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When the robot puts itself in your shoes.
Managing and exploiting human and robot beliefs.

Mathieu Warnier, Julien Guitton, Séverin Lemaignan and Rachid Alami 1,2

Abstract— We have designed and implemented new spatio-
temporal reasoning skills for a cognitive robot, which explicitly
reasons about human beliefs on object positions. It enables
the robot to build symbolic models reflecting each agent’s
perspective on the world. Using these models, the robot has
a better understanding of what humans say and do, and is able
to reason on what human should know to achieve a given goal.
These new capabilities are also demonstrated experimentally.

I. INTRODUCTION

We aim at building robots that share space and tasks with a
human. Such robots could help disabled or elderly people in
their home or could work among humans in factories much
more flexibly than current industrial robots.

We focus here on tasks involving interactive object ma-
nipulation, where humans and robots can fetch, carry and
place objects. Humans may enter or leave the interaction
area at some points during the scenario. A typical example
of such a task is the ”clean the table” task in which a robot
and a human must remove items from a table. This work
builds upon an existing architecture, which already includes
a complete set of abilities that allow the robot controller to
effectively conduct such a collaborative task with a human
partner in a flexible manner. Reasoning correctly about the
human is a very important skill for the robot. It comes in
many different flavors like visual perspective taking revealing
what the human sees and affordances hinting at which basic
actions the human can do.

In some more complicated scenarios a human may fail
to notice changes in the world. The robot must then reason
explicitly about this human’s belief on some object attributes
that may differ from those currently held by the robot. It is
necessary to understand what this human says and does, and
to reason on what they should know to achieve a given goal.

The main contribution of this paper is to present an algo-
rithm to explicitly detect, update and delete these position
related beliefs in real time. The algorithm is demonstrated
in real time, for several objects and humans with arbitrary
geometric configurations. We discuss on the design and im-
plementation of this algorithm. The robot can assess whether
a human knows about one object’s position and whether this
position is different from robot’s own beliefs based on spatial
perspective taking on current state and human’s past beliefs.
The robot builds an independent symbolic belief state for
each agent participating in the task. We have carried out some
experiments illustrating how these beliefs are generated and
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how they lead to the production of different plans that yield
better goal achievement results.

Section II reviews related work and analyses the context
of our contribution. Section III introduces concepts on agent
knowledge about position through a simple example. Section
IV provides a quick overview of the robot control archi-
tecture. Section V describes our new position management
features. Finally, Section VI presents the first experimental
results.

II. RELATED WORK

Perspective taking is a human ability allowing one to put
himself/herself in another person’s point of view. Studied in
psychology literature [7], [20], this ability is crucial when
interacting with people by allowing one to reason on others’
understanding of the world in terms of visual perception,
spatial descriptions and affordances. In the last years, it
has been gradually employed in Human-Robot Interaction.
[3] presents a learning algorithm that takes into account
information about a teacher’s visual perspective in order
to learn a task. [8] applies visual perspective taking for
action recognition between two robots. [19] uses both visual
and spatial perspective taking for finding out the referent
indicated by a human partner. [15] rely on perspective taking
to solve ambiguities in dialogue.

In psychology, theory of mind (ToM) is the ability to
attribute mental states e.g. beliefs, intents, desires to oneself
and others. Visual perspective taking is one of the most
significant ToM precursors, and appears very early in human
child development [11]. ToM encompasses a wide range
of skills from instantaneous visual perspective abilities to
complex interpretation of other agent’s intents, plans and
feelings occurring over a long time period. Increased ToM
skills directly lead to increased performance when interacting
with other agents in a collaborative, as well as a competitive
context. Being able to attribute false/distinct belief (to recog-
nize that some others have different beliefs about the physical
world) is considered as a milestone in ToM development.

Scassellati in [16] presents Leslie’s and Baron-Cohen’s
ToM models and their potential use in robotics.

In the recent years there has been numerous and diverse
contributions adressing ToM in a robotic context. Kim au-
tonomously generates some ToM skills using evolutionary
robotic techniques [9]. Butterfield uses Markov Random
Fields as a sound mathematical model to make decisions that
account for other agents beliefs [6]. Briggs updates robot
beliefs about other agents and adapts robot speech based on
the detected adverbial modifiers in human discourse [5].



Our focus is mostly on the belief modeling part of
ToM. In psychology literature, the false belief task was
first formulated in [21]. Breazal in [4] proposed one of
the first human robot implementations, and showed some
more advanced goal recognition skills relying on this false
belief detection. In our scenario, the robot knows and helps
the human updating his potentially wrong beliefs about the
environment. The dialogue is used in a very simplified way.
The robot speaks to the human who is assumed to understand
the conveyed message immediately. It differs significantly
from other contributions in which the humans are those
who know and help the robot to improve its own modeling
and perception of the environment through sophisticated
dialogue.

III. TWO ILLUSTRATIVE EXAMPLES

Fig. 1 and fig 2 show two illustrative examples. These
are screen-shoots from the 3D model display of the spatial
reasoning module, taken during the real experiments. It
involves our cognitive robot and two humans, Patrick and
Bob. Patrick is wearing a pink shirt and Bob has a blue
shirt. The black box and the white box can be moved easily.
The pink trashbin and the big grey box are larger objects.
All these objects are on a table.

Fig. 1 illustrates the concept of False/Distinct belief on
object position: in fig. 1(a), Patrick, Bob and the robot share
the same belief state about all objects. In fig. 1(b) Patrick is
away and Bob moves two boxes. In fig. 1(c) Patrick comes
back. He notices the new black box position but cannot see
neither the former white box position nor its new position.
Consequently he still thinks the object is next to the grey
box. He has a belief on the box position that is different from
the current real position that is perceived by the robot. We
represent it with a green sphere with full opacity localized
where the human thinks the object is.

Fig. 2 illustrates the concept of Lack of belief on object
position: in fig. 2(a), Patrick, Bob and the robot share the
same belief state about all objects position. In fig. 2(b),
Patrick is away and Bob moves one of the box. In fig. 2(c),
Patrick cannot see the new box position but he can now
notice that the object is not where he thought it was anymore.
The robot concludes that Patrick does not have a belief on
object position. This is represented by a partially transparent
sphere placed where the human last thought the object was.

Without our algorithm, the robot would assume that the
human holds the same beliefs as itself (i.e. the human knows
the new tapes position).

IV. A DECISIONAL FRAMEWORK

In this section we briefly introduce the decisional frame-
work that is described more thoroughly in [1].

A. Global Overview

The proposed decisional framework consists of several
entities, each having a specific role, as illustrated in fig. 3.
We describe how the robot is controlled through an analysis
of the three main activities performed by the robot controller:

1) Situation assessment and context management
2) Goals and plans management
3) Action refinement, execution and monitoring
The three robot controller activities presented above make

use of a number of key components in the architecture:
• SPARK: Spatial Reasoning and Knowledge module [18]
• ORO: a knowledge management module [10]
• HATP: a Human-Aware Task Planner [2]
• A set of Human aware motion, placement and manipu-

lation planners [17], [12], [13]

B. Geometric and Temporal Reasoning component
We assume that perception provides real-time identity and

position of objects when they are in the field of view of
the sensors. In our experiments, the robot is localized using
a standard laser based localization system, the objects are
identified and localized using ARToolkit, and the humans
are tracked using a commercial motion capture system and
a Kinect device from Microsoft. Consequently, the robot is
aware of human presence, position and posture. We assume
that objects are seen and recognized by a human if they are
in his field of view.

SPARK, the geometric reasoning component, is responsi-
ble for geometric information gathering. It embeds a number
of decisional activities linked to abstraction (symbolic facts
production) and inference based on geometric and tem-
poral reasoning. SPARK maintains all geometric positions
and configurations of agents, objects, and furniture coming
from perception and previous or a priori knowledge (object
meshes).

Symbolic facts production: Geometric state of the world is
abstracted in symbolic facts that can be classified in three
different categories.

• Relative positions of object and agents, e.g. 〈BOX isOn

TABLE〉,〈BOX isNextTo TRASHBIN〉.
• Perception and manipulation capacity and state of

agents, e.g. 〈ROBOT looksAt BOX〉, 〈BOX isVisibleBy

HUMAN〉.
• Motion status for object or agent parts, e.g. 〈BOX

isMoving true〉, 〈ROBOT HEAD isTurning true〉.
Reasoning about human perspective allows for com-

putation of facts such as: 〈BOX isLeftOf HUMAN〉, 〈BOX
isVisibleBy HUMAN〉.

C. Symbolic facts and beliefs management
The facts produced by the geometric and temporal reason-

ing component are stored in a central symbolic knowledge
base, called ORO. ORO stores independent knowledge mod-
els (in our implementation, as ontologies) for each agent (the
robot and the humans it interacts with). The robot compo-
nents (like the executive layer or the situation assessment
component) can then store the agents’ beliefs in specific
models. Each of these models is independent and logically
consistent, enabling reasoning on different perspectives of
the world that would otherwise be considered as globally
inconsistent (for instance, an object can be visible for the
robot but not for the human).



(a) Patrick (Pink) and Bob (Blue) are
here. They know each object position.

(b) Patrick leaves and Bob
moves two objects.

(c) Patrick comes back and thinks the
white box is still behind the big grey
box.

Fig. 1. ”False/Distinct belief” scenario.

(a) Patrick and Bob are here. They know
each object position.

(b) Patrick leaves and Bob
moves one object.

(c) Patrick comes back and does not
know where the black box is.

Fig. 2. ”Lack of belief” scenario.
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Fig. 3. Architecture of the robot control system

D. Symbolic Planning

In order to accomplish a desired goal, the system has to
produce and execute a plan, i.e. a set of actions to be done
by the robot and its human partners. HATP is a Hierarchical
Task Network (HTN) planner. It is able to produce plans for
the robot’s actions as well as for the other agents (humans
or robots). The resulting plan, called ”shared plan” is a set
of actions that forms a stream for each agent involved in the
goal achievement. Depending on the context, some ”shared

plans” contain causal relations between agents. For example
if the second agent needs to wait for the success of the first
agent’s action to be able to start its own action. When the
plan is performed, causal links induce some synchronizations
between agents.

It can be tuned by setting up different costs from a
set of constraints called social rules. This tuning aims at
adapting the robot’s behavior according to the desired level
of cooperation of the robot.



HATP allows reasoning and planning for agents that have
distinct or incomplete beliefs. It is based on a description
of the agent’s beliefs, and a mechanism that produces and
inserts communication actions into the current plan if and
where necessary. To do this, the values of the attributes
of each object linked to the task are verified if the task
corresponds to an atomic action. If the agent involved is
not the robot, and has an unknown or distinct value for an
attribute, the planner will add respectively an ”inform” or
”contradict” action in the plan.

V. REASONING ON DISTINCT BELIEFS

In this section we present the main contribution of this
paper: the belief management algorithm.

A. Facts computation without explicit distinct belief manage-
ment.

Before managing belief for each agent, we were using
algorithm 1 to construct a symbolic representation of the
world. This algorithm is a simple loop, calling the func-
tion agent.computeFacts(objects) that computes the symbolic
facts described in paragraph IV-B for each agent present in
the scene.

Algorithm 1 computeFactsSimple (agents,objects)
for all agent in agents do

if agent.isPresent then
agent.computeFacts(objects)

end if
end for

In this algorithm, new beliefs are not computed if the
agent has left the scene. When he comes back, his beliefs
are updated with the current state of the world, relying on
the strong assumption that the agent becomes directly aware
about all changes. In other words, all present agents share
the exact same symbolic state of the world.

B. Explicit distinct belief management.

The new algorithm for managing distinct beliefs for each
agent is illustrated by algorithm 2. Before discussing the
details of this algorithm, we present a set of new variables
and functions used in the algorithm.

Variables used in the Algorithm:
In order to describe the beliefs about the object positions,

we use three variables called positionKnown, hasDistinctPo-
sition and distinctPosition.

The boolean variable agent.positionKnown(object) indi-
cates whether an agent knows about the position of an object.

agent.hasDistinctPosition(object) is a boolean variable
used to express if the agent’s belief about the position is
distinct from the belief of the robot, or not.

agent.distinctPosition(object) contains the distinct belief
about position if there is one, and is empty otherwise.

Robot belief about object position is stored in some other
variable.

With these variables, it becomes easy to describe the
different beliefs each agent has about the object positions.
For example:

Patrick doesn’t know where the grey box is.
robot.positionKnown(greyBox) = true
patrick.positionKnown(greyBox) = false
patrick.hasDistinctPosition(greyBox) = false
patrick.distinctPosition(greyBox) = empty

Patrick and Robot both believe grey box is at a given
position.
robot.positionKnown(greyBox) = true
patrick.positionKnown(greyBox) = true
patrick.hasDistinctPosition(greyBox) = false
patrick.distinctPosition(greyBox) = empty.

Patrick believes grey box is at a geometric position
someDistinctPosition1 in the 3D space known from robot
but different from robot’s own belief about grey box position.
robot.positionKnown(greyBox) = true
patrick.positionKnown(greyBox) = true
patrick.hasDistinctPosition(greyBox) = true
patrick.distinctPosition(greyBox) = someDistinctPosition1

Patrick believes grey box is at some position unknown
from robot.
robot.positionKnown(greyBox) = false
patrick.positionKnown(greyBox) = true
patrick.hasDistinctPosition(greyBox) = false
patrick.distinctPosition(greyBox) = empty

Functions used in Algorithm 2:
agent.SaveCurrentSharedPositions(objects): This function

is applied once when an agent leaves the scene and
stores the current value of the robot position in the agent’s
distinctPosition variable for all objects whose position is
known by the agent and equal to the robot position.

objects.previouslyUnseenAreUnknown(agent) : this func-
tion is applied once to an appearing agent, and sets the
positionKnown variable to false for all objects that were
never seen by this agent before.

object.isSeenAtRobotPosition(agent) : this function an-
swers whether an agent can see an object at the position in
the robot model.

agent.deleteDistinctPosition(object) : this function deletes
the distinctPosition variable of one agent for one object.

objects.setDistinctPositionsInModel(agent) : this function
moves all objects in the 3D model to the position in
distinctPosition in the agent model.

agent.computeFacts(objects) : computes the facts for all
objects using positions defined currently in the 3D model
that are the position beliefs hold by one specific agent.

object.isSeenAtDistinctPosition(agent) this function com-
putes whether an agent can see an object at the position he
thinks the object is.

objects.resetRobotPositionsInModel() : this function resets
all object positions in the 3D model to the positions believed
by the robot.

C. Symbolic facts and beliefs management

The algorithm 2 for facts computation with belief manage-
ment is presented below in pseudo-code using the variable
and functions defined above.



When an agent is absent, some objects may be moved from
one place to another. When the agent comes back, there are
three different cases if an object has moved:

• The agent sees the current object position and con-
sequently notices the transition, so he will not have
distinct belief about this object position.

• The agent may not see the object, but notices that it is
not at its previous position. In this case, the agent will
know that he doesn’t know where this object is.

• The human has no way of noticing the transition be-
cause the object is not visible from its current nor it
would be if it was still at its previous position. In this
case, the agent has a distinct belief from the robot,
until these two conditions stay true or another agent
communicates the object position.

Algorithm 2 computeFactsWithDistinctBeliefs
(agents, objects)
Require: computeFactsSimple (robot, objects)

for all agent in agents except robot do
if agent.hasJustDisappeared then
agent.SaveCurrentSharedPositions(objects)

else if agent.isPresent then
if agent.hasJustAppeared then

objects.previouslyUnseenAreUnknown(agent)
end if
for all object in objects do

if agent.hasDistinctPosition(object) or
Not(agent.positionKnown(object)) then

if object.isSeenAtRobotPosition(agent)
then
agent.deleteDistinctPosition(object)
agent.positionKnown(object) := true

end if
end if

end for
objects.setDistinctPositionsInModel(agent)

end if
if agent.isPresent then
agent.computeFacts(objects)
for all object in objects do

if agent.hasDistinctPosition(object) then
if object.isSeenAtDistinctPosition(agent)
then
agent.positionKnown(object) := false
agent.deleteDistinctPosition(object)

end if
end if

end for
objects.resetRobotPositionsInModel()

end if
end for

We rely on a simplifying assumption: agents present in the
scene notice every action on all objects, and consequently
know the new position of an object, even if these agents

cannot see the objets at their new position. Distinct position
management is allowed only for some of the objects that are
easily moved and hidden behind other bigger objects. This
distinct position management can increase the computation
required. Facts involving objects with distinct positions are
recomputed for all agents that hold a distinct position belief
for these objects. In the worst case, the number of re-
computations would be multiplied by the number of agents.
In our scenarios with less than three agents and less than five
potentially moving objects, computation time is reasonably
low.

VI. EXPERIMENTS

Managing distinct beliefs for an agent is very helpful for
understanding human speech, action, and focus of attention.
In the context of symbolic task planning, it also allows the
robot to plan whether to say something, what to say, and
when to say it; to ensure proper plan realization. During
the plan execution, the robot must decide whether to speak
as planned, according to the evolution of the beliefs. The
position belief management features presented above have
been implemented in the spatio-temporal reasoning module
in the architecture on our real robot. Distinct symbolic facts
can now be produced and stored in each agent’s models. The
communication actions produced by the planner are managed
by the robot controller. In these experiments we show some
dialog examples and then present task planning applications
more thoroughly. Some videos and 3D displays of these
experiments can be seen at the following url 1.

A. Better dialogue management.

The robot can answer questions or propose some informa-
tion proactively, based on its reasoning about other agent’s
beliefs. In section §III we present two scenarios to illustrate
false/distinct belief and lack of belief. At the end of the
second scenario, the state of the world for the robot (ROBOT)
can be seen in fig. 2(c). Patrick (PATRICK) doesn’t know
where the black box is (B BOX) but the robot notices that
he sees the white box (W BOX). We present an extract of
the two symbolic models of the robot and Patrick below.

ROBOT PATRICK
W_BOX isVisibleBy ROBOT W_BOX isVisibleBy ROBOT
W_BOX notVisibleBy PATRICK W_BOX notVisibleBy PATRICK
W_BOX isOn TABLE W_BOX isOn TABLE
B_BOX isVisibleBy ROBOT B_BOX hasKnownLocation false
B_BOX isVisibleBy PATRICK
B_BOX isOn TABLE
B_BOX isNextTo PINK_TRASHBIN

Patrick asks the robot: ”Where is the box?” The dia-
log disambiguation mechanism can easily understand from
Patrick’s model that he speaks about the box for which he
has no localization i.e. the black box (B BOX). The robot
can answer : ”It is on the Table, next to the pink trashbin”
It enriches the categorization algorithm proposed in [14]

At the end of the first scenario, the state of the world
for the robot (ROBOT) can be seen in fig. 1(c). Patrick

1http://homepages.laas.fr/mwarnier/Roman2012.html



(PATRICK) has a wrong belief about the white box
(W BOX) position. Patrick then tries to look behind the grey
box where the white box was. We present below an extract
of the two symbolic models of the robot and Patrick in this
new state.

ROBOT PATRICK
W_BOX isNextTo PINK_TRASHBIN W_BOX isNextTo BOX
W_BOX isOn TABLE W_BOX isOn TABLE

W_BOX isLookedAtBy PATRICK
B_BOX isOn TABLE B_BOX isOn TABLE
B_BOX isNextTo BOX B_BOX isNextTo BOX

Patrick looks at the white box (W BOX) position in his
model. Te robot can understand that the human currently
looks for the white box. (W BOX). The robot can say
proactively : ”The object you are looking for is next to the
pink trashbin”

B. A planner coping with divergent beliefs.

Again, we use the two scenarios presented in §III. The
robot and Patrick must clean the table together. Fig. 4(a) is
the plan produced with the state of the world in fig. 1(c).
The plan’s first action is a communication action. The robot
contradicts Patrick about his belief about the white box
position. This updates Patrick’s belief about the white box
position, so that Patrick can realize the second action, which
consists of picking up the white box. Patrick would have tried
to pick up the white box behind the big grey box otherwise.
Fig. 4(b) is the plan produced with the state of the world in
fig. 2(c). The plan’s first action is a communication action.
The robot informs Patrick about the black box position. This
updates Patrick belief’s about the black box position, so
that Patrick can realize the second action, which consists
of picking up the black box. Patrick would not have known
where to reach for the black box otherwise.

The first two videos on the web page, whose links can be
found above, show these two scenarios.

In this last experiment we demonstrate the robot con-
troller’s capacity to adapt the plan execution according to
a new unexpected state of the world. In fig. 5(a), Patrick
thinks that the white box is still close to the pink trashbin.
Fig. 6(a) shows the plan produced. The communication
action is inserted only when needed i.e. before the first
human action that involves the white box. Fig. 5(b) shows
that the human looks at the new white box position after his
first action. This will update his belief about the white box
position, so that the communication action is not needed any
more. Fig. 6(b) shows the plan that is actually executed. The
communication action is skipped, as its preconditions are not
verified but its effects are.

C. Results

These are preliminiary experiments to show that the sys-
tem is functional. We firmly believe the new algorithm to be
useful. During the experiment we could sometime notices
that when the robot failed do detect some distinct beliefs,
it lead to some ambiguities in human actions. Yet we have
not assessed the improvement brought by this new algorithm

(a) World state before planning

(b) Human look at the object after first action

Fig. 5. Skipping communication scenario world states

thoroughly. We plan to do some extensive user studies, that
will compare the results from different scenarios with or
without the new algorithm, to assess its benefit quantitatively.

VII. CONCLUSION AND FUTURE WORK

In this article we have presented a new feature of our
cognitive robot spatio-temporal reasoning to manage hu-
man’s potentially false/distinct or lacking belief on object
position. It is based on visual perspective taking on current
and previous object positions. Experiments were carried out,
revealing our robot’s capacity to assess human beliefs and
use these in dialogue and task planning. It has yielded
promising first results. This is a useful improvement of its
ToM.

The algorithm could easily be extended to manage non
position-related beliefs. The robot could reason on agent
beliefs about temperature, content, weight, etc. The robot
should be able to sense or be informed about these attributes
and assess human perception or knowledge about them.

Regarding position beliefs, the next step could be to push
the reasoning further when the robot detects that an agent
knows that he doesn’t know about some object’s position.
Can the agent then draw some conclusion on where the
object could be among several possible alternatives based on
occluded region and present agent’s affordances? This kind
of reasoning could first be used by the robot itself when it
doesn’t know where an object is anymore. It would then be
used in conjunction with other agent’s perspective to reason
on another agent’s belief about possible object positions.

Acknowledgments: This work has been conducted within
the EU SAPHARI project (http://www.saphari.eu/)
funded by the E.C. Division FP7-IST under Contract ICT-
287513.



ROBOT Takes BLACK ROBOT PlaceReachable BLACKROBOT Contradicts WHITE isNextTo 

HUMAN Takes BLACK HUMAN Throws BLACKHUMAN Takes WHITE HUMAN Throws WHITE

(a) False belief plan1

ROBOT Takes WHITE ROBOT PlaceReachable WHITEROBOT InformsAbout BLACK 

HUMAN Takes WHITE HUMAN Throws WHITE
HUMAN Takes BLACK HUMAN Throws BLACK

(b) Lack belief plan1

Fig. 4. Plans produced

ROBOT Contradicts WHITE isNextTo 

HUMAN Takes WHITE HUMAN Throws WHITEHUMAN Takes BLACK HUMAN Throws BLACK

(a) Plan produced

ROBOT Contradicts WHITE isNextTo 

HUMAN Takes WHITE HUMAN Throws WHITEHUMAN Takes BLACK HUMAN Throws BLACK

(b) Plan executed

Fig. 6. Skipping communication plans
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