 places:  
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· PMo: occurrence of a failure bringing the system into failure mode M. This failure has to be taken 

into account in the service-level model;  

· PMw: waiting for repair; 

· PMr: end of repair. The service level has to be updated accordingly.  

Also, the interface contains places summarizing the state of each node x:  

· Pfail_x : number of failures in x;  

· Punav_x : when marked, node x is unavailable. 

5.2 Interactions Between the Models 

We show how the architectural model communicates with service-level and maintenance policy 

models. In the architectural model, the marking of Pp gives the number of operational processors of 

node x (its initial marking is 4).  

A hardware failure of a processor (transition Tph) leads to a minor service degradation level. 

However, the failure of the last processor (transition Tphl) leads to a major service degradation level 

(because the node becomes unavailable). Pps represents the number of processors with a software 

failure waiting for reboot and Pph those with a hardware failure waiting for repair.  

Let us assume that the last available processor in node x fails. The firing of Tphl removes a token 

from Pp and puts a token in the following places: 1) Pph (there is an additional processor failure in 

node x), 2) Pfail_x (there is an additional failure in node x), 3) Punav_x (node x becomes unavailable) and 

4) PD1o (D1 failure mode). The failure is thus recorded in the failure mode layer to update the 

service-level model. Assuming that the system was in mD, the token from PD1o enables tmDMD1. The 

firing of tmDMD1 changes the current service level from mD to MD and puts a token in PD1w meaning 

that the failure has been recorded and is waiting for repair. Furthermore, it puts a token in Pmain for 

an additional call for maintenance. The presence of a token in Pmain enables TMdel, corresponding to 

the delayed maintenance call. The firing of TMdel means that a repairman has arrived and the repair is 

performed. After the repair of a processor of node x, the token is moved from PD1w to PD1r and the 

service level returns to mD consuming a token from PD1r. 
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It is worth mentioning that software failures, transition Tps, require only a system reboot and do 

not involve system maintenance. 

6. Results 

Based on the models of the reference architecture and the extended architecture, as well as on the 

nominal parameter values, the dependability measures presented in Section 4 have been evaluated 

and several sensitivity analyses have been carried out. The nominal values of the model parameters 

(failure rates, repair time, maintenance delay and arrival times and coverage factors) have been 

either provided by the system manufacturer or assigned according to our experience. Sensitivity 

analyses have been performed to evaluate their relative influence on dependability and 

performability measures. For all tables, the bold lines represent the results for nominal parameter 

values.  

The aim of this section is to show the kind of results that could be exploited by the system 

manufacturer as well as the system end-users. To this end, we have selected a subset of results to 

show the impact of some parameters. We first give some results related to user X then to user Y 

(systems Xr, Xe, Yr and Ye), before comparing results for X and Y. Then we show an example of 

specific measure results. Finally, we present measures related to the clustered system. 

6.1 User X  

Repair Time. The immediate maintenance time is equal to the sum of the maintenance arrival time 

and the repair time (cf. Section 3.1.6). The nominal value of each time is 2 hours and it is assumed 

that all components have the same repair time. To evaluate the impact of maintenance time on 

dependability, we carry out a sensitivity analysis with respect to repair time. 

Table 6 shows that Lm, the cumulative time per year spent in SmD, is not sensitive to the repair 

time; while LM, the cumulative time per year spent in SMD, and the unavailability are affected. To a 

large extent, the unavailability of the system is due to the reboot time, as shown by the last column 
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of Table 6. The difference between the last two columns gives the unavailability due to SNS. For 

instance, the reduction by one hour of the repair time reduces the cumulative time per year spent in 

SNS by 20 min per year (from 34 min to 14 min).  

Another way to obtain the cumulative time per year spent in SNS consists in using the MTTF and 

MDT. Using the nominal values of the parameters, the MTTF is 42033 hours (4.8 years) and the 

MDT due to SNS is 2h43, for a repair time if 2 hours. The cumulative time per year spent in SNS is 

thus equal to 2h43 / 4.8 years = 34 min per year (which is equal to the UANS given in Table 6 for a 

repair time of 2 hours). 

Table 6. Xr Dependability measures wrt repair time 

Repair time LE (Prob) Lm LM UANS UAReb UA 
5h 0.98866 47h39 48h46 2h08 0h46 2h54 
2h 0.98913 47h41 46h13 0h34 0h45 1h19 
1h 0.98926 47h42 45h23 0h14 0h44 0h58 

 

Reboot Time. The nominal reboot time is 20 min. Table 6 suggests that, on average, there are two 

system reboots per year. Table 7 confirms this result for different values of the reboot time. As 

mentioned in Section 3.1.2, it is assumed that all system reconfigurations force a reboot. In 

addition, the reinsertion of the off-line repaired component(s) necessitates a system reboot. The 

results of Tables 6 and 7 argue in favor of performing a reconfiguration without a reboot or with 

fast reboot (taking less time), whenever possible. Also, Table 7 shows that the 34 min of the 

unavailability due to SNS are independent from the reboot time. 

Table 7. Xr Dependability measures wrt reboot time 

Reboot time LE (pPob) Lm LM UANS UAReb UA 
10 min 0.98916 47h41 46h18 0h34 0h23 0h57 
20 min 0.98913 47h41 46h13 0h34 0h45 1h19 
30 min 0.98910 47h41 46h09 0h34 1h07 1h41 

 

Maintenance Delay. Immediate maintenance is performed only when the system is in SNS. When 

the system is in a degraded service state, maintenance is delayed. The nominal maintenance delay is 

one week for both minor and major service degradation states. Table 8 shows that if the 
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maintenance delay is two weeks for SmD then Lm, the time spent in SmD, is almost multiplied by two. 

On the other hand, when the delay is reduced to two days for SMD, LM, the time spent in SMD, is 

significantly reduced. In both cases, unavailability is not affected. 

Table 8. Xr Dependability wrt maintenance delay in SmD, SMD  

Delay in SmD / SMD LE (Prob) Lm LM UA 
2 weeks / 1 week 0.98378 94h33 46h15 1h19 
1 week / 1 week 0.98913 47h41 46h13 1h19 
1 week / 2 days 0.99274 47h51 14h25 1h19 
2 days / 2 days 0.99663 13h45 14h24 1h19 

 

Another possibility could be to perform the delayed maintenance in a more regular manner: i. e., 

to make periodic preventive maintenance without any error reported. However, periodic 

maintenance could be more expensive than on-request maintenance if the time between two 

maintenance interventions (i. e., its period) is too short (to improve system availability). A tradeoff 

has to be made: the periodicity can be optimized through the evaluation of the number of visits to 

the delayed maintenance states. The models we have developed can be modified to model periodic 

maintenance: this modification affects only the maintenance part of the model and its interactions 

with the failure mode layer and service-level model.  

Processor Hardware Failure Rate (λph). The nominal hardware failure rate of a processor is  

10-6/h. Table 9 shows the sensitivity of system dependability to this parameter. If this rate is one 

order of magnitude lower, the unavailability is reduced by 8 min per year, whereas if the failure rate 

is one order of magnitude higher, it is increased by 1h10 per year. The most influenced level 

corresponds to the minor service degradation level. This is due to the presence of 16 processors in 

the system and the failure of up to 3 processors in the same node leads to minor service degradation. 

Table 9. Xr Dependability wrt λph 

λph LE (Prob) Lm LM UA 
10-7 0.99145 28h02 45h40 1h12 
10-6 0.98913 47h41 46h13 1h19 
10-5 0.96602 245h20 49h52 2h29 
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Remote Cache Controller (RCC) Failure Rate. The nominal failure rate of an RCC is 10-7/h. 

Table 10 shows that system dependability is affected by the value of this failure rate. Indeed, a 

failure rate of 10-5/h increases the system unavailability by 15 min per year and doubles the 

cumulative time per year spent in LM (corresponding to the major service degradation level, SMD). 

The most influenced level is LM; this is due to the presence of 4 RCCs and the failure of each of 

them leads to SMD. 

Table 10. Xr Dependability wrt λRCC 

λRCC LE (Prob) Lm LM UA 
10-7 0.98913 47h41 46h13 1h19 
10-6 0.98855 47h42 51h13 1h21 
10-5 0.98282 47h47 101h10 1h34 
 

It is worth noting that with the failure rate of 10-6/h, we obtain almost the same dependability 

results as for the nominal value. Hence, choosing a less dependable (and probably less costly) RCC 

will not much impair the systems dependability. Hence, a tradeoff should be made between the 

component cost and system dependability improvement.  

Spare Node. Table 11 gives the dependability measure for the extended architecture, system Xe. 

These results are to be compared with those of Table 6. It can be seen that the system unavailability 

is unaffected, but LM, the time spent in SMD, is reduced by almost 46h per year. The “Spare use” 

column indicates the time during which the spare is used. For the nominal values, this time is 46h25 

per year: it is distributed among SmD and SES. Note that LM, the major service degradation level, 

corresponds here to the loss of 2 nodes before maintenance achievement. A cumulative time per 

year spent in SMD of 14 min per year shows that the double failure is unlikely. 

Table 11. Xe Dependability measures 

Repair time LE (Prob) Lm LM UANS UAReb UA Spare use 
2h 0.99426 48h46 0h14 0h34 0h45 1h19 46h25 
1h 0.99433 48h28 0h14 0h14 0h44 0h58 45h35 

 

Expected Reward Rate. Let us assume that the performance index of a given state class represents 
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the percentage of system processing capacity in this class. For instance, an index of 0.6 means that 

the processing capacity is 60%. We have thus rES = 1 and rUA = 0. In this context, Table 12 gives the 

expected reward rate at steady state with various values of the performance indexes rmD and rMD. 

Obviously, Xe has higher expected reward rate than Xr. Note that Xe is less sensitive to the 

performance index associated to SMD because of the reduced cumulative time per year spent in SMD. 

The last line gives system availability. 

Table 12. Expected reward rate at steady state, E[W] 

Performance indexes E[W] for Xr E[W] for Xe 
rmD = 0.8 ; rMD = 0.6 0.996650 0.998726 
rmD = 0.8 ; rMD = 0.7 0.997178 0.998728 
rmD = 0.9 ; rMD = 0.7 0.997722 0.999285 
rmD = 0.9 ; rMD = 0.8 0.998250 0.999288 
rmD = 1 ; rMD = 1 (A) 0.999849 0.999850 
 

6.2 User Y  

For Y, the service is either entire or nil. The availability results according to the repair time are 

summarized in Table 13. Reducing the repair time improves the availability of the system. This is 

not surprising since most of the failures lead to immediate maintenance. Note that, as opposed to 

what was observed for Xr, system unavailability is mainly due to SNS (difference between the last 

two columns): 3h25 compared to the 24 min of unavailability due to system reboot.  

Considering the nominal values, the MTTF is 7175h and the MDT due to SNS is 3h09. This means 

that immediate maintenance is called on average a little bit more than once a year and that the 

reboot time of 24 min corresponds to a system reboot after maintenance: the system does not 

exercise reboots in SES as all failures are tolerated without system reconfiguration. Recall that for 

Xr, the immediate maintenance is called on average once every 4.8 years, but the system is 

rebooted on average twice a year.  

The maintenance delay rate does not influence the availability of the system: the maintenance is 

delayed only for benign failures that do not affect service delivery. Sensitivity analyses with respect 

to hardware processor and to the RCC failures are similar to those obtained for Xr. 
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Table 13. Yr Availability wrt the repair time 

Repair time A (Prob) UANS UAReb UA 
2h 0.99957 3h25 0h24 3h49 
1h 0.99970 2h13 0h24 2h37 

 

Spare Node. The presence of a spare node has a direct impact on system availability since the first 

node failure can be tolerated. Table 14 shows that unavailability is divided by 3 for Ye compared to 

Yr (Table 13). Moreover, it can be seen that the unavailability is of the same order of magnitude as 

for Xr (these values are 1h19 and 58 min from Table 6 for repair time respectively of 2h and 1h). 

Considering the nominal values of the parameters, the time during which the spare is used is 93h08. 

This time is almost equal to the sum of Lm and LM of Table 6, line 2, that is 93h53. The difference 

(45 min) corresponds to the time spent in states without an external disk (failure mode DD defined 

in Table 2). 

Table 14. Ye Dependability 

Repair time A (Prob) UANS UAReb UA Spare use 
2h 0.99986 0h34 0h41 1h15 93h08 
1h  0.99990 0h15 0h40 0h55 92h17 

 

6.3 Tradeoff Availability - Performance 

Columns 3 and 4 of Table 15 report the expected reward rate and availability of the four systems for 

the nominal values of the parameters (for Y, the expected reward rate is equal to the availability). 

They show that the reference architecture provides better availability for user X and better 

performance for Y: there is thus a tradeoff between system performance and availability. On the 

other hand, the extended architecture provides better availability and better performance for Y. 

However, in this case, the difference between X and Y availability is not significant. This result is 

sensitive to the coverage factor c (the probability of successful switching from the failing node to 

the spare one), as shown in columns 5 and 6 that give the same measures for a lower coverage 

factor (respectively 0.95 and 0.85). 
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Table 15. Reference and extended architectures 

Measure User 4 nodes 5 nodes  
(c = 1) 

5 nodes  
(c = 0.95) 

5 nodes  
(c = 0.85) X 0.99825 0.99929 0.99924 0.99913 Expected  

reward rate Y 0.99957 0.99986 0.99984 0.99981 
X 0.99985 0.99985 0.99985 0.99985 Availability 
Y 0.99957 0.99986 0.99984 0.99981 

 

6.4 Specific Measures  

Table 16 gives the expected reward rate at steady state for various performance index values qi 

associated with the sixteen specific failure modes Memi selected hypothetically3, as no experimental 

values were available when we made the study. It is worth noting that for no memory bank failure 

states Mem0, q0 always equals to 1. 

In the three chosen cases, we assumed that the memory service is considered as unavailable when 

the unavailable memory banks reach 50% of the overall distributed shared memory (i.e., more than 

7 unavailable memory banks). The first case is a pure dependability measure giving the system 

availability (i.e., the system is available as long as more than 7 memory banks are available). The 

last case is the worst one: the loss of memory banks increases the memory mean access time, thus 

reducing system performance. 

Table 16. Expected reward rate at steady state, E[Wm] 

Case Performance indexes E[Wm] 

1 qi = 1  i= {1,…,7} qk = 0  k > 7 0.99985 
2 qi = 0.9  i= {1-3} qj = 0.8  j= {4-7} qk = 0  k > 7 0.99788 
3 qi = 0.5  i= {1-3} qj = 0.1  j= {4-7} qk = 0  k > 7 0.99082 

                                                

3  qi represents memory performance decrease. For instance, if the memory mean access time without any memory loss is t0, it 
becomes ti (> t0) for Memi. Then, qi = t0/ti is the performance index corresponding to the resulting memory mean access time 
increase. 
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Table 16 shows that the expected reward rate at steady state is slightly influenced by the 

performance index values: the decrease is 0.9% between the best case (case 1) and the worst case 

(case 3). This decrease is not important for a degradable highly available system (with A = 99.98% 

and UA less than 2 hours per year). It may be important for systems with higher unavailability.  

6.5 Clustered Systems 

As mentioned in Section 3.2, we have considered a clustered system based on the studied 

reference architecture. Since the clustered systems are composed of four reference architectures, it 

is possible, under some independence assumptions, to compute the clustered systems performability 

by combining measures of the reference architecture. We have assumed complete independency 

between the clusters and evaluated the performability of the clustered system with four clusters. 

Nevertheless, more complex assumptions can be used4. 

We have considered a set of measures corresponding to the probability in the various failure 

modes (or groups of failure modes) of Table 3. Table 17 summarizes these measures. 

Table 17. Measures for the clustered system 

Measure Definition 

LEc entire service possibly with loss of redundancy 

Lmc minor degradation where some components are failed 
but all the clusters still available 

LMc major degradation with loss of 1, 2 or 3 clusters 
UAc no service (maintenance or system reboot) 

 

For the defined measures, Table 18 shows the impact of PCR, the probability that the common 

resources (mainly the interconnection ring) are unavailable and PRC, the probability that the ring 

controller is down. 

                                                

4  Indeed, we can use the same modeling approach for the whole clustered system as well. However, as the clustered system is 
composed of four identical systems that are loosely coupled, its performability measures can easily be obtained by combining the 
performability measures of its components. This is a way of model and result re-use. 
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Table 18. Dependability of the clustered system 

PCR PRC LES LmD LMD LNS 
10-6 10-6 0.98913 93h54 1h20 31s 
10-6 10-5 0.98912 93h54 1h24 31s 
10-5 10-6 0.98912 93h54 1h20 5min15s 
10-5 10-5 0.98911 93h54 1h24 5min15s 

 
We notice that the unavailability is very low. This is due to the low probability of the 

corresponding events: it is scarce to have a common resource failure or the simultaneous 

unavailability of the four clusters. Also, let us note the huge reduction of system unavailability 

compared to the reference and extended systems. For the two latter, the lowest unavailability 

(obtained for the reference system with a repair time of 1 hour) is 58 min / year to be compared to 

about 5 min / year for the clustered system. Indeed, the clustered system is typically to be used for 

system requiring high-availability, such as in air traffic control systems or even in web applications 

for which high availability is important. 

It is worth noting the importance of the cumulative time per year spent in Lmc, almost 4 days, 

compared to LMc, about 1 hour. In the first case, all the clusters are available with possible 

degraded performance due to the failure of some components. Whereas in the second case, there is 

at least one cluster lost, which is unlikely (probability of 1.5 × 10-4 corresponding to 1h19 min of 

downtime per year, as from Table 7).  

Finally, note that PRC mainly influences LMc while PCR mainly influences UAc. This is obvious as 

the ring controller (RC) has a local impact while the common resources (CR) such as the 

interconnection ring have a global impact. The results allow quantification of this impact. 

6.6 Summary of Results 

The main results presented in this section can be summarized as follows: 
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User X 

· System unavailability is mainly due to the reboot time;  

· The No Service states are reached, on average, once each 4.8 years but the system is rebooted 

twice a year; 

· The maintenance delay affects only the cumulative time per year spent in states with minor and 

major service degradation; while the repair time affects system unavailability; 

· The addition of a spare (i.e., the extended system) does not affect system unavailability but 

reduces the cumulative time per year spent in states with major service degradation. 

User Y 

· System unavailability is mainly due to the maintenance time. 

· The No Service states are reached, on average, once a year and the system is rebooted once a year 

(following system maintenance). 

· The addition of a spare considerably reduces system unavailability. 

Clustered system 

The availability of clustered systems is very high even compared to the availability of the 

extended architecture. Indeed, the clustered system is to be used for applications requiring very 

high-availability. 

7. Conclusions 

This paper was devoted to the brief presentation of a performability modeling approach and its 

application to a particular family of multipurpose, multiprocessor systems (MMS). The modeling 

approach is modular. Its originality is in the separation between the architectural and the 

environmental concerns. This separation is very important; in particular it allows us to consider a 

system manufacturer perspective, in which the end-user needs are explicitly accounted for. Also, it 
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allows evaluation of comprehensive measures defined with respect to service levels and specific 

measures defined with respect to the architecture specific features. 

The considered MMS family is under investigation by a system manufacturer. The results 

obtained for this MMS can be classified into two categories: those supporting the manufacturer 

choices and those that will support the potential end-users choices. Of course, these results are not 

independent and have to be used together. Proper design choices by the manufacturer will — 

hopefully — be of great benefit for the users.  

From the manufacturer perspective, the results are mainly related to:  

· the selection of components according to the impact of their failure rates on dependability 

measures (and their cost most probably);  

· the decision concerning the reboot policy;  

· the provision of a spare node (a tradeoff should be made between the dependability improvement 

and the additional difficulty for developing the underlying mechanisms for the insertion of the 

spare into the system); 

· the availability of quantified information that can be used as commercial arguments for future 

system purchasers; 

· the study of impact of the distributed shared memory and more generally  of the particular system 

features; 

· the forecasting of clustered architectures given the individual cluster measures. 

From the end-user perspective, the results concern:  

· the selection of the maintenance policy (delayed or immediate maintenance); 

· the choice between the reference architecture and the extended one, and more generally between 

all available solutions. 

Another important point of interest concerns the exploitation by the end-user of the various 

degradation possibilities offered by the architecture. According to the service expected by the 

application, the user has to make choices concerning the service degradation levels he/she can 



 

 35 

accept and the tradeoff between performance and availability. This choice may affect the 

architecture of the applicative software.  
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