
HAL Id: hal-01978617
https://laas.hal.science/hal-01978617

Submitted on 11 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost of Software Design Diversity-A Case Study
Karama Kanoun

To cite this version:
Karama Kanoun. Cost of Software Design Diversity-A Case Study. 10-th IEEE International Con-
ference on Software Reliability Engineering (ISSRE-99), Nov 1999, Boca Raton, FL, United States.
�hal-01978617�

https://laas.hal.science/hal-01978617
https://hal.archives-ouvertes.fr

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 1

Cost of Software Design Diversity –
A Case Study

Karama Kanoun

LAAS-CNRS — 7 Avenue du Colonel Roche

31077 Toulouse Cedex 4 — France
e-mail: kanoun@laas.fr

Abstract
This paper analyzes data related to working hours that have been recorded over

seven years, during the development of a real-life software system. The software
under consideration is composed of two diverse (dissimilar) units, called variants.
The second variant is used for self-checking. The results of the two variants are
compared: in case of agreement, the outputs of the principal variant are transmitted
and in case of discrepancy an error is reported. For each development phase, we
evaluate the cost overhead induced by the development of the second variant with
respect to the cost of the principal variant, considered as a reference. The results show
that the cost overhead varies from 25 % to 134 % according to the development
phase.

Keywords:
Design diversity, error detection, data collection, development effort, cost overhead

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 2

1. Introduction

Design diversity is used to check the dynamic behavior of the software during execution. It

consists in producing two or more units — referred to as variants — aimed at delivering the same

services through separate design and realizations. It is used either only for error detection (comparison

of the variant results) or for supporting fault tolerance in the N-Version programming approach [2] and

N-self-checking programming approach [9, 11].

Since a long time ago, it has been shown — both experimentally and through modeling — that

design diversity is most likely to improve system reliability (see e. g, [1], [5], [7] and [12, pp. 51-85]

for experimental work, and [4], [10] for modeling). Also, it has been observed that design diversity i)

aids the development of software variants, thanks to back-to-back testing [8] and ii) helps in detecting

certain errors that are unlikely to be detected with other methods [12, pp. 29-49]. Moreover, it has been

perceived in real experiments that design diversity does not double or triplicate the cost. Despite these

positive considerations, a common argument against design diversity is the supplementary effort

needed to develop and validate the additional variant(s). Indeed, the usual question is: Is it better to

devote the extra effort to develop an additional variant or to the verification-and-validation of one

“good” variant? An interesting discussion arguing in favor of diversity can be found in [6].

In this paper, we process data related to working hours recorded during the development of a

real-life software system. The software under consideration is composed of two-self-checking diverse

variants. Our objective is to evaluate the cost overhead induced by the development of the second

variant with respect to the cost of the principal variant, considered as a reference. The results show that

this overhead varies from 25 % to 134 % according to the development phase. The global overhead for

all phases, excluding the effort spent for requirement specifications and system test, is 64 %. It lies

between 42 % and 71 % if we exclude only the requirement specifications phase and assume that the

system test overhead is respectively 0 % and 100 %. These results confirm those published in previous

work. However, their main added value is that they have been observed in a real industrial development

environment. To our knowledge, it is the only evaluation performed on a real-life system.

The paper is organized as follows. Section two presents briefly the software characteristics and

outlines the organization of the development process. Section three gives an overview of the available

databases while Section four analyses the data sets. Section five concludes the paper.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 3

2. The software development characteristics

The considered software is composed of two diverse variants. Their results are compared. In case

of agreement, the outputs of the principal variant (denoted PAL) are transmitted. In case of a

discrepancy an error is reported. The secondary variant (denoted SEL), is thus used for self-checking.

Functional specifications are decomposed into elementary functions that are specified in a non-

ambiguous graphical language (in-house formal language), in the form of specification sheets. These

sheets are simulated automatically to check for data exchange consistency, types of variables, etc. In

addition, a small part of the functionality cannot be specified in the formal language and is provided in

natural language in the form of informal specifications.

193 specification sheets have been delivered to the software development teams: 113 are

common to PAL and SEL, 48 are specific to PAL and 32 specific to SEL. The development teams have

thus to work on 161 specification sheets for PAL and 145 specification sheets for SEL to derive the

source and then the executable codes. The PAL coding language is Assembler. To make the variants as

dissimilar as possible, half of SEL is written in Assembler and the other half is in a high level language.

The resulting software has about 40,000 Non-Commented Lines of Code for PAL and 30,000 Non-

Commented Lines of Code for SEL.

Comparison for error detection is performed at 14 checkpoints: simultaneously in both variants in

8 checkpoints (each checkpoint is specified once and is reproduced in each variant), and separately in 6

other checkpoints in only one variant (every checkpoint is specified within the associated variant).

The development process is incremental. Three departments are involved in producing the

considered software: the Specification Department, the Software Department and the System

Department. The Specification Department is in charge of producing the functional specifications from

the system requirement specifications. Starting from functional specifications, the Software Department

is in charge of the following activities: i) specification analysis, ii) high level and detailed design, iii)

coding (including unit test) and iv) integration and general tests. The System Department is in charge

of system tests based on i) functional tests, ii) tests with complete simulators and iii) field test.

Figure 1 gives the organization of the development process. Functional specifications and system

tests concern PAL and SEL at the same time. Within the Software Department, two distinct teams work

in parallel and separately on PAL and SEL. Each team is provided with the common functional

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 4

specifications, its own specifications in the form of specification sheets, and informal specifications.

The two teams are supposed not to communicate. However both participate in meetings organized by

the Specification Department to respond to questions from the Software Department. Hence the same

information related to specifications and to the hardware computers are provided to both.

Functional specifications

Integration & general tests

System tests

Specification
analysis

Design

Coding

Specification
analysis

Design

Coding

PAL SELS
o
f
t
w
a
r
e

D
e
p
a
r
t
m
e
n
t

 Design
 Department

System
Department

Figure 1: Organization of the development process

Within each team, any person can participate to coding and testing. The sole rule is that a person

cannot test a part he or she has coded. Tests for the common specification sheets are specified and

designed only once, but performed separately to PAL and SEL by each team.

Specification analysis consists in identifying those functions that are completely specified in

specification sheets for which coding is automatic. The remaining ones need complete design and

coding activities.

High level specifications consist in structuring the software while detailed design decomposes the

functions into abstract machines.

Coding of the abstract machines is performed automatically or manually, depending on whether

or not the function is entirely specified in the form of specification sheets. Unit tests are classical tests

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 5

defined from the specification sheets when the specifications are given in the form of specification

sheets.

Integration, general tests and system tests take advantage of the existence of two variants (back to

back testing for example). However, the test strategy does not only relay on such tests as additional

particular tests are performed for each variant.

3. Information available in the databases

Information concerning the working hours within the Specification and the System departments

have been recorded during seven years. They are available in the following form.

- 10,000 hours have been devoted to functional specifications within the Specification Department:

2,000 hours have been specifically dedicated to SEL, while the remaining 8,000 hours have been

devoted to PAL and to the common specifications.

- The System Department spent 10,200 hours in system test. The target system is tested as a black box;

the working hours related to PAL and SEL are not distinguished.

Within the Software Department, 24,375 hours have been devoted to PAL and SEL. The

corresponding working hours have been recorded in two databases, Database 1 and Database 2.

Database 1covers the first four years while Database 2 concerns the last three years of the study. Both

databases give information about the development phases already mentioned: specification analysis,

high level design, detailed design, coding (including unit tests), integration and general tests. In

addition, they give the time spent in documentation. The main difference between Database 1 and

Database 2 is that Database 1 discriminates between the working hours devoted to PAL and SEL while

Database 2 does not make any distinction. Moreover, Database 2 introduces two new headings;

maintenance and analysis. The fifth year was a transition period, all the work performed during this

year has been attributed to maintenance.

Table 1 gives the percentage of working hours recorded in Database 2 with respect to working

hours in Database 1 and Database 2. It shows that about two thirds of the working hours in the

Software Department over the considered period have been recorded in Database 1. Figure 2 details the

number of working hours per year, as derived from Database 1 and Database 2, without distinction

between PAL and SEL.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 6

Specification analysis 18.3 %

High level design 4.1 %

Detailed design 16.4 %

Coding 18.2 %

Integration 9.8 %

General tests 46.3 %

Documentation 24.8 %

Maintenance 100 %

Analysis 100 %

Overall 34.2 %

Table 1: Percentage of working hours recorded in Database 2 with respect to working hours in Database 1 and
Database 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 year

Analysis

Maintenance

Documentation

General tests
généraux
Integration

Coding

Detailed design

High level design

Spec. analysis

hours

Figure 2: Working hours per year from Database 1 and Database 2

The partition between PAL and SEL, evaluated from Database 1 for the first four years, is given

in Figure 3. It can be seen that SEL needed almost as much effort as PAL during the first years in the

Software Department.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 7

500

1500

2500

3500

1 2 3 4

hours

year

PAL

SEL

Figure 3: Partition of working hours among PAL and SEL during the first four years, from Database 1

4. Data analysis

Due to the difference in the nature of the information provided by the various departments as well

as by Database 1 and Database 2 within the Software Department, we first consider the data set from

Database 1 alone, then we consider the whole data set.

4.1- Analysis of the data set issued from Database 1

Figures 4 and 5 give the percentage of time dedicated to the various phases respectively for PAL

and SEL. It can be seen that for SEL more than 50% of the time was allotted to coding and integration.

This situation may have been induced by the fact that SEL is in two languages: coding, unit tests and

integration were thus more time consuming.

Table 2 gives the percentage of time dedicated to each variant: the time devoted respectively to

PAL and SEL was not uniform among the all phases. It varies from 33% to 60%. For example, only

35% of specification analysis was devoted to SEL while almost 60% of the coding effort was dedicated

to SEL. Note that for integration and general tests, the effort was the same for PAL and SEL as the

work was performed globally. Despite these differences, globally, for the whole period, 54.3% and

45.7% of the time where devoted respectively to PAL and SEL.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 8

Integration
29%

General tests
14%

Documentation
4%

High level
design

6%

Specification
analysis

10%

Detailed
design
11%

Coding
26%

Figure 4: PAL: percentage of time devoted to the various phases

General tests
12%

Integration
23%

Coding
15%

Documentation
 7%

Specification
analysis

16%

High level
design

9%

Detailed
design

18%

Figure 5: SEL: percentage of time devoted to the various phases

 PAL SEC

Specification analysis 65 35

High level design 64.5 35.5

Detailed design 65.2 34.8

Coding 41.1 58.9

Integration 49 51

General tests 50.6 49.4

Documentation 67.4 32.6

Overall 54.3 45.7

Table 2: Percentage of working hours per phase during the first four years in the Specification Department

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 9

High level design 55 %

Detailed design 53 %

Coding 143 %

Integration 104 %

General tests 98 %

Documentation 48 %

Overall 84 %

Table 3: Cost overhead per phase for the Specification Department, as evaluated from Database 1

It is worth noting that we are comparing the cost of development of a second variant with respect

to the cost of development of the principal one (developed for self-checking). In particular, PAL

includes 10 checkpoints added specifically for self-checking purpose. These checkpoints have certainly

induced an extra cost for specification analysis, design and coding. On the other hand, they have surely

helped during validation (from integration to analysis). Unfortunately, we are not able to estimate the

cost induced by such additional specific features from the recorded data set. However, the influence of

the corresponding time is reduced if we consider the two data sets Database 1 and Database 2. This is

due to the fact that most of the work related to specification analysis, design and coding has been

recorded in Database 1 while most of the work related to validation has been recorded in Database 2

(Cf. Table 1). As a result, even if the cost overheads evaluated in this paper do not correspond exactly

to the exact extra cost induced by design diversity, they give a good order of magnitude of this

overhead.

4.2- Analysis of the whole data set

To evaluate the cost overhead due to the additional variant for self-checking, during the

development, we have to consider all development phases from functional specifications to field test.

The data available from Database 2 and from the System Department should thus be partitioned

according to PAL and SEL.

Concerning Database 2, the development teams felt that they spent almost the same time for PAL

and SEL for all phases. Indeed, this figure is confirmed by the more accurate data collected in

Specification analysis 54 %

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 10

Database 1: table 2 indicates that during the first four years, globally 45.7 % of the effort was dedicated

to SEL. The working hours in Database 2 are thus equally partitioned among PAL and SEL.

Table 4 gives the cost overhead for the different phases within the Specification and Software

departments (excluding requirement specifications and system test): it varies from 25 to 134 %

according to the development phase with an overall percentatge of 64 %.

Functional specifications 25 %

Specification analysis 61 %

High level design 56 %

Detailed design 59 %

Coding 134 %

Integration 104 %

General tests 99 %

Documentation 59 %

Maintenance 100 %

Analysis 100 %

Overall 64 %

Table 4: Cost overhead per phase for the Specification Department, Database 1 and Database 2

Concerning the System Department, as we were not able to obtain detailed information, we made

two extreme assumptions:

- an optimistic one, in which we assume that the second variant has not induced any time overhead,

- a pessimistic one, in which we assume that the time overhead for SEL test within the System

Department is 100%.

The first assumption is not realistic. However, it allows evaluation of a low bound of the cost

overhead. The second one is not likely either, because one should take into account the fact that the

second variant has helped in several situations in detecting errors. As in the previous case, we use this

assumption to evaluate an upper bound of the cost overhead.

Using these assumptions, the global overhead from functional specifications to system test, is

between 42 and 71 %. This means that the cost increase factor is between 1.42 and 1.71. These results

do not include the requirement specifications phase that is performed for the whole software system.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 11

Taking into account the corresponding time will reduce the overall cost overhead. Unfortunately, the

associated effort has not been recorded and all what we know is that it is a time consuming phase.

5. Conclusion

In this paper, we have presented some results related to the cost overhead induced by software

design diversity for a real-life software system. We have analyzed the data sets extracted from two da-

tabases recorded within the Software Department in addition to the data provided by the Specification

and the System departments.

For each development phase, we have evaluated the cost overhead induced by the development of

the second variant. The cost of "the reference" variant (the principal one in our study) is evaluated in

the real environment in which two-self-checking variants are developed. The results show that this

overhead is: 134% for Coding and unit tests together, about 100% for integration tests, general tests,

maintenance and analysis, about 60% for specification analysis, design and documentation and 25% for

functional specifications. As we do not have enough detail about system tests, we made an optimistic

and a pessimistic assumption to evaluate the range of the overall cost overhead: it is between 42% and

71%, excluding the effort devoted to the requirement specifications.

Even though our results correspond to the cost of the second variant with respect to the cost of

one variant developed for self-checking, they compare very well to those already observed in con-

trolled experiments, in which the cost overhead is evaluated with respect to the cost of a non-fault-tol-

erant variant.

For example, in [1], the cost of a variant in a recovery block programming approach has been

evaluated to 0.8 times the cost of a non-fault tolerant variant (i. e., the cost increase factor is 1.6).

Another example can be found in [12, pp. 127-168], where the cost of a variant in an N-Version

programming approach has been evaluated to 0.75 times the cost of a non-fault tolerant variant (i. e.,

the cost increase factor is 2.26 for three variants). Also, similar figures have been obtained through cost

models developed in [9]. Likewise, it has been observed in some experiments that the cost of software

design diversity with N variants is not N-times the cost of a single software variant (see e.g., [3], [12,

pp. 9-21] and [12, pp. 51-84]). However, no specific figures were provided in these experiments.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 12

References

[1] T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Moulding, “Software Fault Tolerance: An

Evaluation”, IEEE Trans. on Software Eng., Vol. SE-11 (12), pp. 1502-1510, 1985.

[2] A. Avizienis, “The N-version Approach to Fault-Tolerant Systems”, IEEE Trans. on Software

Eng., Vol. 11 (12), pp. 1491-1501, 1985.

[3] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahl, and J. Lahti, “PODS — A Project on

Diverse Software”, IEEE Trans. on Software Eng., Vol. 12(9)pp. 929-940, 1986.

[4] J. B. Dugan and M. R. Lyu, “Dependability Modeling for Fault-Tolerant Software and Systems”, in

Software Fault Tolerance, M. Lyu, Ed., Wiley & Sons, 1995, pp. 109-138.

[5] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. Vouk, and J. P. J.

Kelly, “An experimental Evaluation of Software Redundancy as a Strategy for Improving

Reliability”, IEEE Trans. on Software Eng., Vol. 17 (7)pp. 692-702, 1991.

[6] L. Halton, “N-Version Design Versus Good Version”, IEEE Software, Vol. Nov./Dec. pp. 71-76,

1997.

[7] J. P. J. Kelly, D. E. Eckhardt, M. A. Vouk, D. F. McAllister, and A. Caglayan, “A Large Scale

Second Generation Experiment in Multi-version Software: Description and Early Results”, Proc.

IEEE 18th Int. Symp. on Fault-Tolerant Computing (FTCS-18), Tokyo, Japan, 1988, pp. 9-14.

[8] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing Design Diversity to Achieve

Fault Tolerance”, IEEE Software, Vol. July, pp. 61-71, 1991.

[9] J.-C. Laprie, J. Arlat, C. Béounes, and K. Kanoun, “Definition and Analysis of Hardware-and-

Software Fault-tolerant Architectures”, IEEE Computer Magazine, Vol. 23 (7), pp. 39-51, 1990.

[10] J.-C. Laprie, J. Arlat, C. Béounes, and K. Kanoun, “Architectural Issues in Software Fault

Tolerance”, in Software Fault Tolerance, M. Lyu, Ed., J. Wiley & Sons, Ltd, 1995, pp. 47-80.

[11] P. Traverse, “Dependability of Digital Computers on Boards Airplanes”, in Dependable

Computing for Critical Applications, Dependable Computing and Fault-Tolerant Systems, Vol. 1,

A. Avizienis and J. C. Laprie, Eds., Springer-Verlag, 1987, pp. 133-152.

10-th IEEE International Conference on Software Reliability Engineering (ISSRE-99), Boca Raton, FL, USA, Nov. 1999

 13

[12] U. Voges, “Software Diversity in Computerized Control Systems,” in Dependable Computing

and Fault-Tolerant Systems, vol. 2, A. Avizienis, H. Kopetz, and J.-C. Laprie, Eds. Wien, New

York: Springer-Verlag, 1988.

