
HAL Id: hal-01977511
https://laas.hal.science/hal-01977511

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performability Evaluation of Multipurpose
Multiprocessor Systems: The ”Separation of Concerns”

Approach
Mourad Rabah, Karama Kanoun

To cite this version:
Mourad Rabah, Karama Kanoun. Performability Evaluation of Multipurpose Multiprocessor Sys-
tems: The ”Separation of Concerns” Approach. IEEE Transactions on Computers, 2003, 52 (2),
�10.1109/TC.2003.1176988�. �hal-01977511�

https://laas.hal.science/hal-01977511
https://hal.archives-ouvertes.fr

 1

Accepted for publication in IEEE Transactions on Computers
Special Issue on Reliable Distributed Systems

Performability Evaluation of Multipurpose Multiprocessor Systems:
The “Separation of Concerns” Approach

Mourad Rabah and Karama Kanoun

LAAS-CNRS — 7, Avenue du Colonel Roche — 31077 Toulouse Cedex 4 — France
Tel: +33/561 33 6235, Fax: +33/561 33 6411

kanoun@laas.fr

Abstract

The aim of our work is to provide a modeling framework for evaluating performability measures of

Multipurpose, Multiprocessor Systems (MMSs). The originality of our approach is in the explicit

separation between the architectural and environmental concerns of a system. The overall dependability

model, based on Stochastic Reward Nets, is composed of i) an architectural model describing the

behavior of system hardware and software components, ii) a service-level model and iii) a maintenance

policy model. The two latter models are related to the system utilization environment. The results can be

used for supporting the manufacturer design choices as well as the potential end-user configuration

selection. We illustrate the approach on a particular family of MMSs under investigation by a system

manufacturer for Internet and e-commerce applications. As the systems are scalable, we consider two

architectures: a reference one composed of sixteen processors and an extended one with twenty

processors. Then, we use the obtained results to evaluate the performability of a clustered system

composed of four reference systems. We evaluate comprehensive measures defined with respect to the

end-user service requirements and specific measures in relation to the Distributed Shared Memory

paradigm.

Index terms. Dependability and Performability Evaluation, Stochastic Reward Nets, Modular Modeling,

Multipurpose Multiprocessors Systems, Distributed Shared Memory, Clustered Systems.

 2

 3

1. Introduction

Computer systems are becoming more and more complex. Even though particular applications

may need the design of proprietary systems to achieve the required functions, economic reasons

promote the use of support systems available on the market. This situation gave rise to a category of

systems that are referred to as multipurpose systems in this paper. Such systems are — to some

extent — application-independent support systems. Many system providers have developed generic

support systems that can be used in several application domains, for example for instrumentation

and control or Web related applications.

Actually, most of the time such systems are composed of Commercial Off-The-Shelf components

(COTS). However, despite their wide use, COTS components are far from being highly dependable.

As a consequence, a careful design, development and validation of COTS-based systems are needed

to provide dependability and high-performance. Indeed, the end-users of a given system want at the

same time high dependability and performance, ease of use and low cost. Furthermore, low

dependability or low performance of a system will ruin the manufacturer's reputation. Hence the

importance of the evaluation of combined dependability and performance measures referred to as

performability measures [20].

Our work was motivated by the desire of a system manufacturer to evaluate the performability of

a family of Multipurpose Multiprocessor Systems (MMSs) under development, intended for

Internet and e-commerce applications. The considered MMS family is scalable, most of its

components are COTS and it features a distributed shared memory. A reference architecture

composed of 16 processors grouped into 4 nodes has been defined. It can be used for various

applications requiring different performance and/or dependability levels. Based on this reference

architecture, a whole family can be designed for applications necessitating either higher

performance or higher dependability or both. In particular, up to 8 reference architectures can be

grouped to form a clustered system. Our first aim was to provide a framework for modeling the

 4

performability of different systems of this family. However, the approach presented in this paper is

more general and can be used beyond this particular family of systems.

Even though an MMS is application-independent, usually the system manufacturer targets some

particular classes of utilization. He expects to provide high dependability and performance, at least

for these targeted utilizations. It is thus important to take them into account for evaluating system

performability.

The originality of our approach is in the explicit separation between the architectural and the

environmental concerns of a system. In this way, we can clearly analyze the impact of the

architectural choices on system performability while the end-user context is taken into account

explicitly. Moreover, the results can be used for supporting the manufacturer design choices as well

as the potential end-user configuration selection.

This approach allows us to consider two sets of performability measures:

· Comprehensive measures, defined with respect to service accomplishment levels that are directly

related to the end-user expectations.

· Specific measures, related to specific features of the system, interesting particularly the system

manufacturer for tuning the support system architecture, to study for example the impact of using

a distributed shared memory.

This modeling approach is presented briefly in this paper and applied to two systems pertaining to

the MMS family defined by the system manufacturer who initiated this work. The results presented

illustrate the kind of outcomes that can be obtained from the MMS performability evaluation. They

show the impact of architectural solutions as well as the impact of different utilization environments

on system performability. This paper elaborates on our previous work reported in [25, 26] ([25] was

dedicated to the specific measures related to the distributed shared memory, while [26] has not

addressed the clustered system and the specific measures).

In the following, Section 2 describes our modeling approach and presents current approaches to

model construction. Section 3 introduces the systems under consideration and Section 4 defines

 5

their performability measures. Section 5 illustrates the modeling approach through an example and

Section 6 presents some results. Finally, Section 7 concludes the paper.

2. Modeling Approach

The model built for evaluating system dependability and performance is always a tradeoff

between faithfulness (i.e., correct representation of the real systems behavior) and tractability (i.e.,

ability to solve the model equations to obtain the measures) [19]. If the system to analyze is too

large, a detailed model representing its in depth behavior may be faithful but might be non-tractable

because of its size. The use of an appropriate modeling technique such as the Generalized

Stochastic Petri Nets (GSPNs) [1] offers a good support. However, it is necessary to master the

complexity of the resulting state space by the way of structured modeling approaches. This is one of

the aims of this paper in which modeling is based on Stochastic Reward Nets (SRNs) [13], that are

obtained from GSPNs by assigning reward rates to tangible markings.

In the rest of this section, we present our modeling approach and outline some other modeling

approaches.

2.1 Separation of Concerns Approach

Even though it is possible to model a multipurpose system without considering the end-user

requirement in terms of expected services, the results are more accurate if the environmental aspects

are incorporated. Hence, our modeling approach takes into account explicitly the environmental

context together with the architectural concerns. This is done in a separate manner to allow for

some flexibility.

The overall dependability model is composed of two parts, one of them describes the architectural

behavior of system components and the other one expresses the system utilization environment

(reflecting the end-user point of view). The latter incorporates several kinds of information. A

 6

model is dedicated to each kind of useful information. For our purpose, we consider two models

corresponding to the service-level and maintenance policy models.

The global model is thus seen as a composition of three models as depicted in Figure 1. These

models are more detailed hereafter. The interactions between the various models is illustrated

through a small example in Section 5.

Service-level
model

Maintenance
policy model

Failure mode layer

Component model

Architectural Model

Fig. 1. Model overview

2.1.1 Architectural Model

The architectural model describes the behavior of system components (including all basic

hardware and software components as well as fault tolerance mechanisms) as resulting from

elementary failures, repairs and interactions regardless of system utilization environment.

From a practical point of view, the failure modes of the system are defined as a function of the

states of the system components. Each failure mode is represented by a particular place in the

architectural model. The set of failure mode places is grouped into a separate layer, referred to as

the failure mode layer. The architectural model is thus composed of the component model and the

failure mode layer.

Component model

The component model may be built using any existing modeling method based on GSPNs, such

as the ones we have defined in our previous work (see e. g., [6, 16, 17]). The only requirement for

our approach is to make all failure mode states available at the failure mode layer, to facilitate

interfacing with the service-level and maintenance policy models. In [24], we have defined rules for

 7

constructing efficiently the component model. In particular, we recommend building a sub-model

for each component or group of related components (depending on the desired level of detail)

describing their behavior and evolution. Sub-model interfacing rules assisting model construction

have been defined.

Failure Mode Layer

In addition to the places representing the architectural failure modes, the failure mode layer

gathers places summarizing some component states for specific measure evaluation (such as the

states of the distributed shared memory). Initially, all places in the failure mode layer are not

marked. The failure mode layer is used to facilitate the interface between the architectural and

environmental models. All the information considered necessary for the environmental models

should be made available in the failure layer model. Also, the information required for component

model from the service-level and maintenance policy models is available in the failure mode layer.

However, in order not to duplicate unnecessarily some places we have decided to accept that the

firing of some transitions, in the component models, could be enabled directly by the marking of

very specific places (that are clearly defined) in the service-level and maintenance models, this is

illustrated in Section 5. Indeed, in [24], we have defined a set of consistent rules managing the links

between the various models.

2.1.2 Service-Level Model

The system service levels are defined with respect to the different service accomplishment and

degradation state classes accepted by the considered end-user application. They reflect the

application requirements in terms of resources and are usually established according to the

architecture failure modes and to the application nature. The service levels are thus partitions of the

architecture failure modes.

In the service level model, places represent the various service levels as seen by the end-user. One

and only one place can be marked at any time (including the initial marking) indicating the system

 8

current service level. Transitions between the various service levels are entirely governed by the

architectural model through the failure mode layer and by the maintenance policy model.

Indeed, the service-level model is not autonomous. Its main role is to provide a high-level vision

of the system states according to the end-user expected services. It gives the logical behavior of the

system as seen by the end-users.

2.1.3 Maintenance Policy Model

The maintenance policy model describes the maintenance types (e.g., immediate, delayed or

programmed), repair resources availability and might include (re)booting procedures, according to

the service level and/or the architectural failure mode. The interconnection between the service-

level and maintenance policy models represent for example calls for maintenance or notification of

maintenance end.

2.1.4 Benefits of our Modeling Approach

Even though modeling is performed from a system manufacturer point of view, we incorporate

explicitly the end-user point of view in order to evaluate comprehensive performability measures

that are especially relevant to the end-user, in addition to specific measures that may be too detailed

for the end-user but of prime interest for the system manufacturer.

Indeed, the same model could be used to evaluate comprehensive and specific measures.

Comprehensive measures are evaluated based on the service-level model whereas specific measures

are evaluated based on the failure mode layer.

The separation of concerns property allows reuse of the architectural model, when the same

architecture is to be used in different environments. Obviously, changing the architectural model

will lead to change its links with the service-level and maintenance models. However, as these links

are clearly identified and formalized, the changes can be performed more easily than when the

various models are not separated.

From the end-user perspective, this approach allows the reuse of the environmental models to

compare different architectures for choosing the most suitable one for his/her own environment.

 9

Moreover, building the component model in a modular way favors reuse of some component sub-

models in the component model, which is of prime interest for both system manufacturers and the

end-users.

2.2 Other Modeling Approaches

Our work is related to performability modeling of multipurpose multiprocessors systems. Several

publications have been devoted to dependability or performance modeling of multiprocessor

systems and more generally of complex computer systems, based on GSPNs and their off-springs.

Considering multiprocessor systems, despite the large number of published work (see e. g., [1]

and [22]), the manufacturer and the end-user concerns have not been explicitly addressed at the

same time (i.e., the multipurpose paradigm was not studied in depth as in our work).

Separation of abstraction views allows the same architecture to be studied for different service

needs and, similarly, several architectures to be compared for the same environmental conditions,

changing only a part of the initial model (and its links with the other parts). To the best of our

knowledge, the hierarchical composition method [9] is the only method that considers the system

under several points of view.

More generally, concerning computer system dependability and performance modeling, the main

difficulty for model construction results from the large number of states of the associated model.

Several techniques have been published to overcome it. They can be grouped into two categories:

largeness tolerance and largeness avoidance techniques [32].

The main objective of largeness tolerance techniques is to master the generation of the global

system model through the use of concise specification methods and automated generation of

models. The basic idea is to generate the model of a modular system by composition of the sub-

models of its components. Several other authors have published such techniques (e.g., see [21, 27]).

Also, numerous evaluation tools using GSPNs and their off-springs have been developed (e.g.,

SPNP [12], SURF-2 [5], SHARPE [28], UltraSAN [29] and DEEM [7]). GSPNs and their off-

 10

springs have been used to model real-life systems such as air traffic control systems [15, 18], space

applications [8] and RAID storage systems [30].

Largeness avoidance techniques try to circumvent the generation of very large models. The basic

idea is to construct small sub-models that can be processed in isolation. The results of the sub-

models are integrated into a single overall model that is small enough to be processed. Among

them, we have for example: the behavioral decomposition technique [4], the hybrid hierarchical

modeling technique [3], the data structure technique for the Kronecker solution of GSPNs [11], the

method of Superposed GSPNs [14] or of asynchronously communicating modules [10]. To the best

of our knowledge, most of these techniques are efficient when the sub-models are loosely coupled

and become hard to implement when interactions are too complex.

From a practical point of view, in our modeling framework, as in [9, 23] we combine both

techniques for modeling the considered MMS. We use a largeness tolerance technique for building

the model of the non-clustered systems (as the various components have several inter dependencies)

and a largeness avoidance technique for the clustered multiprocessor systems.

3. Systems under Consideration

We first present the reference and extended architectures of the considered Multipurpose

Multiprocessor System (MMS) family with their failure modes, hypothetical end-users, as well as

associated service levels and maintenance policies. Then the clustered architecture is defined.

3.1 Reference and Extended Systems

The reference architecture is composed of 16 processors grouped into 4 identical nodes. The

extended architecture features a fifth node used as a spare. Since the four basic nodes of the

extended architecture are used in the same manner as in the reference architecture and the spare

node replaces the first failed node, the remainder of the section will focus on the reference

architecture.

 11

3.1.1 Reference Architecture

As depicted in Figure 2, the nodes are connected through an interconnection network composed of

two redundant rings. Each node is connected to each ring via a controller. To ensure high

availability, all nodes are connected to a centralized redundant diagnostic equipment (DEq). Its role

is to log and analyze all error events, initiate and control system reboots. It does not contribute to

service delivery but the system cannot reboot without it.

ED2

Interconnection
Network

Node 1 Node 3

Node 4DEq

ED1 Node 2

Fig. 2. MMS reference architecture

The MMS has two external RAIDs (Redundant Array of Independent Disks), ED1 and ED2, with

on-line maintenance. Each RAID is shared by two nodes. Nevertheless, if a node or its

interconnection controller fails, the RAID can be used by the other node.

Figure 3 shows that each node1 has: i) four independent processors (with a two-level private cache

where data from other node memories can be replicated or migrated), ii) an internal disk (ID)

devoted either to the operating system (nodes 1 and 3) or to the swap (nodes 2 and 4), iii) a set of

dedicated controllers (for interruption, reboot, etc.), iv) a local Random Access Memory, RAM

(composed of four banks), v) a Remote Cache Controller (RCC) interconnecting the node to the

network and vi) a set of miscellaneous devices, such as local and Peripheral Component

Interconnect (PCI) buses, etc.

1 Even though the model of the whole architecture is not presented in this paper, the details of the architectures are briefly outlined
to give an idea about the level of details taken into account in the models.

 12

ED

Node i

external devices

four processors

power supply

DEq

local bus

controllers

ID
PCI bus

RCC IN

RAM

Fig. 3. Main components of a node

3.1.2 Fault tolerance facilities

In addition to the redundant diagnostic equipment, DEq, and to the redundancy of several

components (interconnection network, power supply, internal and external disks), MMS includes

other facilities to reduce system downtime following error detection, among which:

• Architecture automatic reconfiguration: the load of a failed processor is partitioned among the

other processors and the load of a whole node can be partitioned among the other nodes (and the

failed node is isolated).

• Reboot with all on-line tests (complete reboot) or with a reduced test set (fast reboot).

It is intended that some failures (whose nature is to be determined by the system manufacturer

according to some criteria) will lead to system automatic reconfiguration without or with fast

reboot. However, we assume in this paper that any component failure necessitating system

reconfiguration (for instance, node, processor, memory bank, some of the controllers failures)

forces a complete reboot. This assumption can be easily modified for those failures needing system

reconfiguration without or with a fast reboot.

A node is available as long as at least one processor, one memory bank, one power supply unit,

the local and PCI buses with their controllers are available, otherwise, the node is considered as lost

and is isolated. The components of the isolated node become unavailable to the rest of the system.

 13

For modeling purpose, we have associated a coverage factor to each fault tolerance mechanism.

The coverage factor is defined as the probability of system recovery given the fact that a fault has

been activated or has occurred.

3.1.3 Architectural Failure Modes

Given the large number of components and the various impact of their failure on system state and

performance, a multitude of failure modes can be defined, related to the nature of the failed

components. We have carried out a Preliminary Risk Analysis to investigate the consequences of all

component failures, individually and in combination. The seven identified failure modes are given

in Table 1 among which D0, DD, D1, D2 and D3 correspond to performance degradation states and

C to system total failure. B gathers the set of states in which one or more components among the

redundant components are lost, but the processing capacity of the architecture is not impaired. B is

referred to as the benign failure mode. Two additional states are added for modeling purpose: the

nominal state (OK) and the reboot state (Reb).

The defined architectural failure modes apply to both reference and extended architectures.

Table 1. Failure modes of the reference system

B benign failure mode

D0
loss of processors, memory banks or connections
to external devices without the loss of an entire
node or loss of DEq

DD loss of the two external disks
D1, D2, D3 loss of 1, 2 or 3 nodes, respectively

C loss of the four nodes or of a critical component
such as the interconnection network

3.1.4 Distributed Shared Memory

The system features a distributed shared memory, composed of the four RAMs of the nodes (i.e.,

the sixteen memory banks of the system). Each bank is accessible to all nodes. However, as the

overall memory is directory based using cache coherent non-uniform memory access (CC-NUMA),

the access time to a remote bank is longer reducing system performance. A node can thus be

maintained available as long as it has at least one memory bank available among the 4 local banks

 14

(when the four memory banks are lost, the node is considered as unavailable). A memory bank is

lost either due to the failure of the memory bank itself or due to the failure of other system

components making this bank non-accessible.

When several memory banks are lost, the overall workload is reorganized. The system takes into

account the unavailable banks and attributes low memory consuming tasks to the nodes with several

unavailable memory banks. Thus, we assume that the state with one failed memory bank in three

nodes is equivalent to the state where three memory banks failed in one node.

To evaluate system performability from the distributed shared memory point of view, we have

defined sixteen specific failure modes, corresponding respectively to the states where i memory

banks are lost (denoted Memi (i = {1, 2,...,16}). Nevertheless, the refinement of specific failure

modes is possible to take into account particular unavailable memory bank combinations.

These specific failure modes are identified explicitly to allow the evaluation of the impact of

memory failure on system performability.

3.1.5 End-Users and Service Levels

The above MMS properties and the failure modes are user-independent. However, even though

graceful degradation of the architecture is provided by the supporting architecture, this possibility

can be exploited differently by the end-users for different application requirements. For instance,

some applications will accept a degraded service provided by three, two or even only one node,

while others will only accept the loss of some processors, without loosing a whole node. Indeed, the

service levels are derived from the architectural failure modes and take into account the end-user

application needs.

It is worth noting that failure modes B and C have the same meaning for all applications: in B the

entire service is delivered (ES) while in C there is no service (NS). Between B and C, several

service degradation levels can be defined according to end-user needs and to the architecture failure

modes.

 15

To illustrate the mapping between architectural failure modes and service levels, we consider two

examples of users, denoted X and Y (for which the mapping is given in Table 2).

Table 2. Failure modes and service levels (reference system)

Service
levels

Entire
Service
(ES)

minor
Degrad.
(mD)

Major
Degrad.
(MD)

No
Service
(NS)

Reboot

user X OK, B D0, DD D1 D2, D3, C Reb
user Y

OK, B, DD —

— D0, D1, D2, D3, C Reb

• User X: The service is considered as entire in states OK and B. X accepts a degraded service as

long as at least three nodes are available without a critical component failure: NS corresponds to

D2, D3 and C. Between ES and NS, we have defined two significant service degradation levels:

minor and major degradation levels (respectively referred to as mD and MD). X could be used as

a Web server. In ES the full server capacity is available, in mD some transactions are not serviced

due to service capacity reduction, in MD less transactions can be processed and in NS, we

assume that the Web server should be repaired entirely.

• User Y needs the entire capacity of the system and does not accept any service degradation. The

entire service is delivered in OK, B and DD. NS gathers all other failure modes.

The states belonging to the same service degradation level are grouped into a state class. These

classes are denoted respectively: SES, SmD, SMD and SNS.

3.1.6 Maintenance

Although maintenance management is user-dependent, the system supplier usually proposes a

maintenance contract. In order not to suspend system activities after each failure and call for a

paying maintenance, two maintenance policies are defined:

• Immediate maintenance: for the states where no service is available, state class SNS. However, as

some time is needed for maintenance team arrival on site. Immediate maintenance is performed

in two steps: maintenance arrival and system repair .

 16

• Delayed maintenance: for the other states with service degradation. The system continues to be

used until a time interval in which its activities can be stopped for repair. Different delays may be

allocated to different service levels. Delayed maintenance is also performed in two steps: a

maintenance delay during which a degraded service is delivered and repair itself.

The repair is followed by a system reboot.

3.2 Clustered Systems

The manufacturer plans to use the reference architecture as a building block in more complex

clustered systems. Architectures composed of 64 (and up to 128) processors distributed among 4

clusters of 4 nodes (respectively, up to 8 nodes) were anticipated from the design stage. The

clustered system depicted in Figure 4 is composed of 4 clusters where each cluster is an instance of

the reference architecture.

IN

N4

N2

N3N1

IN

N4

N2

N3N1

IN

N4

N2

N3N1

IN

N4

N2

N3N1

Cluster 1 Cluster 4

rc

rc

Cluster 2

rc

rc

Ni node
multiprocessor

rc ring controller

Cluster 3
Interconnection

Ring

Fig. 4. Clustered architecture

The clusters have similar failure modes as the ones defined for the reference architecture. The

clustered system failure modes are defined in Table 3. Also, we defined OKc state where all

clusters are in their OK state and Rebc state the simultaneous reboot of all the clusters.

 17

3.3 Summary of the Considered Systems

In our study we have considered 5 systems: i) two are composed of 4 nodes each, with two

different users, ii) two others are composed of 5 nodes each (the fifth one being a spare node) with

the two same users X and Y and iii) the clustered architecture, composed of 4 reference systems.

They are recalled in Table 4.

Table 3. Failure modes of the clustered architecture

Bc at least one cluster is in failure mode B, the
others are in the OK state or in B.

D0c loss of some components without loosing an
entire cluster

D1c, D2c, D3c loss of k clusters, k = {1, 2, 3}
Cc loss of the four clusters or of the

interconnection ring

Table 4. Considered systems

System Definition
Xr reference architecture (4 nodes) for user X
Yr reference architecture (4 nodes) for user Y
Xe extended architecture (5 nodes) for user X
Ye extended architecture (5 nodes) for user Y
 Clustered system

4. Dependability and Performability Measures

As stated earlier, we consider comprehensive and specific measures. Comprehensive measures are

defined according to service levels. Specific measures concern specific features of the system. In

this study, they concern mainly the distributed shared memory.

4.1 Comprehensive Measures

We define for X and Y four common dependability measures:

• two conventional measures noted: A for availability and UA for unavailability;

• two measures refining the unavailability: UANS for the unavailability due to one of the SNS class

state failure modes and UAReb for the unavailability due to the reboot procedure.

 18

Furthermore, the availability measure for X is refined into three dependability levels

corresponding to the three service levels (ES, mD and MD). Table 5 presents the defined measures

for X and Y according to the partitions defined in Section 3.1.5 (where e(t) denotes the system state

at time t).

Table 5. Measures for the reference architecture

a- Measure definition
Measure Definition

LE(t) dependability level associated with the entire
service, ES, at time t

Lm(t) dependability level associated with the minor
service degradation level

LM(t) dependability level associated with the major
service degradation level

A(t) overall availability
UANS(t) unavailability due to the SNS class
UAReb(t) unavailability due to the reboot
UA(t) overall unavailability

b- Measure equation in terms of Probability (Prob)
Measure For user class X For user class Y

LE(t) Prob {e(t) ∈ SES} Prob {e(t) ∈ SES}

Lm(t) Prob {e(t) ∈ SmD} –

LM(t) Prob {e(t) ∈ SMD} –

A(t) LE(t) + Lm(t) + LM(t) LE(t)

UANS(t) Prob {e(t) ∈ SNS}

UAReb(t) Prob {e(t) ∈ SReb}

UA(t) UANS(t) + UAReb(t) = 1 – A(t)

The steady state measures are respectively denoted: LE, Lm, LM, A, UANS, UAReb and UA.

These measures are usually expressed in terms of the probability that the system is considered in

service-level state class. However, they can also be transformed into the cumulative time per year

spent in the corresponding service-level state class.

Since the system continues to operate in the presence of component failures, with performance

degradation, performability measures are of prime interest as emphasized in [2], [21] and [31] for

practical cases. We assume here that all states in a given service level have the same reward rate.

 19

Let rX denote the reward rate of the service level X (corresponding to the state class SX): rX is the

performance index in the class state SX. The expected reward rate, E[W] is defined by:

E[W] = rES LE + rmD Lm + rMD LM + rUA UA (1)

The various indexes can be estimated by the end-user, according to the current application. They

can, for example, be equal to the ratio of the maximum number of transactions that can be

processed by the system in the given service level with respect to the maximum number of

transactions in ES.

In the rest of the paper, we will evaluate the steady state unavailability, UA (composed of the

steady state unavailability due to no service class state, UANS, and the steady state unavailability due

to system reboot, UAReb), dependability levels LE, Lm and LM and the expected reward rate at

steady state, E[W]. When necessary, other measures such as Mean Down Time, MDT (due to SNS

state class), or Mean Time To Failure2 (MTTF) will be evaluated.

4.2 Specific Measures Related to the Distributed Shared Memory

The aim is to evaluate the performance degradation due the loss of memory banks of the

distributed shared memory. We define specific measures associated with the sixteen specific failure

modes Memi (i = {1, 2,...,16}), corresponding to the state classes where i memory banks are lost

(cf. Section 3.1.4).

Let qi denotes the performance index associated with the specific failure mode Memi representing,

for instance, the decrease of memory performance in that mode due to the loss of i memory banks.

The expected reward rate E[Wm] at steady state is given by:

E[Wm] = ∑i=0,16 qi Prob{Memi} (2)

where q0 is the performance index in Mem0 in which all memory banks are OK.

2 Failure refers here to the No Service state class, NS.

 20

5. Dependability Modeling

The dependability model heavily depends on the evaluated measures. However, a model can be

built in such a way that several measures can be evaluated from it. In our case, for each system we

have built the same model of the selected measures. Moreover, for each system, we built the same

architectural model for X and Y even though, the model of Y could be less detailed than the model

of X, as the set of considered failure modes is reduced. Using the same model for X and Y reduces

the modeling effort.

The models of the reference and extended systems are detailed in [24]. The extended system

architectural model differs by an additional node sub-model and the associated switching procedure

taking into account the switching coverage factor.

In the architectural model, a sub-model is associated to each component, including controllers,

power supply units, buses, diagnostic equipment, etc. When identical components in the same node

have the same behavior with respect to the evaluated measures, they are modeled by one sub-model.

We thus exploit the symmetry of the components to reduce the state space, from the beginning. This

is for example the case of the four processors and the four memory banks within a node.

Due to the large number of components in each node, the reference architecture model is very

complex despite the relatively small number of nodes. It is indeed composed of 40 sub-models for

Xr and Yr (among which 19 are different). To give an idea about model complexity, the GSPN of

the reference system has 183 places, 376 transitions and 82 tokens (in the initial marking) for Xr

(182 places and 351 transitions for Yr). The GSPN for the extended system has 216 places, 695

transitions and 97 tokens for Xe (214 places and 683 transitions for Ye). It has been processed using

the SURF-2 tool [5].

We illustrate the approach on the GSPN of the four processors of a node in Figure 5 that shows

only the main states and transitions.

 21

5.1 Model Description

The upper part gives a simplified view of the service-level and maintenance models of Xr. Places

in the left side represent the four service levels and places in the right side represent the

maintenance states:

· Pmain: call for delayed maintenance;

· PReb: reboot state;

· PM: the repairman availability.

The lower part of the figure gives the architectural model with the failure mode layer, for Xr and

Yr.

For the sake of clarity, not all transitions are shown. In particular, in the architectural model, the

enabling conditions C1 to C6 associated with the timed transitions are indicated at the bottom of the

figure. Note that these conditions depend on the marking of pace PNS in the service-level model and

places PM and PReb in the maintenance policy model. Indeed, these places are the only places that are

used to enable firing of transitions in the component model directly, without going through the

failure mode layer (as stated in Section 2.1.1). More generally, they are the only such places for all

the other sub-models of the component model.

 22

tmDMD1

Tphl
C1

Tph
C2 TpsC3

Pps

P

C4

ph

pst

Pp

phrT
C5

Tphf
C6

mainP

P
Reb TReb

TMdel
P
M

tMend

Maintenance policy model

Processor model

Service level model

P
NS

tMDmD1

P
MD PmD ES

P

layer

Failure
mode

D1oP

PD1w

PD1r PD0o

D0wP

PD0r

Pfail_x Punav_x

Architectural model

timed transition immediate transition

Transition Rate Definition

Tps M(Pp) λps software failure of a processor.

Tphl λph hardware failure of the last processor.

tps - one processor becomes available after
software failure and reboot.

Tphr µph
processor repair after a hardware failure
without node isolation.

Tphf µph
repair of one processor, reinsertion of
the node.

TMdel σMdel delayed maintenance.

TReb σReb reboot.

tMend - end of maintenance actions
(no more failures).

tmDMD1 - change of service level after the last
processor failure.

tMDmD1 - change of service level after one
processor recovery.

C1: M(Pph) = 3 & M(PNS) = M(Punav_x) = 0
C2: M(Pph) < 3 & M(PNS) = M(Punav_x) = 0
C3: M(PNS) = M(Punav_x) = 0

C4: M(PReb) =1
C5: M(PM) =1
C6: M(PM) =1

Fig. 5. GSPN of the four processors of a node

The failure mode layer gathers all the architecture failure information. Figure 5 shows only

information used or updated by the processor model. Each failure mode M (M ∈ {B, DD, DO, D1,

D2, D3, C}) has 3 places:

 23

· PMo: occurrence of a failure bringing the system into failure mode M. This failure has to be taken

into account in the service-level model;

· PMw: waiting for repair;

· PMr: end of repair. The service level has to be updated accordingly.

Also, the interface contains places summarizing the state of each node x:

· Pfail_x : number of failures in x;

· Punav_x : when marked, node x is unavailable.

5.2 Interactions Between the Models

We show how the architectural model communicates with service-level and maintenance policy

models. In the architectural model, the marking of Pp gives the number of operational processors of

node x (its initial marking is 4).

A hardware failure of a processor (transition Tph) leads to a minor service degradation level.

However, the failure of the last processor (transition Tphl) leads to a major service degradation level

(because the node becomes unavailable). Pps represents the number of processors with a software

failure waiting for reboot and Pph those with a hardware failure waiting for repair.

Let us assume that the last available processor in node x fails. The firing of Tphl removes a token

from Pp and puts a token in the following places: 1) Pph (there is an additional processor failure in

node x), 2) Pfail_x (there is an additional failure in node x), 3) Punav_x (node x becomes unavailable) and

4) PD1o (D1 failure mode). The failure is thus recorded in the failure mode layer to update the

service-level model. Assuming that the system was in mD, the token from PD1o enables tmDMD1. The

firing of tmDMD1 changes the current service level from mD to MD and puts a token in PD1w meaning

that the failure has been recorded and is waiting for repair. Furthermore, it puts a token in Pmain for

an additional call for maintenance. The presence of a token in Pmain enables TMdel, corresponding to

the delayed maintenance call. The firing of TMdel means that a repairman has arrived and the repair is

performed. After the repair of a processor of node x, the token is moved from PD1w to PD1r and the

service level returns to mD consuming a token from PD1r.

 24

It is worth mentioning that software failures, transition Tps, require only a system reboot and do

not involve system maintenance.

6. Results

Based on the models of the reference architecture and the extended architecture, as well as on the

nominal parameter values, the dependability measures presented in Section 4 have been evaluated

and several sensitivity analyses have been carried out. The nominal values of the model parameters

(failure rates, repair time, maintenance delay and arrival times and coverage factors) have been

either provided by the system manufacturer or assigned according to our experience. Sensitivity

analyses have been performed to evaluate their relative influence on dependability and

performability measures. For all tables, the bold lines represent the results for nominal parameter

values.

The aim of this section is to show the kind of results that could be exploited by the system

manufacturer as well as the system end-users. To this end, we have selected a subset of results to

show the impact of some parameters. We first give some results related to user X then to user Y

(systems Xr, Xe, Yr and Ye), before comparing results for X and Y. Then we show an example of

specific measure results. Finally, we present measures related to the clustered system.

6.1 User X

Repair Time. The immediate maintenance time is equal to the sum of the maintenance arrival time

and the repair time (cf. Section 3.1.6). The nominal value of each time is 2 hours and it is assumed

that all components have the same repair time. To evaluate the impact of maintenance time on

dependability, we carry out a sensitivity analysis with respect to repair time.

Table 6 shows that Lm, the cumulative time per year spent in SmD, is not sensitive to the repair

time; while LM, the cumulative time per year spent in SMD, and the unavailability are affected. To a

large extent, the unavailability of the system is due to the reboot time, as shown by the last column

 25

of Table 6. The difference between the last two columns gives the unavailability due to SNS. For

instance, the reduction by one hour of the repair time reduces the cumulative time per year spent in

SNS by 20 min per year (from 34 min to 14 min).

Another way to obtain the cumulative time per year spent in SNS consists in using the MTTF and

MDT. Using the nominal values of the parameters, the MTTF is 42033 hours (4.8 years) and the

MDT due to SNS is 2h43, for a repair time if 2 hours. The cumulative time per year spent in SNS is

thus equal to 2h43 / 4.8 years = 34 min per year (which is equal to the UANS given in Table 6 for a

repair time of 2 hours).

Table 6. Xr Dependability measures wrt repair time

Repair time LE (Prob) Lm LM UANS UAReb UA
5h 0.98866 47h39 48h46 2h08 0h46 2h54
2h 0.98913 47h41 46h13 0h34 0h45 1h19
1h 0.98926 47h42 45h23 0h14 0h44 0h58

Reboot Time. The nominal reboot time is 20 min. Table 6 suggests that, on average, there are two

system reboots per year. Table 7 confirms this result for different values of the reboot time. As

mentioned in Section 3.1.2, it is assumed that all system reconfigurations force a reboot. In

addition, the reinsertion of the off-line repaired component(s) necessitates a system reboot. The

results of Tables 6 and 7 argue in favor of performing a reconfiguration without a reboot or with

fast reboot (taking less time), whenever possible. Also, Table 7 shows that the 34 min of the

unavailability due to SNS are independent from the reboot time.

Table 7. Xr Dependability measures wrt reboot time

Reboot time LE (pPob) Lm LM UANS UAReb UA
10 min 0.98916 47h41 46h18 0h34 0h23 0h57
20 min 0.98913 47h41 46h13 0h34 0h45 1h19
30 min 0.98910 47h41 46h09 0h34 1h07 1h41

Maintenance Delay. Immediate maintenance is performed only when the system is in SNS. When

the system is in a degraded service state, maintenance is delayed. The nominal maintenance delay is

one week for both minor and major service degradation states. Table 8 shows that if the

 26

maintenance delay is two weeks for SmD then Lm, the time spent in SmD, is almost multiplied by two.

On the other hand, when the delay is reduced to two days for SMD, LM, the time spent in SMD, is

significantly reduced. In both cases, unavailability is not affected.

Table 8. Xr Dependability wrt maintenance delay in SmD, SMD

Delay in SmD / SMD LE (Prob) Lm LM UA
2 weeks / 1 week 0.98378 94h33 46h15 1h19
1 week / 1 week 0.98913 47h41 46h13 1h19
1 week / 2 days 0.99274 47h51 14h25 1h19
2 days / 2 days 0.99663 13h45 14h24 1h19

Another possibility could be to perform the delayed maintenance in a more regular manner: i. e.,

to make periodic preventive maintenance without any error reported. However, periodic

maintenance could be more expensive than on-request maintenance if the time between two

maintenance interventions (i. e., its period) is too short (to improve system availability). A tradeoff

has to be made: the periodicity can be optimized through the evaluation of the number of visits to

the delayed maintenance states. The models we have developed can be modified to model periodic

maintenance: this modification affects only the maintenance part of the model and its interactions

with the failure mode layer and service-level model.

Processor Hardware Failure Rate (λph). The nominal hardware failure rate of a processor is

10-6/h. Table 9 shows the sensitivity of system dependability to this parameter. If this rate is one

order of magnitude lower, the unavailability is reduced by 8 min per year, whereas if the failure rate

is one order of magnitude higher, it is increased by 1h10 per year. The most influenced level

corresponds to the minor service degradation level. This is due to the presence of 16 processors in

the system and the failure of up to 3 processors in the same node leads to minor service degradation.

Table 9. Xr Dependability wrt λph

λph LE (Prob) Lm LM UA
10-7 0.99145 28h02 45h40 1h12
10-6 0.98913 47h41 46h13 1h19
10-5 0.96602 245h20 49h52 2h29

 27

Remote Cache Controller (RCC) Failure Rate. The nominal failure rate of an RCC is 10-7/h.

Table 10 shows that system dependability is affected by the value of this failure rate. Indeed, a

failure rate of 10-5/h increases the system unavailability by 15 min per year and doubles the

cumulative time per year spent in LM (corresponding to the major service degradation level, SMD).

The most influenced level is LM; this is due to the presence of 4 RCCs and the failure of each of

them leads to SMD.

Table 10. Xr Dependability wrt λRCC

λRCC LE (Prob) Lm LM UA
10-7 0.98913 47h41 46h13 1h19
10-6 0.98855 47h42 51h13 1h21
10-5 0.98282 47h47 101h10 1h34

It is worth noting that with the failure rate of 10-6/h, we obtain almost the same dependability

results as for the nominal value. Hence, choosing a less dependable (and probably less costly) RCC

will not much impair the systems dependability. Hence, a tradeoff should be made between the

component cost and system dependability improvement.

Spare Node. Table 11 gives the dependability measure for the extended architecture, system Xe.

These results are to be compared with those of Table 6. It can be seen that the system unavailability

is unaffected, but LM, the time spent in SMD, is reduced by almost 46h per year. The “Spare use”

column indicates the time during which the spare is used. For the nominal values, this time is 46h25

per year: it is distributed among SmD and SES. Note that LM, the major service degradation level,

corresponds here to the loss of 2 nodes before maintenance achievement. A cumulative time per

year spent in SMD of 14 min per year shows that the double failure is unlikely.

Table 11. Xe Dependability measures

Repair time LE (Prob) Lm LM UANS UAReb UA Spare use
2h 0.99426 48h46 0h14 0h34 0h45 1h19 46h25
1h 0.99433 48h28 0h14 0h14 0h44 0h58 45h35

Expected Reward Rate. Let us assume that the performance index of a given state class represents

 28

the percentage of system processing capacity in this class. For instance, an index of 0.6 means that

the processing capacity is 60%. We have thus rES = 1 and rUA = 0. In this context, Table 12 gives the

expected reward rate at steady state with various values of the performance indexes rmD and rMD.

Obviously, Xe has higher expected reward rate than Xr. Note that Xe is less sensitive to the

performance index associated to SMD because of the reduced cumulative time per year spent in SMD.

The last line gives system availability.

Table 12. Expected reward rate at steady state, E[W]

Performance indexes E[W] for Xr E[W] for Xe
rmD = 0.8 ; rMD = 0.6 0.996650 0.998726
rmD = 0.8 ; rMD = 0.7 0.997178 0.998728
rmD = 0.9 ; rMD = 0.7 0.997722 0.999285
rmD = 0.9 ; rMD = 0.8 0.998250 0.999288
rmD = 1 ; rMD = 1 (A) 0.999849 0.999850

6.2 User Y

For Y, the service is either entire or nil. The availability results according to the repair time are

summarized in Table 13. Reducing the repair time improves the availability of the system. This is

not surprising since most of the failures lead to immediate maintenance. Note that, as opposed to

what was observed for Xr, system unavailability is mainly due to SNS (difference between the last

two columns): 3h25 compared to the 24 min of unavailability due to system reboot.

Considering the nominal values, the MTTF is 7175h and the MDT due to SNS is 3h09. This means

that immediate maintenance is called on average a little bit more than once a year and that the

reboot time of 24 min corresponds to a system reboot after maintenance: the system does not

exercise reboots in SES as all failures are tolerated without system reconfiguration. Recall that for

Xr, the immediate maintenance is called on average once every 4.8 years, but the system is

rebooted on average twice a year.

The maintenance delay rate does not influence the availability of the system: the maintenance is

delayed only for benign failures that do not affect service delivery. Sensitivity analyses with respect

to hardware processor and to the RCC failures are similar to those obtained for Xr.

 29

Table 13. Yr Availability wrt the repair time

Repair time A (Prob) UANS UAReb UA
2h 0.99957 3h25 0h24 3h49
1h 0.99970 2h13 0h24 2h37

Spare Node. The presence of a spare node has a direct impact on system availability since the first

node failure can be tolerated. Table 14 shows that unavailability is divided by 3 for Ye compared to

Yr (Table 13). Moreover, it can be seen that the unavailability is of the same order of magnitude as

for Xr (these values are 1h19 and 58 min from Table 6 for repair time respectively of 2h and 1h).

Considering the nominal values of the parameters, the time during which the spare is used is 93h08.

This time is almost equal to the sum of Lm and LM of Table 6, line 2, that is 93h53. The difference

(45 min) corresponds to the time spent in states without an external disk (failure mode DD defined

in Table 2).

Table 14. Ye Dependability

Repair time A (Prob) UANS UAReb UA Spare use
2h 0.99986 0h34 0h41 1h15 93h08
1h 0.99990 0h15 0h40 0h55 92h17

6.3 Tradeoff Availability - Performance

Columns 3 and 4 of Table 15 report the expected reward rate and availability of the four systems for

the nominal values of the parameters (for Y, the expected reward rate is equal to the availability).

They show that the reference architecture provides better availability for user X and better

performance for Y: there is thus a tradeoff between system performance and availability. On the

other hand, the extended architecture provides better availability and better performance for Y.

However, in this case, the difference between X and Y availability is not significant. This result is

sensitive to the coverage factor c (the probability of successful switching from the failing node to

the spare one), as shown in columns 5 and 6 that give the same measures for a lower coverage

factor (respectively 0.95 and 0.85).

 30

Table 15. Reference and extended architectures

Measure User 4 nodes 5 nodes
(c = 1)

5 nodes
(c = 0.95)

5 nodes
(c = 0.85) X 0.99825 0.99929 0.99924 0.99913 Expected

reward rate Y 0.99957 0.99986 0.99984 0.99981
X 0.99985 0.99985 0.99985 0.99985 Availability
Y 0.99957 0.99986 0.99984 0.99981

6.4 Specific Measures

Table 16 gives the expected reward rate at steady state for various performance index values qi

associated with the sixteen specific failure modes Memi selected hypothetically3, as no experimental

values were available when we made the study. It is worth noting that for no memory bank failure

states Mem0, q0 always equals to 1.

In the three chosen cases, we assumed that the memory service is considered as unavailable when

the unavailable memory banks reach 50% of the overall distributed shared memory (i.e., more than

7 unavailable memory banks). The first case is a pure dependability measure giving the system

availability (i.e., the system is available as long as more than 7 memory banks are available). The

last case is the worst one: the loss of memory banks increases the memory mean access time, thus

reducing system performance.

Table 16. Expected reward rate at steady state, E[Wm]

Case Performance indexes E[Wm]

1 qi = 1 i= {1,…,7} qk = 0 k > 7 0.99985
2 qi = 0.9 i= {1-3} qj = 0.8 j= {4-7} qk = 0 k > 7 0.99788
3 qi = 0.5 i= {1-3} qj = 0.1 j= {4-7} qk = 0 k > 7 0.99082

3 qi represents memory performance decrease. For instance, if the memory mean access time without any memory loss is t0, it
becomes ti (> t0) for Memi. Then, qi = t0/ti is the performance index corresponding to the resulting memory mean access time
increase.

 31

Table 16 shows that the expected reward rate at steady state is slightly influenced by the

performance index values: the decrease is 0.9% between the best case (case 1) and the worst case

(case 3). This decrease is not important for a degradable highly available system (with A = 99.98%

and UA less than 2 hours per year). It may be important for systems with higher unavailability.

6.5 Clustered Systems

As mentioned in Section 3.2, we have considered a clustered system based on the studied

reference architecture. Since the clustered systems are composed of four reference architectures, it

is possible, under some independence assumptions, to compute the clustered systems performability

by combining measures of the reference architecture. We have assumed complete independency

between the clusters and evaluated the performability of the clustered system with four clusters.

Nevertheless, more complex assumptions can be used4.

We have considered a set of measures corresponding to the probability in the various failure

modes (or groups of failure modes) of Table 3. Table 17 summarizes these measures.

Table 17. Measures for the clustered system

Measure Definition

LEc entire service possibly with loss of redundancy

Lmc minor degradation where some components are failed
but all the clusters still available

LMc major degradation with loss of 1, 2 or 3 clusters
UAc no service (maintenance or system reboot)

For the defined measures, Table 18 shows the impact of PCR, the probability that the common

resources (mainly the interconnection ring) are unavailable and PRC, the probability that the ring

controller is down.

4 Indeed, we can use the same modeling approach for the whole clustered system as well. However, as the clustered system is
composed of four identical systems that are loosely coupled, its performability measures can easily be obtained by combining the
performability measures of its components. This is a way of model and result re-use.

 32

Table 18. Dependability of the clustered system

PCR PRC LES LmD LMD LNS
10-6 10-6 0.98913 93h54 1h20 31s
10-6 10-5 0.98912 93h54 1h24 31s
10-5 10-6 0.98912 93h54 1h20 5min15s
10-5 10-5 0.98911 93h54 1h24 5min15s

We notice that the unavailability is very low. This is due to the low probability of the

corresponding events: it is scarce to have a common resource failure or the simultaneous

unavailability of the four clusters. Also, let us note the huge reduction of system unavailability

compared to the reference and extended systems. For the two latter, the lowest unavailability

(obtained for the reference system with a repair time of 1 hour) is 58 min / year to be compared to

about 5 min / year for the clustered system. Indeed, the clustered system is typically to be used for

system requiring high-availability, such as in air traffic control systems or even in web applications

for which high availability is important.

It is worth noting the importance of the cumulative time per year spent in Lmc, almost 4 days,

compared to LMc, about 1 hour. In the first case, all the clusters are available with possible

degraded performance due to the failure of some components. Whereas in the second case, there is

at least one cluster lost, which is unlikely (probability of 1.5 × 10-4 corresponding to 1h19 min of

downtime per year, as from Table 7).

Finally, note that PRC mainly influences LMc while PCR mainly influences UAc. This is obvious as

the ring controller (RC) has a local impact while the common resources (CR) such as the

interconnection ring have a global impact. The results allow quantification of this impact.

6.6 Summary of Results

The main results presented in this section can be summarized as follows:

 33

User X

· System unavailability is mainly due to the reboot time;

· The No Service states are reached, on average, once each 4.8 years but the system is rebooted

twice a year;

· The maintenance delay affects only the cumulative time per year spent in states with minor and

major service degradation; while the repair time affects system unavailability;

· The addition of a spare (i.e., the extended system) does not affect system unavailability but

reduces the cumulative time per year spent in states with major service degradation.

User Y

· System unavailability is mainly due to the maintenance time.

· The No Service states are reached, on average, once a year and the system is rebooted once a year

(following system maintenance).

· The addition of a spare considerably reduces system unavailability.

Clustered system

The availability of clustered systems is very high even compared to the availability of the

extended architecture. Indeed, the clustered system is to be used for applications requiring very

high-availability.

7. Conclusions

This paper was devoted to the brief presentation of a performability modeling approach and its

application to a particular family of multipurpose, multiprocessor systems (MMS). The modeling

approach is modular. Its originality is in the separation between the architectural and the

environmental concerns. This separation is very important; in particular it allows us to consider a

system manufacturer perspective, in which the end-user needs are explicitly accounted for. Also, it

 34

allows evaluation of comprehensive measures defined with respect to service levels and specific

measures defined with respect to the architecture specific features.

The considered MMS family is under investigation by a system manufacturer. The results

obtained for this MMS can be classified into two categories: those supporting the manufacturer

choices and those that will support the potential end-users choices. Of course, these results are not

independent and have to be used together. Proper design choices by the manufacturer will —

hopefully — be of great benefit for the users.

From the manufacturer perspective, the results are mainly related to:

· the selection of components according to the impact of their failure rates on dependability

measures (and their cost most probably);

· the decision concerning the reboot policy;

· the provision of a spare node (a tradeoff should be made between the dependability improvement

and the additional difficulty for developing the underlying mechanisms for the insertion of the

spare into the system);

· the availability of quantified information that can be used as commercial arguments for future

system purchasers;

· the study of impact of the distributed shared memory and more generally of the particular system

features;

· the forecasting of clustered architectures given the individual cluster measures.

From the end-user perspective, the results concern:

· the selection of the maintenance policy (delayed or immediate maintenance);

· the choice between the reference architecture and the extended one, and more generally between

all available solutions.

Another important point of interest concerns the exploitation by the end-user of the various

degradation possibilities offered by the architecture. According to the service expected by the

application, the user has to make choices concerning the service degradation levels he/she can

 35

accept and the tradeoff between performance and availability. This choice may affect the

architecture of the applicative software.

References

[1] M. Ajmone Marsan, G. Balbo, and G. Conte, “A Class of Generalized Stochastic Petri Nets for the Performance

Analysis of Multiprocessor Systems”, ACM Transactions on Computer Systems, Vol. 2 (2), pp. 93-122, 1984.

[2] J. Arlat and J.-C. Laprie, “Performance-Related Dependability Evaluation of Supercomputer Systems”, Proc. 13th

Int. Symp. on Fault-Tolerant Computing (FTCS-13), Milano, Italy, 1983, pp. 276-283.

[3] M. Balakrishnan and K. S. Trivedi, “Componentwise Decomposition for an Efficient Reliability Computation of

Systems with Repairable Components”, Proc. 25th Int. Symp. on Fault-Tolerant Computing (FTCS-25), Pasadena,

CA, USA, 1995, pp. 259-268.

[4] G. Balbo, S. C. Bruell, and S. Ghanta, “Combining Queuing Networks and GSPNs for the Solution of Complex

Models of System Behaviour”, IEEE Transactions on Computers, Vol. 37 (10), pp. 1251-1268, 1988.

[5] C. Béounes, M. Aguéra, J. Arlat, S. Bachman, C. Bourdeau, J. E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J.

Moreira de Souza, D. Powell, and P. Spiesser, “SURF-2: A Program for Dependability Evaluation of Complex

Hardware and Software systems”, Proc. 23rd Int. Symp. on Fault-Tolerant Computing, Toulouse, France, 1993,

pp. 668-673.

[6] C. Betous-Almeida and K. Kanoun, “Dependability Evaluation From Functional to Structural Modelling”, Proc.

20th Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP'2001), Budapest, Hungary, 2001, pp.

227-237.

[7] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli, and F. Sandrini, “DEEM: a Tool for the

Dependability Modeling and Evaluation of Multiple Phased Systems”, Proc. Int. Conf. on Dependable Systems

and Networks (DSN'2000), New York, USA, 2000, pp. 231-236.

[8] A. Bondavalli, I. Mura, and M. Nelli, “Analytical Modeling and Evaluation of Phased Mission Systems in space

Applications”, Proc. 2nd IEEE High Assurance System Engineering Workshop (HASE), Bethesda, MD, USA,

1997, pp. 85-91.

 36

[9] A. Bondavalli, I. Mura, and K. S. Trivedi, “Dependability Modeling and Sensitivity Analysis of Scheduled

Maintenance Systems”, Proc. 3rd European Dependable Computing Conference (EDCC-3), Prague, Czech

Republic, 1999, pp. 7-23.

[10] J. Campos, S. Donatelli, and M. Silva, “Structured Solution of Asynchronously Communicating Stochastic

Modules”, IEEE Transactions on Software Engineering, Vol. 25 (2), pp. 147-165, 1999.

[11] G. Ciardo and A. S. Miner, “A data structure for the efficient Kronecker solution of GSPNs”, Proc. 8th Int.

Workshop on Petri Nets and Performance Models (PNPM'99), Zaragoza, Spain, 1999, pp. 22-29.

[12] G. Ciardo, J. Muppala, and K. S. Trivedi, “SPNP: Stochastic Petri Net Package”, Proc. 3rd Int. Workshop on Petri

Nets and Performance Models (PNPM'89), Kyoto, Japan, 1989, pp. 142-151.

[13] G. Ciardo and K. Trivedi, “A Decomposition Approach for Stochastic Reward Net Models”, Performance

Evaluation, Vol. 18 (1), pp. 37-59, 1993.

[14] S. Donatelli, “Superposed Generalized Stochastic Petri net: definition and efficient solution”, Proc. 15th Int. Conf.

on Applications and Theory of Petri Nets, 1994, pp. 258-277.

[15] N. Fota, M. Kaâniche, and K. Kanoun, “Dependability Evaluation of an Air Traffic Control Computing System”,

Performance Evaluation, Vol. 35 (3-4), pp. 253-273, 1999.

[16] N. Fota, M. Kâaniche, and K. Kanoun, “Incremental Approach for Building Stochastic Petri Nets for

Dependability Modeling”, in Statistical and Probabilistic Models in Reliability, D. C. Ionescu and N. Limnios,

Eds., Birkhäuser, 1999, pp. 321-335.

[17] K. Kanoun and M. Borrel, “Dependability of Fault-Tolerant Systems - Explicit Modeling of the Interactions

between Hardware and Software Components”, Proc. Int. Computer Performance & Dependability Symposium

(IPDS'96), Urbana-Champaign, IL, USA, 1996, pp. 252-261.

[18] K. Kanoun, M. Borrel, T. Moreteveille, and A. Peytavin, “Availability of CAUTRA, a Subset of the French Air

Traffic Control System”, IEEE Transactions on Computers, Vol. 48 (5), pp. 528-535, 1999.

[19] R. Marie and A. Jean-Marie, “Quantitative Evaluation of Discrete Event Systems: Models, Performances and

Techniques”, Proc. 5th Int. Workshop on Petri Nets and Performance Models (PNPM'93), Toulouse, France,

1993, pp. 2-11.

[20] J. F. Meyer, “Performability: A Retrospective and Some Pointers to the Future”, Performance Evaluation, Vol. 14

(3-4), pp. 139-156, 1992.

 37

[21] J. F. Meyer and W. H. Sanders, “Specification and Construction of Performability Models”, Proc. Int. Workshop

on Performability Modeling of Computer and Communication Systems, Mont Saint Michel, France, 1993, pp. 1-

32.

[22] J. K. Muppala, A. Sathaye, R. C. Howe, and K. S. Trivedi, “Dependability Modeling of a Heterogeneous VAX-

cluster System Using Stochastic Reward Nets”, in Hardware and Software Fault Tolerance in Parallel Computing

Systems, D. R. Avresky, Ed., Ellis Horwood Ltd., 1992, pp. 33-59.

[23] I. Mura and A. Bondavalli, “Markov Regenerative Stochastic Petri Nets to Model and Evaluate Phased Mission

Systems Dependability”, IEEE Transactions on Computers, Vol. 50(12), pp. 1337-1351, 2001.

[24] M. Rabah, “Dependability Evaluation of Multipurpose Multiprocessor Systems”, National Polytechnique Institute,

Toulouse, France, PhD Thesis (in French), LAAS report 00453, November 2000.

[25] M. Rabah, “Performability of a Distributed Shared Memory Multiprocessor Systems”, Proc. Int. Conf. on

Dependable Systems and Networks (DSN'2000), New York, NY, USA, 2000, pp. A37-A39.

[26] M. Rabah and K. Kanoun, “Dependability Evaluation of a Distributed Shared Memory Multiprocessor System”,

Proc. 3rd European Dependable Computing Conference (EDCC-3), Prague, Czech Republic, 1999, pp. 42-59.

[27] I. Rojas, “Compositional Construction of SWN Models”, The Computer Journal, Vol 38(7), pp. 612-621, 1995.

[28] R. A. Sahner and K. S. Trivedi, “Reliability Modeling Using SHARPE”, IEEE Transactions on Reliability, Vol.

R-36 (2), pp. 186-193, 1987.

[29] W. H. Sanders, W. D. Obal II, M. A. Qureshi, and F. K. Widjanarko, “The UltraSAN Modeling Environment”,

Performance Evaluation, Vol. 24 (1-2), pp. 89-115, 1995.

[30] V. Santonja, M. Alonso, J. Molero, J. J. Serrano, P. Gil, and R. Ors, “Dependability Models of RAID Using

Stochastic Activity Networks”, Proc. 2nd European Dependable Computing Conference (EDCC-2), Taormina,

Italy, 1996, pp. 141-158.

[31] L. A. Tomek, V. Mainkar, R. M. Geist, and K. S. Trivedi, “Reliability Modeling of Life-Critical, Real-Time

Systems”, Proceedings of the IEEE, Special Issue on Real-Time Systems, Vol. 82 (1), pp. 108-121, 1994.

[32] K. S. Trivedi, B. R. Haverkort, A. Rindos, and V. Mainkar, “Techniques and Tools for Reliability and

Performance Evaluation: Problems and Perspectives”, Proc. 7th Int. Conf. on Modelling Techniques and Tools for

Computer Performance Evaluation, Vienna, Austria, 1994, pp. 1-24.

 38

Acknowledgement:

We are grateful to Mohamed Kaâniche and Jean Arlat from LAAS for their relevant comments

when reading earlier versions of this paper. Also, we would like to thank the anonymous referees

whose comments helped us to make the latest fine-tuning of the paper.

Mourad Rabah is currently at:

Université de La Rochelle, IUT INFO, 15, rue François de Vaux de Foletier,

17026 La Rochelle Cedex

mrabah@univ-lr.fr

 39

Mourad Rabah started his undergraduate studies in computer science at Oran University

(Algeria) and finished them in Nantes University (France) by a Bachelor of Science Degree. Then,

he obtained a Master of Science degree in computer science from Rennes University (France).

Finally, he received his Doctorate from the National Polytechnic Institute of Toulouse (France)

prepared at LAAS-CNRS on modeling and dependability evaluation of multipurpose

multiprocessor systems. Now, he is an associate professor at University of La Rochelle (France)

performing his research at L3I laboratory. His recent research activity is focused on the agreement

problems in non fault-tolerant asynchronous distributed systems.

Karama Kanoun is currently Directeur de Recherche at CNRS. Her current research interests

include modeling and evaluation of computer system dependability considering hardware as well as

software. Domains in which she has authored and co-authored more than ninety papers. She has

conducted several research contracts and she has been a consultant for several French companies,

the European Space Agency (ESA), Ansaldo and for the International Union of

Telecommunications. Besides serving on program committees of international conferences, she

served as Program Committee co-Chair of the international Symposium on Software Reliability

Engineering (ISSRE'94) and of the International Conference on Dependable Systems and Networks

(DSN), in 2000. She served as General Chair of ISSRE'95 and of the 18th International Conference

on Computer Safety, Reliability and Security (SAFECOMP’99).

She was Visiting Professor at the University of Illinois, Urbana Champaign, in 1998. She acts as a

chair of the French SEE Club 63, working group on “Design and Validation for Dependability” and

of the Special Interest Group on Dependability Benchmarking (SiGDeB) of the IFIP WG 10.4 on

Dependable Computing and Fault Tolerance.

Karama Kanoun was Guest Editor of a Special Issue on Dependability of Computing Systems of

the IEEE Transactions on Computers, January 1998. She is Associate Editor of IEEE Transactions

on Reliability.

