
HAL Id: hal-01977520
https://laas.hal.science/hal-01977520

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Availability of CAUTRA, a Subset of the French Air
Traffic Control System

Karama Kanoun, Marie Borrel, Thierry Morteveille, Alain Peytavin

To cite this version:
Karama Kanoun, Marie Borrel, Thierry Morteveille, Alain Peytavin. Availability of CAUTRA, a
Subset of the French Air Traffic Control System. IEEE Transactions on Computers, 1999, 48 (5),
pp.528 - 535. �10.1109/12.769435�. �hal-01977520�

https://laas.hal.science/hal-01977520
https://hal.archives-ouvertes.fr

IEEE Transactions on Computers, Vol.48, N°5, pp.528-535, mai 1999

Availability of CAUTRA,

a Subset of the French Air Traffic Control System

Karama Kanoun◊ Marie Borrel◊∗ Thierry Morteveille+ Alain Peytavin++

++CENA ◊LAAS-CNRS + SRTI SYSTEM

7, Avenue Edouard Belin 7, Avenue du Colonel Roche Rue Max Planck, B.P. 457
31055 Toulouse Cedex - France 31077 Toulouse Cedex 4 - France 31315 Labège Cedex - France

* The work presented in this paper has been partially performed while Marie Borrel was with SRTI SYSTEM.

Abstract

The aim of our work is to provide a quantified means helping in the definition of a new architecture for
CAUTRA, a subset of the French Air Traffic Control system. In this paper we define a set of alternative
architectures, give some elements for constructing their dependability models and compare their
availability. Modeling is carried out following a modular and systematic approach, based on the derivation
of block models at a high level of abstraction. In a second step, the blocks are replaced by their equivalent
Generalized Stochastic Petri Nets to build up the detailed model of the architecture. The evaluations
performed permit identification of a subset of architectures whose availability meets the dependability
requirements and also identification of the best architecture among this subset.

Key Words: Dependability modeling, Generalized Stochastic Petri Nets, Markov Chains, model

composition

1. Introduction

Due to the growth in air traffic and the saturation of computational facilities, the French Directorate of Air

Navigation has commissioned the design and implementation of new architectures for the Air Traffic Control

system (ATC). The work presented in this paper is part of an overall program aimed at ATC automation. It

more specifically addresses the sub-system of CAUTRA (Coordinateur AUtomatique du TRafic Aérien)

located in a Regional Center for Air Navigation. The ultimate aim is to provide a quantified means helping in

the definition of a new architecture. To do this, starting from the current architecture, we define alternative

architectures whose availability is compared. CAUTRA is a distributed fault-tolerant system whose functions

are vital to ATC. It specifically belongs to the category of real-time computer systems demanding a high

level of availability. Fault tolerance techniques (i.e., hardware redundancy and software replication) enable

the availability of this system to be at the required level. The complexity of the system behavior results from

2

several interactions between hardware components and software replicas. These interactions induce

dependencies that are usually stochastic in nature making modeling difficult: as the associated models have

to account for the components' behavior and their interactions. We follow a modular and structured modeling

approach based on Generalized Stochastic Petri Nets (GSPNs) in which interactions are explicitly

considered. Emphasis is placed on clearly defining the interactions between the hardware and software com-

ponents and on deriving GSPNs that are as generic as possible so as to be used in the largest number of

alternatives. More details can be found in [1-3])

Several papers dealt with the dependability of ATC systems. These are mainly focused on the

specification or design of fault tolerance procedures [4-7] , while papers on dependability evaluation are few

(see e. g., [8, 9] where a qualitative evaluation of an ATC system is performed). Likewise, a number of

papers dealing with performance and dependability modeling of real-life systems using Markov chains,

GSPNs or their offspring's have been published [10-17] . Most of them only consider the hardware part of a

system and, when the software is considered, the interactions between hardware and software are not

explicitly modeled. Even though dependability evaluation of combined hardware and software systems are

not yet of current practice, some relevant papers have been published [18-21] .

The paper is organized in seven sections. Section 2 describes CAUTRA. The modeling approach and

assumptions are presented in Section 3. Example of GSPNs are given in Section 4. Section 5 outlines the

benefits and drawbacks of the modeling approach. Section 6 discusses some numerical results.

2. System description

CAUTRA gathers together the computerized processing means for flight plans and the radar data of a

Regional Center for Air Navigation. Two main functions can be distinguished: Flight Plan Processing (FPP)

and Radar Data Processing (RDP). The former handles and updates the flight plans in the Regional Center. It

provides air traffic controllers with the data regarding the planes crossing their airspace and handles any in-

formation that may be supplied to other air traffic controllers. Based on the radar data, the RDP builds up a

synthetic picture representing the air traffic situation. Through the RDP-FPP dialogue, flight plan correlation

allows the RDP to enhance the picture by supplying more data derived from the flight plans to those planes

detected by the radar. We first present the current architecture of CAUTRA (which was in use at the

beginning of the study); then the alternatives are defined taking the latter as reference.

The current architecture comprises two redundant Data General computers, DG1 and DG2. The

software of each application is replicated leading to four replicas: RDP principal (RDPpal), RDP standby or

secondary (RDPsec), FPP principal (FPPpal) and FPP standby (FPPsec). Replicas are distributed as follows:

3

RDPpal and FPPsec run on the same computer while RDPsec and FPPpal run on the other. FPPpal carries

out a preliminary processing which is transmitted to FPPsec; also FPPpal dialogs both ways with RDP

replicas for the flight plan correlation.

Error processing in each replica (provided by exception handling mechanisms) allows recovery of

temporary software faults. The permanent faults in pal replica are tolerated by switching from the replica pal

to sec. Reconfiguration is carried out as follows: after switching the roles of the replicas and restart of the sec

replica, the replicas switch back to resume their initial roles as shown in Figure 1. Also, the switch of RDPpal

is required after the communication medium failure without FPPpal failure.

O2

FPP
sec

FPP
pal

RDP
sec

RDP
pal

FPP
sec

FPP
pal

RDP
sec

RDP
pal

FPP
pal

FPP
sec

RDP
sec

RDP
pal

FPP
pal

FPP
sec

RDP
sec

RDP
pal

Failure
of

FPPpal

Switch
for

recovery

Restart
of

FPPsec

Switch back for reconfiguration (for R1 only)O1

Figure 1: Reconfiguration after software failure

Starting from this architecture, several alternatives are proposed with the same composition but differing

in terms of organization (distribution of the software replicas onto the hardware computers), the software

reconfiguration and the hardware fault tolerance procedures.

Based on the current organization, denoted O1, we define organization O2 in which RDPpal and FPPpal

are hosted by the same computer. Both O1 and O2 are indicated on figure 1; the main difference lies in the

communication means between RDPpal and FPPpal: for O2 this communication is internal whereas for O1 it

is achieved through an external communication medium.

The existing software reconfiguration procedure, denoted R1, requires switching back for

reconfiguration. A second reconfiguration procedure is defined, denoted R2, in which the replicas retain their

new roles after replica sec restart (the switch back from O2 to O1 in figure 1 is not performed). Note that

when R2 is considered, whatever the initial organization, the system alternates between O1 and O2 after

recovery of software permanent failures.

The current hardware fault tolerance strategy, referred to as strategy S0, is based on two redundant

computers. The presence of a third computer in the center allocated to background tasks can be taken

advantage of and used as a spare. Two additional hardware fault tolerance procedures (S1 and S2)

corresponding to using the spare respectively after the first computer failure or after failure of both of them

are considered. Table 1 summarizes the considered procedures. Combining the 2 organizations with the 2

4

reconfigurations and the 3 hardware fault tolerance procedures leads to 12 alternatives whose availability will

be evaluated.

Table 1: Definition of the considered procedures
Organization

O
1

FPPpal and RDPsec onto a computer, FPPsec and RDPpal onto the other

O
2

FPPpal and RDPpal onto a computer, FPPsec and RDPsec onto the other

Software reconfiguration
R1

after switching the replica roles and restart of sec, the replicas switch back for reconfiguration

R2 after switching the replica roles and restart of sec, the replicas retain their new roles

Hardware fault tolerance
S0 current hardware fault tolerance procedure (0 spare)
S1 switching of the spare to the main applications is performed after 1 failure (DG1 or DG2 failure)
S2 switching of the spare to the main applications is performed after 2 failures (DG1 and DG2 failures)

3. Modeling approach and assumptions

It is assumed that software and hardware components are in stable reliability, i.e., the failure rates are

constant. With respect to the rates associated with hardware maintenance, software restart and fault tolerance

procedures, the duration of these procedures is short relative to the times to failures, and previous studies

have shown constant rates to be a good assumption [22] . The evaluations are thus based on Markov

processes. However, model construction is based on GSPNs due to their ability to cope with modularity and

hierarchy. The measures evaluated are unavailability of RDP and unavailability of FPP.

The difficulty of modeling stems from the conjunction of two things: the numerous interactions between

the components and the number of alternative architectures to be modeled. Using an ad hoc approach would

be cumbersome. These considerations urged us to use a modular and hierarchical approach, taking advantage

of the similarities between the alternatives. This is still reinforced by the fact that the alternatives have the

same composition and many interactions between components are the same in many alternatives.

From the system composition and the interactions between components, a high level behavioral model

(referred to as block model) composed of blocks linked by arrows is derived for each alternative. A block

represents a GSPN describing either a component behavior (component net) or an interaction (dependency

net); the arrows indicate the direction of the links between the nets. The GSPNs of the blocks are derived in a

second step to form the global model; i.e., the GSPN of an architecture is thus obtained by composition of the

GSPNs of the components with those representing their interactions. The block models of all alternatives are

derived together to clearly identify the blocks that are common or similar in several alternatives, for re-use

purpose. Re-use of the blocks is one of the main advantages of our approach. Also, this approach allows for a

5

progressive construction of the global model so as to master its complexity as in [14, 17] . The first step in

constructing the models consists thus in identifying the interactions between the components.

3.1 Interactions between the components

The interactions between hardware and software components are directly related to the assumptions made

about their behavior. Owing to the importance of the impact of temporary faults on the behavior of hardware

and software components, both permanent and temporary faults are considered. It is assumed that the

activation of a fault may lead to the following dependencies:

• Following activation of a hardware fault:

- an error due to the activation of a temporary hardware fault may propagate to the hosted software

replicas,

- an error due to the activation of a permanent fault in a computer leads to stop the hosted software

replicas that are restarted after the end of repair.

• Following activation of a software fault: owing to the dialog between the replicas, an error in a replica

due to a permanent fault — usually referred to as solid fault — may propagate to the replicas with

which it dialogs [23] (it is assumed that errors due to temporary faults — usually referred to as soft

faults — are confined and do not propagate to the other replicas). It is worth noting that replicas pal and

sec do not perform exactly the same tasks at a given time. It is thus assumed that common mode failures

are induced by error propagation due to the dialog between the replicas.

• Following failures of the communication medium: the system has to switch from organization O1 to O2

if it is in O1, and the switching from O2 to O1 is not allowed as long as the communication is in failure.

Dependencies induced by fault tolerance and maintenance procedures are as follows:

• Between two software replicas: dependency due to fault tolerance of permanent software faults, i.e.,

reconfiguration from sec to pal, following RDPpal or FPPpal failure.

• Between two hardware computers: dependency due to fault tolerance and repair.

• Between all components: coordination of fault tolerance and maintenance actions to form a global reco-

very strategy when several components are in failure. For example, in case of failure of the computer

hosting pal and failure of sec, sec is restarted as pal, the new sec is restarted after computer repair.

3.2 Block models of the architectures

Consider first the current architecture. Table 2 lists the name of the nets associated with the component

blocks. Dependency blocks are directly derived from the dependencies identified above. Figure 2 shows the

block models for the RDP and FPP: all blocks of RDP are used for FPP as well, however FPP has two extra

6

blocks, (2xN'Prop) for error propagation between replicas. Models of figure 2 are obtained by composition of

the block nets introduced in table 2. Due to the exchange of information between RDP and FPP (with

possible error propagation), the dependability of RDP and FPP cannot be evaluated separately: a global

model has to be derived as shown in figure 3. The latter is obtained by composing the models of figure 2 and

making the following modifications.

• The set of blocks (NDG1, NDG2, NRep) associated with the computers is considered only once.

Table 2: Component and dependency nets

NDG1 , NDG2 model computers DG1 and DG2 behavior (identical)

NRDPi, NFPPi model RDP and FPP replicas behavior (identical)

 NC models communication medium behavior

NProp models the propagation of a hardware error to the hosted software replica

NStop models the software stop after activation of a permanent fault in the hosting hardware

N'Prop models propagation of a software error to a communicating software replica

NRecRDP, NRecFPP
N'RecRDP, N'RecFPP

model RDP and FPP software reconfiguration from sec to pal

NRep , N'Rep model hardware repair (sharing of a repair man)

NSynRDP, NSynFPP model the synchronization between hardware and software recovery actions

NReq models the switch request following the communication medium failure

NStrat models the global reconfiguration strategy according to the states of all resources

NR1 models the switch back in the case of reconfiguration R1

NDG1 NDG2
N Rep

N RecRDP

NSynRDP
NStop NProp NProp

NRDP1 RDP2

N Stop

N

N'Prop

NDG1 NDG2
N Rep

NStop NProp N StopNProp

N'Prop

N SynFPP

N'RecFPPNFPP1 FPP2N

 -a- RDP -b- FPP

Figure 2: Block models of RDP and FPP

7

N'Prop

NDG1 NDG2
N'Rep

NStop NProp N StopNProp

N'Prop

NSynFPP

N'RecFPPNFPP1 FPP2N

N'RecRDP

NSynRDP
NStop NProp NProp

NRDP1 RDP2

N Stop

N

NStratNReq Global
recovery strategy

R1N

N'Prop
N'PropN'Prop

N'Prop

NC

Figure 3: Block model of the current architecture (A.1.1.0)

• NRep, NRecRDP and NRecFPP have to be adapted to take into account the co-existence of two replicas on

the same computer; they are denoted respectively N'Rep, N'RecRDP and N'RecFPP.

• The following blocks are added: error propagation between RDP and FPP replicas (4xN'Prop), the

recovery strategy (NReq, NStrat, NR1) and the communication medium, NC.

This model has been derived after some iterations and refinements between the block models of the

various alternatives. In particular, the global recovery strategy could have been modeled by a single block. It

has been split into three blocks (NReq, NStrat, NR1) only for re-usability and clarity: NStrat and NReq are the

same for all architectures; they are distinguished only because their roles are different; NR1 is to be omitted

for R2 .

With respect to the other alternative architectures, using the notations of table 1, let A.o.r.s denote an

architecture with o = O1, O2; r = R1, R2; s = S0, S1, S2. For the sake of simplicity, this is shortened as: o = 1,

2; r = 1, 2; s = 0, 1, 2. We give hereafter the list of blocks that have to be added, removed or simply adapted for

each architecture, taking the current one, A.1.1.0, as reference (figure 3):

• A.2.1.0: adapt NR1 and NSynFPP to comply with the O2 assumption.

• A.1.2.0 and A.2.2.0: remove NR1 (which is associated with R1 only), and adapt NSynFPP for A.2.2.0 to

comply with the O2 assumption.

• Set (R2, S1 and R2, S2) = {A.1.2.1, A.2.2.1, A.1.2.2 and A.2.2.2}: remove NR1, adapt NSynFPP for A.2.2.1

and A.2.2.2 to comply with the O2 assumption, adapt N'Rep and add NSpare.

8

• Set (R1, S1 and R1, S2) = {A.1.1.1, A.2.1.1, A.1.1.2 and A.2.1.2}: adapt NR1 and NSynFPP for A.2.1.1 and

A.2.1.2 according to the O2 assumption, adapt N'Rep and add a block corresponding to the behavior of the

spare NSpare which is directly linked to the new N'Rep.

As a result, modeling the 11 other architectures requires only the addition of one component net (NSpare)

and adaptation of 6 dependency nets: those associated with the reconfiguration and fault tolerance strategy.

4. GSPN construction

To assist re-usability, we defined rules for constructing the GSPNs of the blocks. Together with the

conventional rules of GSPNs, these rules allow a) for an easy interfacing of the dependency nets — a

prerequisite for modularity, hierarchical modeling and re-usability, b) controlling the token creation and

absorption in order to generate from the beginning nets that are bounded [1-3] . The main rules are

summarized hereafter.

• A component net models the behavior of a component as resulting from the activation of its own faults

and from local error detection, fault tolerance mechanisms, and restoration actions. It is bounded and alive.

• A dependency net (DN) is linked to at least an initializing and a target net; it is defined according to

specific rules, among which:

- It is activated by an initializing net, via entry place(s) whose initial marking is 0, after firing of specific

transitions (firing transitions) in the initializing net.

- It has well defined interfaces with target net(s).

- At the initialization of the DN, an additional token is generated, it has to be absorbed when leaving the

net;

- DNs should not alter the basic structure of the component nets (i.e., a component net has always the

same places and the same transitions between these places, the only interfaces with the DNs are

constituted by additional arcs). This is because several dependency nets can be connected to the same

component net.

The component nets are given in Figure 4. The difference between these nets lies in that for hardware,

temporary and permanent faults are differentiated by their respective consequences following activation,

whereas for software, they can only be distinguished after specific processing.

9

H-ok

λhδh

H-e

h1-p ph

µ

H-t

h1-d ζ
h

H-nd

H-p

dh

H-u

h
τ

H-fd

• H-ok: proper service without

activated fault
• H-e: activation of a fault
• H-t: the error results from a

temporary fault
• H-p: the error results from a

permanent fault
• H-fd: end of error

processing
• H-u: detected or perceived

error, hardware repair
• H-nd: non detected error

 Timed transition
 Immediate transition

λs

S-ok

δ s ν

S-e

s
τ

S-fd
ds

 sd1-

sp1-

S-nd

ζ pss

S-u

S-d

πs

S-ft

s

• S-ok: proper service without
activated fault

• S-e: activation of a fault
• S-fd: end of error detection
• S-nd: non detected error
• S-d: detected error
• S-ft: end of exception

handling
• S-u: detected or perceived

error, software restart

-a- NDG1 , NDG2 -b- NRDP1, NRDP2

Figure 4: Hardware computer and software replica nets

The hardware model (for computers DG1 and DG2) is based on the following assumptions:

• Faults are activated with rate λh.

• With probability ph the fault is permanent, (probability of a temporary fault (1-ph)).

• An error due to a permanent fault is either detected with probability dh, or non detected (1-dh); error

processing rate: τh.

• The effects of an error due to a temporary fault are eliminated within a short time 1/δh.

• The effects of a non detected error resulting from a permanent fault may be perceived later (rate ζh).

• The repair rate is µ.

Equivalent assumptions are made regarding the behavior of the software replicas:

• Faults are activated with rate λs (that can be specified as λRDP and λFPP respectively for RDP and FPP).

• An error is either detected with probability ds, or non detected (1-ds); detection rate τs.

• The detected error is processed by means of exception handling mechanisms during a short time 1/πs.

At the end of error processing, 1) if the fault is temporary (probability (1-ps)) its effects are eliminated

and the software resumes its normal mode of operation, or 2) if the fault is permanent (probability ps);

the software has to be restarted (restart rate: νs, denoted νFPP, νRDP for FPP and RDP) to eliminate its

effects.

• The effects of a non detected error may be eliminated (rate δs), or perceived (perception rate ζs), in

which case the software replica has to be restarted.

Due to space limitations and to the complexity of the dependency nets [2] , only the error propagation

net is shown in Figure 5 (this is the smallest and easiest one). It is initialized via the entry place Prop after

10

firing of transition 1-dh (non detected error) or of transition 1-ph (an error due to a temporary fault) in the

hardware net. With probability 1-pph, the error is not propagated and with pph it is propagated. The effect on

the software replica net is to move the token from S-ok to S-e if it is in S-ok; processing of the induced error

is carried out in the same way as when the fault is activated without propagation (i.e., through λs in figure 4-

b).

Initializing net: hardware net Firing transitions: (1-dh) or (1-ph)
Entry place: Prop Target net: the hosted replica net
Actions: move the token from S-ok to S-e (pph and tp) or no action (transitions (1-pph) and tn are without actions)

pph

Prop
1-pph

S-e

S-ok

tp

tn
Ps

N RDPpal

NRDPsec

NDG1
NDG2

h
(1- p) or (1-d)h

Figure 5: Error propagation net, NProp

5. Benefits and drawbacks

One of the major benefits of the approach is the ease of model validation due to the rules that have been

imposed for block composition. For instance, the rules controlling token creation and absorption when

entering and leaving a dependency net allow construction of a global model that is bounded. Each

dependency net is validated with its initializing and target nets. Possible problems can thus be detected early

before building up the whole GSPN. The resulting models can be processed by any tool for dependability

evaluation based on Petri nets. In our case, we used SURF-2 [24] for model construction and validation.

Dependency nets are validated only once when they are re-used without adaptation for other alternatives.

By way of example, consider the RDP model of figure 2-a. The validation of the global model can be carried

out as follows: NProp is validated with NDG1 and NRDP1; NStop is validated with NDG1 and NRDP1; NRep is

validated with NDG1 and NDG2; NRecRDP is validated with NRDP1 and NRDP2, and NSynRDP is to be validated

with all the other GSPNs (the whole model, in which all the blocks except NSynRDP have been validated).

Model composition and validation are facilitated by re-usability (with or without adaptation). Indeed, the

explicit modeling of the interactions leads us to analyze them in detail and generally to fractionate them into

elementary operations. Most of the time, the adaptation of a GSPN in order to model similar interactions con-

sists in modifying a part of these elementary operations. Also, re-use can be supported by the creation of a

library from which the elementary nets can be automatically drawn. This reinforces further the advantages of

the modeling approach.

11

Due to the presence of several immediate transitions, the state space of the resulting reachability set is

very large. Fortunately, several techniques are available for suppressing the immediate transitions, (see e.g.,

[25-27]). Another problem arises from the existence of fast transitions, leading to stiff Markov chains and

making it more difficult to evaluate dependability. The state aggregation technique proposed in [28] and the

place aggregation technique achieved at the GSPN level in [25] allow a non-stiff Markov chain with a

smaller state space to be obtained.

6. Some results

Considering the models of CAUTRA alternatives, using the composition rules of Section 4 and
suppressing fast transitions corresponding to error detection and processing rates [τh, δh and τs, πs, δs] (as

the duration of the associated events are in the range of seconds, to be compared with the times to failures),

the number of states of the Markov chains obtained is 104 states for the architectures without a spare and 390

states for those with a spare. Several verifications have been performed to check their validity before model

processing and also by sensitivity studies for semantic verifications. Examples of such studies are given in

the remainder of the section. However, additional parameters have to be introduced as they do not appear in

the previous models:

• βh, the switching rate of DG1 or DG2 onto the spare and ch, the associated coverage factor

• βFPP, the switching rate from FPPpal to FPPsec, βRDP its equivalent and cs, the associated coverage factor

• λC the failure rate of the communication medium.

With respect to the numerical values, some of them are derived from observations on the current system

and the others are assigned nominal values from which sensitivity studies are performed. Unless otherwise

stated, the numerical values considered are those of Tables 3 and 4. Note that the nominal permanent failure

rate is 2 10-4 /h for the computers and RDP replicas, and 10-3 / h for FPP replicas. The difference in the RDP

and FPP switching times is due to the fact that in the current system, RDP switching is automatic, whereas

for FPP it is performed after the operator acknowledgment. Also, It is not possible to have an FPP restart

time less than 10 to 5 minutes owing to the data stream: it is created once, infrequently updated and difficult

to reconstitute, while the RDP data stream is more frequently created, updated at a faster rate, and easier to

reconstitute, leading to a short restart time.

Table 3: Nominal values of transition rates
λh λRDP (λs) λFPP (λs) λC 1 / µ

0.01 / h 0.01 / h 0.05 / h 10-5 /h 10 h
1 / νRDP 1 / νFPP 1 / βRDP 1 / βFPP 1 / βh
1 min 10 min 1 s 1 min 1 min

12

Table 4: Nominal values of probabilities
ph ps pph pps cs ch dh ds

0.02 0.02 0.85 0.7 0.98 0.95 1 1

In the rest of the section, we first give the unavailability figures for the defined architectures, then we

show some examples of sensitivity analyses.

6.1 Comparison of the alternative architectures

Tables 5 and 6 show the FPP and RDP unavailability (UA) of the twelve alternative architectures using

the nominal values of the parameters. These tables deserve several comments.

• The FPP unavailability is much more higher than that of RDP. This difference is due to three factors: the

software failure rate and the software switching and restart rates (if the switching fails or after the two

replicas' failure). All of them are better for RDP, as discussed above.

• For both FPP and RDP, the hardware fault tolerance procedure is the most influent factor. However it

impacts RDP more than FPP. For FPP, using a spare computer does not reduce unavailability by more

than 20%, even for S1 where the spare is used after the failure of the first computer. On the other hand, the

unavailability of RDP is divided by almost 10 from S2 to S1. Therefore, using a spare, it is more useful to

switch after the failure of DG1 or DG2 than to wait for both DG1 and DG2 to fail.

• For both RDP and FPP, with R2 the organization has no impact, whatever the hardware fault tolerance

procedure. This is due to the fact that after a long operational time, and without a strategy based on

systematically exchanging the role of replicas after system reconfiguration to retain the initial distribution

of the replicas, the time spent in O1 is equivalent to that spent in O2.

• For RDP, the software reconfiguration impacts differently the unavailability for both organizations,

whatever the hardware fault tolerance procedure. For O1, moving from R1 to R2 decreases the

unavailability, while for O2, it increases it . Thus, it may be inferred that for O1, the best reconfiguration

is R2, and for O2, R1.

• Note that the dependability requirement of less than 5 min per year for the RDP is met only for S1

whatever the organization and the software reconfiguration.

Table 5: Unavailability (UA) per year of FPP
Hard. fault tolerance A.1.1.s A.2.1.s A.1.2.s A.2.2.s

Without a spare (s =
0)

2 h 42 min 2 h 41 min 2 h 42 min 2 h 42 min

With a spare (s = 1) 2 h 17 min 2 h 17
min

2 h 17 min 2 h 17 min

With a spare (s = 2) 2 h 36 min 2 h 36 min 2 h 36 min 2 h 36 min

Table 6: Unavailability per year of RDP
Hard. fault tolerance A.1.1.s A.2.1.s A.1.2.s A.2.2.s

13

Without a spare (s =
0)

21 min 36
s

20 min 49
s

21 min 11
s

21 min 11 s

With a spare (s = 1) 1 min 48
s

 1 min 25
s

 1 min 36
s

 1 min 36
s

With a spare (s = 2) 16 min 18
s

15 min 40
s

15 min 56
s

15 min 56s

6.2 Sensitivity analyses

Hardware coverage factor and repair duration

Table 7 shows that RDP unavailability is sensitive to the hardware fault tolerance coverage ch, only for

S1, because switching after the failure of DG1 or DG2 occurs more frequently than switching after the failure

of DG1 and DG2. Tables 6 and 7 show that for the nominal value of repair duration (10 hours) the

unavailability of S1 and S2 is always lower than that of S0. Indeed fault tolerance strategy is influenced by

the coverage factor, ch, and at the same time by the repair duration, 1/µ as shown by table 8 and figure 6.

When the repair duration decreases, table 8 shows that the unavailability of S0 can be slightly lower than that

of S1: for ch = 0.5, S0 is better than S1 for a repair duration less than 2h, whereas for ch = 0.8, S0 is better

when the repair duration is less than 1h 30 min (the results are given for organization O1 and reconfiguration

R2). Figure 6 and table 8 allow quantification of the tradeoff between using a spare or decreasing the repair

duration.

Table 7: RDP UA per year for S1 and S2 according to ch
ch A.1.1.1 A.2.1.1 A.1.2.1 / A.2.2.1
0.7 6 min 44 s 6 min 34 s 6 min 07 s
0.9 2 min 32 s 2 min 27 s 2 min 29 s

0.95 1 min 29 s 1 min 25 s 1 min 27 s
 A.1.1.2 A.2.1.2 A.1.2.2 / A.2.2.2

0.7 15 min 59 s 15 min 37 s 15 min 49 s
0.9 15 min 59 s 15 min 37 s 15 min 49 s

0.95 15 min 59 s 15 min 37 s 15 min 46 s

Software restart and switching durations

One of the main objectives is to decrease the FPP unavailability as much as possible. As we have stated

earlier, in addition to the failure rate, the availability is limited by the duration of switching from sec to pal

and by the restart time.

Table 8: RDP UA for S0 and S1 according to ch and 1/ µ

1/ µ ch A.2.1.1 A.2.1.0
1 h

0.5 2 min 20 s 2 min 16 s

 0.8 2 min 18 s 2 min 16 s
1 h15

0.5 2 min 51 s 2 min 45 s

 0.8 2 min 47 s 2 min 45 s

14

2 h

0.5 4 min 21 s 4 min 20 s
 0.8 4 min 07 s 4 min 20 s

1,00E-06

1.00E-05

1.00E-04

10

A.2.1.0

A.2.1.1

1/µ21

Figure 6: RDP UA for ch= 0.5

Tables 9 and 10 show that reducing switching time is more worthwhile than reducing the restart duration.

Table 9 shows that if FPP switching time were the same as that of RDP (1 s), unavailability would be almost

1 h per year for S0 and half an hour per year for S1. From 10 min to 6 min the unavailability gain is about

30%.

Table 9: FPP UA according to 1/βFPP (1/νFPP = 10 min)
1/ βFPP A.2.1.0 A.2.1.1 A.2.1.2
6 min 11 h 33 min 11 h 02 min 11 h 28 min
1 min 2 h 41 min 2 h 17 min 2 h 36 min

1 s 56 min 46 s 33 min 50 min 59 s

Table 10: FPP UA according to 1/νFPP (1/βFPP = 1 min)
1/νFPP A.2.1.0 A.2.1.1 A.2.1.2

1 h 6 h 20 min 5 h 34 min 6 h 10 min
10 min 2 h 41 min 2 h17 min 2 h 36 min
6 min 2 h 27 min 2 h 05 min 2 h 22 min

7. Conclusion

The number of alternatives considered for CAUTRA and the complexity of the models induced by the

numerous interactions between the components urged us to follow a modular and systematic approach which

is particularly efficient for modeling several alternatives and well-suited for mastering this complexity. For

instance, we have shown that the modeling of 11 alternatives requires only the addition of a component net to

those of the current architecture and adaptation of six dependency nets among them (those related to

reconfiguration and fault tolerance strategy). Even if building up the block models and validating the block's

GSPNs (designed according to specific rules and to be as generic as possible) is time consuming, it is still

worthwhile however since the time saved and the amount of confidence gained in creating and validating the

overall model is not commensurable.

15

The overall results provide significant information about CAUTRA behavior. They highlight the

particular importance of selecting a global fault tolerance and maintenance strategy right from the beginning.

We have shown that only the architectures using a spare with switching on the spare after the failure of the

first computer failure meet the requirement of less than 5 min for RDP unavailability. Among these, the best

one is A.2.1.1 where the two principal replicas run onto the same computer (organization O2) and where the

replicas switch back their roles after failure of the principal software replica and restart (reconfiguration R1).

The results obtained from the whole study have been used for the definition of the new CAUTRA

architecture.
Acknowledgments: the authors would like to thank Jean Arlat, Alain Costes, Mohamed Kaâniche and Jean-Claude
Laprie for their useful comments when reading earlier versions of this paper.

References
[1] M. Borrel, “Interactions between Hardware and Software Components: Characterization, Formalization and Modeling —

Application to CAUTRA Dependability”, INP, Toulouse, France, PhD Dissertation (in French) 1996.

[2] K. Kanoun and M. Borrel, “Dependability of Fault-tolerant Systems — Explicit Modeling of the Interactions Between
Hardware and Software Components”, Proc. 2nd IEEE Int. Computer Performance and Dependability Symposium (IPDS),
Urbana-Champaign, IL, USA, 1996, pp. 252-261.

[3] K. Kanoun, M. Borrel, T. Moreteveille, and A. Peytavin, “Modeling the Dependability of CAUTRA, a Subset of the French
Air Traffic Control System”, Proc. 26th IEEE Int. Symp. Fault-Tolerant Computing (FTCS-26), Sendai, Japan, 1996, pp.
106-115. Reduced version of LAAS-report 95-515.

[4] A. Avizienis and D. E. Ball, “On the Achievement of a High Dependable and Fault-Tolerant Air Traffic Control System”,
IEEE Computer, vol. 20, pp. 84-90, 1987.

[5] V. R. Hunt and G. V. Kloster, “The Federal Aviation Administration's Advanced Automation Program”, IEEE Computer,
vol. 20, pp. 14-17, 1987.

[6] F. Cristian, B. Dancey, and J. Dehn, “Fault-Tolerance in the Advanced Automation System”, Proc. 20th IEEE Int. Symp; on
Fault-Tolerant Computing, Newcastle, UK, 1990, pp. 6-17.

[7] E. Amadio, P. Iaboni, M. Lamanna, and P. Mariano, “Implementation of High Availability Mechanisms in the Air Traffic
Control SIR-S System”, Proc. 24th IEEE Int. Symp. on Fault-Tolerant Computing, Austin, Texas, USA, 1994, pp. 134-136.

[8] J.-M. Garot and T. Hawker, “Evaluating Proposed Architectures for the FAA's Advanced Automation System”, IEEE
Computer, vol. 20, pp. 33-45, 1987.

[9] N. Fota, M. Kâaniche, and K. Kanoun, “Dependability Evaluation of an Air Traffic Control System”, Proc. 3rd IEEE Int.
Computer Performance & Dependability Symposium (IPDS), Durham, NC, 1998, pp. 206-215.

[10] C. Chen, H. Asada, Y. Kakuda, and T. Kikuno, “Comparison of Hybrid Modular Redundant Multiprocessor Systems with
respect to Performabilities”, Proc. 23rd IEEE Int. Symp. Fault-Tolerant Computing, Toulouse, France, 1993, pp. 66-75.

[11] G. E. Stark, “Dependability Evaluation of Integrated Hardware/Software Systems”, IEEE Trans. on Reliability, vol. R-36,
pp. 440-444, 1987.

[12] P. I. Pignal, “An Analysis of Hardware and Software Availability Exemplified on the IBM-3725 Communication
Controller”, IBM Journal of Research and Development, vol. 32, pp. 268-278, 1988.

16

[13] J. F. Meyer, K. H. Muralidhar, and W. H. Sanders, “Performability of a Token Network under Transient Fault Conditions”,
Proc. 19th IEEE Int. Symp. on Fault-Tolerant Computing, Chicago, Illinois, USA, 1989, pp. 175-182.

[14] J. K. Muppala, A. Sathaye, R. Howe, C, and K. S. Trivedi, “Dependability Modeling of a Heterogeneous VAX-cluster
System Using Stochastic Reward Nets”, in Hardware and Software Fault Tolerance in Parallel Computing Systems, D. R.
Avresky, Ed., 1992, pp. 33-59.

[15] K. H. Prodromides and W. H. Sanders, “Performability Evaluation of CSMA/CD & CSMA/DCR Protocols Under Transient
Faul Conditions”, IEEE Trans. on Reliability, vol. 42 (1), pp. 116-127, 1993.

[16] L. A. Tomek and K. S. Trivedi, “Analysis Using Stochastic Reward Nets”, in Software Fault Tolerance, M. Lyu, Ed., J.
Wiley, 1995, pp. 138-165.

[17] W. Sanders and J. Meyer, “Reduced Base Model Construction Methods for Stochastic Activity Networks”, IEEE Trans. on
Selected Areas in Communications, vol. 9 (1), pp. 25-36, 1991.

[18] A. Costes, C. Landrault, and J.-C. Laprie, “Reliability and Availability Models for Maintained Systems Featuring Hardware
Failures and Design Faults”, IEEE Trans. on Computers, vol. C-27, pp. 548-560, 1978.

[19] J.-C. Laprie, C. Béounes, M. Kaâniche, and K. Kanoun, “The Transformation Approach to Modeling and Evaluation of
Reliability and Availability Growth of Systems”, Proc. 20th IEEE Int. Symp. Fault-Tolerant Computing, Newcastle, UK,
1990, pp. 364-371.

[20] J.-C. Laprie and K. Kanoun, “X-ware Reliability and Availability Modeling”, IEEE Trans. on Software Engineering, vol.
SE-18, pp. 130-147, 1992.

[21] J. B. Dugan and M. Lyu, “System-level Reliability and Sensitivity Analysis for Three Fault-tolerant Architectures”, Proc. 4th
IFIP Int. Conference on Dependable Computing for Critical Applications, San Diego, 1994, pp. 295-307.

[22] J.-C. Laprie, “Dependability Evaluation of Software Systems in Operation”, IEEE Trans. on Software Engineering, vol. SE-
10, pp. 701-714, 1984.

[23] I. Lee and R. K. Iyer, “Faults, Symptoms, and Software Fault Tolerance in Tandem GUARDIAN90 Operating System”,
Proc. 23rd IEEE Int. Symp. Fault-Tolerant Computing (FTCS-23), Toulouse, France, 1993, pp. 20-29.

[24] C. Béounes, M. Aguéra, J. Arlat, S. Bachman, C. Bourdeau, J. E. Doucet, K. Kanoun, J.-C. Laprie, S. Metge, J. Moreira de
Souza, D. Powell, and P. Spiesser, “SURF-2: A Program for Dependability Evaluation of Complex Hardware and Software
systems”, Proc. 23rd IEEE Int. Symp. Fault-Tolerant Computing, Toulouse, France, 1993, pp. 668-673.

[25] H. H. Ammar, Y. F. Huang, and R. W. Liu, “Hierarchical Models for Systems Reliability, Maintainability, and Availability”,
IEEE Trans. on Circuits and Syst., vol. CAS-34, pp. 629-638, 1987.

[26] G. Chiola and S. Donatelli, “GSPN versus SPNs: What is the Actual Role of Immediate transitions?”, Proc. Int. Workshop on
Petri Nets and Performance Models, Los Alamitos, CA, 1991, pp. 20-31.

[27] J. F. Meyer and W. H. Sanders, “Specification and Construction of Performability Models”, Proc. Int. Workshop on
Performability Modeling of Computer and Communication Systems, Mont Saint Michel, France, 1993, pp. 1-32.

[28] A. Bobbio and K. Trivedi, “An Aggregation Technique for the Transient Analysis of Stiff Markov Chains”, IEEE Trans. on
Computers, vol. C-35, pp. 803-814, 1986.

