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Taskability Graph: Towards Analyzing Effort based Agent-Agent
Affordances

Amit Kumar Pandey and Rachid Alami

Abstract— Affordance analysis, what something/someone can
afford or offers, is an important aspect for day-to-day inter-
action and decision-making. In this paper, we will enrich the
notion of affordance by incorporating agent-agent affordance:
what does an agent afford for another agent in terms of a
task. Further, we will present an effort hierarchy and derive
the concept of Taskability Graph, which encodes: what all agents
could do for all other agents, with which levels of mutual-efforts
and at which places. This makes the robot more aware about
agents’ abilities and facilitates to develop better interaction
and decision-making capabilities. We will discuss the potential
application in effort based shared cooperative planning.

I. INTRODUCTION

In cognitive psychology, Gibson [1] refers affordance as
what an object offers. He defines affordances as all action
possibilities, independent of the agent’s ability to recog-
nize them. Whereas in Human Computer Interaction (HCI)
domain, Norman [2] tightly couples affordances with past
knowledge and experience and sees affordance as perceived
and actual properties of the things. In robotics affordance
has been viewed from different perspectives: agent, observer
and environment, [3]. Irrespective of shift of definition,
affordance has been regarded as an important aspect for a so-
cially situated agent for day-to-day interaction and decision-
making. Affordance itself could be learnt [4] as well as could
be used to learn action selection [5].

Affordance has been studied in robotics with respect to
object (e.g. for tool use [6]) and location (e.g. for traversabil-
ity [7]). However, rich geometric reasoning based what an
agent affords to do for another agent (give, show, hide, make
accessible, ...) has not been explored from human robot
interactive task point of view. In this paper, we will address
this aspect by introducing the complementary notion of
Agent-Agent Affordance. The robot will proactively compute
agent-agent affordances for all the agents and for a set of
basic human-robot interactive tasks. This will be encoded in
a graph, which we termed as Taskability Graph. This will
enable the robot to maintain in real time what an agent can
afford to do for another agent, with which effort level and
at which places. This will facilitate a more ’aware’ human-
robot interaction.

In the next section, sub-section II-A will briefly and
formally present the concept of Mightability Maps, which in
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fact will serve as the basis for finding agent-agent affordance.
Sub-section II-B will present Human-Aware Effort Hierar-
chy, to ground the agent’s effort in a human-understandable
form. Sub-sections II-C to II-E will present the approach
to find the affordance of a task for a particular agent-agent
mutual-effort criterion. Subsequently we will develop the
concept of Taskability Graph. Experimental results of section
III will be followed by discussion on potential applications
and conclusion with pointer to the future work.

II. METHODOLOGY

A. Mightability Maps: Multi-state visuo-spatial perspective
taking

Visuo-spatial perspective-taking has already been shown
as an important component in Human-Robot Interaction, [8],
[9]. We have enriched the robot’s ability of perspective taking
not only from the current state of the agent but also from a
set of different states, the agent might attain. Based on this,
in [10], we have presented the concept of Mightability Maps.
Mightability stands for ”might be able to...” and facilitates
multi-state visuo-spatial perspective taking. The idea is to
analyze the various abilities, Ab, of an agent by applying
an ordered list of virtual actions, AV = [a1, a2, ..., an].
Respecting the environmental and postural constraints, the
robot performs Mightability Analysis by taking into account
collision as well as the joint limits. When the robot estimates
the abilities at 3D grid level, we termed it as Mightability
Maps (MM), [10]. In the current implementation Ab:

Ab ∈ {to see, to reach} (1)

ai ⊆
{
Ahead

V , Aarm
V , Atorso

V , Aposture
V , Adisplace

V

}
(2)

where,

Ahead
V ⊆ {Pan Head, T ilt Head} (3)

Aarm
V ⊆ {Stretch Out Arm (left|right)} (4)
Atorso

V ⊆ {Turn Torso, Lean Torso} (5)
Aposture

V ⊆ {Make Standing,Make Sitting} (6)

Adisplace
V ⊆ {Move To(position)} (7)

These Mightability Maps will be used to find candidate
places for agent-agent affordance in section II-C.

B. Human-Aware Effort Hierarchy (HAEH)

For a robot to interact and cooperate with us in complete
harmony, it should be able to reason on effort at the human-
understandable level of abstraction. We have conceptualized
an effort hierarchy based on the body parts involved in



Fig. 1: Taxonomy of Reach Types.

Fig. 2: Human-Aware Effort Hierarchy: Qualifying efforts to
see and to reach an object or a place.

performing an action. This is motivated from the studies
of human movement and behavioral psychology, [11], [12],
where different types of reach actions of the human have
been identified and analyzed, such as, reach involving simple
arm extension (arm-only reach), shoulder extension (arm-
and-shoulder reach), leaning forward (arm-and-torso reach)
and standing, see fig. 1. We also associate effort level to a
particular Av , based on the joints involved, as follows:

Esee ∈ {No Effort,Head Effort,Head Torso Effort,

Whole Body Effort,Displacement Effort}
(8)

Ereach ∈ {No Effort, Arm Effort, Arm Torso Effort,

Whole Body Effort,Displacement Effort}
(9)

Table in fig. 2 summarizes this Human-Aware Effort Hier-
archy (HAEH). To illustrate, let us assume that an agent Ag is
currently sitting. From this current state, Ag can put different
efforts to attain different states to see or reach something
or to perform some task. If Ag only turns head to see an
object or place, we term it as Head Effort. If Ag has to turn
the torso also, it is Head Torso Effort. Whole Body Effort
involves additional joints, instead of just turning the head
or the torso, e.g. if Av = [Make Standing, Lean Torso].
Displacement Effort corresponds to the situations requiring
Ag to move from the current position. Similarly, if Ag only
stretches out the arm (to point, to reach,...), it is Arm Effort.
If Ag has to also turn around or lean, it is Arm Torso Effort,
and so on. Hence, this effort hierarchy grounds the agent’s
movement to a ’meaningful’ effort. The robot further asso-
ciates descriptors like left and right.

Apart from facilitating better verbal interaction, HAEH
also facilitates the robot to ’understand’ and incorporate
different high-level constraints related to the desire and
physical state of Ag, in decision making and cooperative task
planning. E.g. if Ag is suffering from back or neck pain, or
facing challenges in standing up or has reduced mobility,
these can be directly incorporated in terms of high-level
constraints, by instructing the planner to exclude the efforts
associated with the torso or head movement or by restricting
maximum effort as torso effort, respectively.

Similarly current situation, preferences and mutual respon-
sibilities could also be grounded in terms of these effort

levels. For example if Ag is tired, his/her/its effort level
can be restricted to a particular level, e.g. Torso Effort.
HAEH also facilitates ’meaningful’ reasoning on mutual
effort, which will be discussed in section II-D.

Within each these effort levels, further a quantitative value
is assigned based on how much the body part has to be
moved or turned. This could be further enriched based on
musculoskeletal kinematics and dynamics models [13], [14].

C. Finding task based candidate places

Currently the robot is equipped to analyze the basic
Human-Robot Interactive manipulation tasks: Give, Show,
Hide, Make-Accessible. For finding the candidate places for
a particular task, a set of constraints Cnts is used:

Cnts = {ci : i = 1 . . .m} (10)

m is total number of constraints and ci consists of tuple:

ci = 〈agent(Ag), effort(E), ability(Ab) = true|false〉
(11)

Where Ab is element of eq. 1, E is element of eq. 8 or 9.
Depending upon the task, the desired values as true or false
are known a priori for a particular ability. For example if the
task is to give, the planner knows that the abilities to see
and reach the candidate places should be true for both the
agents. Based on these constraints, the planner performs set
operations on the Mightability Maps, [10], and obtains the
set of candidate points as:

P obj,Cnts
place = {pj : j = 1...n ∧ pj ≡ (x, y, z)∧

(pj satifies ∀ci ∈ Cnts)}
(12)

Where n is the number of places. Eq. 12 consists of
commonly reachable and visible places for hand-over task,
places to put object for hide task, etc. with particular effort
levels of the agents. If obj, the object for which the task
is to be performed, is provided beforehand, depending upon
the nature of the task, the Mightability Maps are grown or
shrunken based on the object dimension. This is to include or
exclude the possible candidate places because of the object
size. We assume that the robot is provided with constraints
Cnts for the set of basic tasks to find the candidate places,
of eq. 12. However, it can also be learnt in terms of desired
effect [15].

D. Reasoning on Mutual-Efforts

As long as the robot reasons only based on the current
states of the agents, the complexity as well as the flexibility
of cooperative task planner is bounded. For example, if an
agent cannot reach an object or cannot give an object from
the current state, it means, to the planner, the agent will
not be able to manipulate that object or will not be able
to perform hand-over task at all. But if the robot is aware
about the agent’s ability to do something with different effort
levels, this provides latitude to better solve for the task
but introduces another dimension of ’deciding effort’ in the
cooperative task planning. As theoretically, the robot can find



(a) Initial Scenario for make accessible task (b) Reducing Self Effort

(c) Reducing Other’s Effort (d) Balancing Mutual Efforts

Fig. 3: Illustration of different mutual efforts. (a) Initial Scenario. Task: P1 has to make-accessible the green bottle (indicated
by red arrow) to P2. (b) Reducing Self Effort: P2 has to stand up and lean forward to take the bottle. (c) Reducing Other’s
Effort: P1 stands up and puts at a place so that P2 can take it just by stretching out her arm. (d) Effort Balancing: P1 puts
by leaning forward while remain seated, so that P2 will also be required to lean forward to take.

out that each agent might be able to perform the tasks, only
the effort to do so will vary.

For example, consider scenario of fig. 3, in which the
green bottle (marked by arrow) is currently not visible and
reachable to P2, but to P1. The task is: Performing-agent P1
has to make the bottle accessible to P2, the target-agent. As
shown in the figure, different mutual-effort decisions result
into different placements of the object: reducing self-effort
in fig. 3(b), reducing other’s effort in fig. 3(c) and balancing
mutual efforts in fig. 3(d).

Our framework facilitates reasoning on different mutual-
effort criteria, which could be passed in eq. 11 to find
affordances as will be discussed in the next section. Below
we will discuss different decisional aspects of mutual-effort,
which could be easily incorporated in our framework.

As being in human-centered environment, the robot will
be expected to help, cooperate, collaborate, and find shared
plans to distribute the workload and balance/reduce the
efforts. If the agents share equal levels of responsibility,
they will be expected to be mutually responsive and mutually
responsible, hence should try to balance mutual effort.

The desired effort level could also be restricted based on
the current context. For example, if the agents are sitting
around a table, they may wish to avoid displacement effort
to take something; instead might request to someone else
who can easily take and hand-over the object. Hence, trying
to reduce self-effort. If the role of the robot is as a caregiver
to some elder person, there will be a need to reduce the
person’s effort at the cost of self-effort.

In summary, various global and individual factors influ-
ence the effort level of an agent: social status, responsibility
level, current context (dining, reception, living room), in-

dividual desire (not willing to move), state (tired, reduced
mobility, back or neck problem, aged,...), role (caregiver,
boss, friend), etc.

E. Finding mutual-effort based Agent-Agent Affordances

For finding the agent-agent affordance with the criterion
of balancing mutual-effort, the approach is as follows: The
planner sets the initial effort levels for both the agents as
least effort in the set of constraints of eq. 10, which is
No Effort Required to reach and to see (refer table of fig.
2). Then the planner obtains in eq. 12 the set of candidate
places for the task. If the resultant candidate set is NULL
then the planner sequentially increases the efforts of both
the agents to the next level until a NOT NULL candidate
space is obtained or the maximum allowed effort levels of
the agents are reached.

By regulating the agents’ effort levels, different criteria of
mutual efforts are incorporated. For example, to minimize the
target-agent’s effort, in the iteration, only the effort of the
performing-agent is increased while maintaining the target
agent’s effort as lowest feasible. Opposite is done if the
performing-agent’s effort has to be minimized.

In the current implementation, as first level of estimation,
we assume if the algorithm results into a NOT NULL candi-
date space, the agent might afford to perform the task. This
serves three important purposes: (i) Since the affordances are
calculated based on Mightability Maps, which are updated
online (see [10]), the robot is aware about the affordances
almost in real time. (ii) There is no false negative, i.e.
it ensures that if an agent cannot afford a task, he/she/it
indeed will not be able to, for the allowed effort level. (iii)
Further, it ensures that there will be no solution outside



Fig. 4: Scenario of a typical human-robot interaction.

the resultant candidate set. We have presented in [16], a
constraint hierarchy based approach for planning Human-
Robot Interactive Object Manipulation tasks. It takes into
account various constraints from the perspectives of the task,
the environment and the human, to find the feasibility of
a task. Hence if required, this can be used to perform a
more precise analysis of agent-agent affordance to construct
more precise Taskability Graph (discussed in next section).
However, we prefer to delay such computationally expensive
constraints and feasibility tests until a task has been decided
to be performed, this is mainly to maintain a rough but almost
online estimation of affordances.

F. Taskability Graph

Taskability Graph encodes what each agent might be able
to do for every other agent, with which levels of effort for
both the agents, and at which places.

For constructing Taskability Graph the criterion of mutual
effort (effort-balancing, reducing self-effort, reducing other’s
effort,...) is provided. It is constructed by finding individual
pairs of agent-agent affordances as discussed in previous
section among all the agents. Currently 4 tasks are encoded
in the Taskability Graphs: Make Accessible, Show, Give
and Hide. The allowed maximum effort levels (based on
situation, state, desire, ...) of each agent can also be provided
at the time of constructing the Taskability Graph or could be
used at later stages to filter/refine the graph.

Fig. 5: Taskability Graphs for different tasks based on
criterion of effort balancing, assuming the agents share equal
responsibility. Another criterion was provided as the desired
maximum individual effort level as Arm Torso Effort.

Fig. 6: Example of an edge of a Taskability Graph

(a) Effort Sphere (b) Edge Description

Fig. 7: Explanation of an edge of a Taskability Graph.

III. EXPERIMENTAL RESULTS AND ANALYSIS

We have experimented with real robot PR2 in various
human-robot interaction (HRI) scenarios. Fig. 4 shows one
of such typical HRI scenarios: the PR2 robot and two
human are sitting around a table. The robot, through various
sensors, maintains and updates the 3D world state in real
time. For this, it uses Move3D, [17], an integrated planning
and 3D visualization platform. For object identification and
localization, tags based stereovision system is used. For
localizing the human and tracking the whole body, data from
Kinect (Microsoft) sensor is used.

Fig. 5 shows the Taskability Graphs for different tasks for
the scenario of fig. 4. The 4 layers of edges, in bottom up
order, show affordances for make accessible, show, give and
hide tasks among the agents.

Fig. 6 shows an edge of the Taskability Graph. This
corresponds to PR2’s affordance of give task to the human
2. Fig. 7 explains what does an edge revel. It is a directed
edge from performing agent (source vertex) to target agent
(target vertex). On the first half (from source to target vertex)
of each edge there will be 4 spheres, showing the required
effort levels of both the agents to perform the task. If an edge
is bidirectional, it means both the agents could perform that
task for each other. In that case, there will be 8 spheres
on the edge for two different affordances. Associated with
each edge there is also a set of weighted candidate places,
indicating, where the task could potentially be performed
with these effort levels (weights are assigned similar to [10]).
The colored point cloud between the agents in fig. 6 shows
the candidate places for the give task. On the edge of fig. 6,
the small size of green and red spheres represents No Effort,



(a) PR2 affordance of hide task from human 1 (b) PR2 affordance of show task for human 2

(c) PR2 affordance of show task for human 1 (d) Human 2 affordance of make-accessible task for human1

Fig. 8: Subsets of edges of Taskability Graph of fig. 5, encoding different agent-agent affordances.

which encodes that the hand-over places are in the current
field of view of both the agents. Whereas, the relative bigger
size of blue and yellow spheres shows that the agents will
be required to put at-least Arm Effort to reach the places to
perform the task.

For constructing the Taskability Graph of fig. 5, the
criterion was to balance the mutual-effort. Therefore, the
corresponding spheres for performing and target agents in
each edge are roughly equal in size. Further, the current
context of sitting around a table has been also used to restrict
the individual maximum desired effort as Arm Torso Effort.
Hence, between the human on the right and the robot there is
no possibility of give and make accessible tasks as reflected
from the missing edges between these two agents in the
Taskability Graph of fig. 5. It is also interesting to note
the different size of effort spheres for different tasks among
different agents. Fig. 8 shows a subset of different agent-
agent affordances encoded in the taskability graph of fig. 5.
Interestingly in fig. 8(a), which show hide task affordance of
PR2 for human 1, the places to hide an object has been
found behind the cassette on the shelf as well as inside
the shelf. Fig. 8 (b) and (c), encode show task affordance
of PR2 for different humans. Each has different candidate
places. This is because of provided mutual-effort balancing
criterion, the planner tries to assure least feasible effort
of each agent. Hence, the places, which are reachable and
visible by least feasible effort of PR2 and also visible by the

target-agent’s least feasible effort are different, for different
relative positions of the two target-agents. Fig. 8(d) shows
the affordance of human 2 for make-accessible task. The
candidate places are autonomously found on top of table as
well as on the box.

As the affordances are calculated based on Mightability
Maps, which are updated online ([10]), Taskability Graph
could also be updated almost in real time. In the current
implementation, given the Mightability Maps, it takes about
1.2 seconds for computing the Taskability Graph of fig. 5.
Although this delay is acceptable for a typical human-robot
interaction, it will benefit from the algorithms to intelligently
update only the required parts of the already computed
Taskability Graph.

IV. DISCUSSION AND POTENTIAL APPLICATIONS

Taskability Graph makes the robot aware about the ca-
pabilities of all the agents in the environment for different
tasks they could perform. This serves one important purpose
of planning cooperatively for a task by taking into account
the effort. As it is a graph, by assigning proper weights to
the edges, any graph search algorithm can be used to find
a cooperative solution for the task. For example, consider
that PR2 robot has to give some object to human 1 of
fig. 4. It can easily find ”how” to give, by finding the
shortest path from the start vertex (SV) corresponds to PR2
and the target vertex (TV) corresponds to human 1 in the
corresponding Taskability Graph of fig. 5. In the current



Fig. 9: Execution of Taskability Graph based generated
shared plan to give an object to human 1 of fig. 4 by planned
help from human 2, sitting in the middle.

example, the resultant shared plan to give the object, ob-
tained through the shortest path is: PR2(Give, to(Human2)) →
Human2(Take, from(PR2)) → Human2(Give, to(Human1)) →
Human1(Take, from(Human2)).

Note that the resultant plan autonomously takes the help of
human 2. The plan also globally minimizes the overall effort,
because it corresponds to the shortest path in the Taskability
Graph, and the weights of the edges are based on the efforts.
Fig. 9 shows the execution of this plan, where the robot gives
the object to human 2 and he gives it to target-human 1.

It is interesting to note that by adjusting the weights of
the edges or by excluding/including a particular vertex, dif-
ferent constraints could be further incorporated dynamically.
For example, to find a plan, which minimizes effort of a
particular agent or excludes/involves a particular agent, etc.

By reasoning on the Taskability Graphs of different tasks,
the robot could even plan to cooperate with one agent to
compete with other. E.g., the robot could plan to ask for an
object from human 2, so that it could hide it from human 1.

Taskability Graph can also enrich verbalized human-robot
interactions as well as could facilitate grounding the agents
and actions for a change in the environment. For example if a
previously visible object is currently not visible to the robot,
then based on Taskability Graph, the robot could ’guess’:
which agent could afford to hide the object from the robot
perspective and with which effort level. It could also reason
about any potential cooperation among the agents as well as
the potential locations to search for that object.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the notions of agent-agent
affordances and human-aware effort hierarchy and derived
the concept of Taskability Graph. Taskability Graph encodes
rich information about agent-agent affordances, which makes

the robot aware about what an agent can afford to do for an-
other agent, with which levels of mutual-effort and at which
places. We have discussed that Taskability Graph could be
used to find shared cooperative plan by incorporating various
effort based requirements and to ground agents and actions.
Computation of Taskability Graph is almost online and could
facilitate smooth and better Human-Robot Interaction.

One complementary aspect, from the perspective of
human-robot interactive object manipulation tasks, is to
analyze agent-object affordances. That is to build a similar
graph based on what an agent can do with an object, by
similar reasoning of efforts. Merging both graphs will make
the robot ’aware’ about: what an agent can manipulate and
what he/she/it can do for another agent and with which
effort level. This will facilitate incorporating the objects in
various decision making and planning aspects, within the
graph search framework presented in this paper.
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