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Abstract—This paper presents an embedded cognitive kernel,
along with a common-sense ontology, designed for robotics. We
believe that a direct and explicit integration of cognition is a com-
pulsory step to enable human-robots interaction in semantic-rich
human environments like our houses. The OpenRobots Ontology
(ORO) Kkernel allows to turn previously acquired symbols into
concepts linked to each other. It enables in turn reasoning and
the implementation of other advanced cognitive functions like
events, categorization, memory management and reasonning on
parallel cognitive models. We validate this framework on several
cognitive scenarii that have been implemented on three different
robotic architectures.

I. INTRODUCTION

A robot interacting with humans in everyday life situations
needs much knowledge. For instance, if a robot is asked to set
a breakfast table, how to choose the right items? Or on the
contrary, how to know that an item is odd in this context? To
make the required decisions, the robot needs a rich symbolic
model of its environment and rules that will allow to reason
on its knowledge.

If the robot directly interacts with humans, it may even be
necessary to take the human perspective in order to percieve
and model the human own beliefs on the world. For instance,
suppose there are two different jams on a table, but the human
can only see one of them (because a third object occludes the
second jam from its view). If the human asks for “the jam”,
the robot must infer that it is referring to the jam it sees. This
ability for the robot to think about other agents’ mental states
is part of the so-called theory of mind [1] and is fundamental
for legible and pertinent human-robot interaction.

These challenges require not only to provide robots with
perceptual abilities, but also a comprehensive model of the
roles, relationships and context of objects in the environment,
as well as beliefs and intentions of other agents. Moreover, this
understanding must rely on a formal encoding that requires
high expressivity while remaining well suited for machine
processing in order to be used by the robot.

This paper introduces ORO, an easy-to-deploy, event-
oriented, platform for symbolic knowledge storage and rea-
soning. Based on an ontology, it brings several advanced
cognitive features to robotic architectures like categorization
or explicit modelling of agents mental states. A common-sense

ontology, focused on human-robot interaction needs, is as well
presented.

We apply this tool to grounded, symbolic interaction and
decision-making in human environements, as a module within
larger cognitive robotic architectures.

This open-source knowledge management module and its
applications are the main contributions of this paper to the
field of cognitive robotics.

We present a brief overview of the current cognitive and
knowledge processing approaches within the robotics commu-
nity in Section [[I} The current stage of ORO development is
introduced in Section and concrete applications on three
different robotic architectures are described in Section [Vl
Section |V]] concludes the paper.

II. RELATED WORK

Pionnering works on questions related to cognition in
robotics include papers by McCarthy [2], Sloman et al. [3]
or Levesque and Lakemeyer [4]. Most of the challenges of
cognitive robotics can be summarized from these three articles.

In the field of symbolic knowledge processing for robots
Gunderson and Gunderson [S] introduce the concept of reifi-
cation (based on both recognition and pre-afference) as an
intermediate step between pattern recognition and symbol
grounding. Their underlying storage of knowledge relies on
ontologies and bio-inspired memory model.

Daoutis et al. [6] also tackle grounded knowledge and
common-sense reasoning in their KR&R system. They base
their knowledge model directly on the ResearchCyc ontology
(including the MicroTheories concept), used in combination
with the CYCL language.

Tenorth and Beetz [7] introduce KNOWROB, a knowledge
processing framework based on Prolog. Its underlying storage
is based on an OWL ontology, derived from OPENCYC. They
introduce as well the concept of computable relationship to
compute on request RDF triples describing spatial relations
between objects, probabilities for certain actions to occur, etc.

While computables enable better scaling (lazy evaluation of
relationships), this prevents on the other hand an efficient use
of the reasoner to classify and infer new statements since this
generally requires at any time the complete set of statements
to be available. Inconsistencies in the robot knowledge are



as well more difficult to detect. Our work explores a parallel
approach where the set of statements is classified a priori.

III. ORO, A ONTOLOGY-BASED KNOWLEDGE PROCESSOR
A. Architecture

ORqH is an open-source (BSD-like), socket-based server
build on the top of a standard RDF triples store. Figure [I]
illustrates the overall architecture. A front-end accepts and
manages connections from client components. The clients’
requests are processed by a set of internal modules. Besides
basic operations like to store and retrieve knowledge, sev-
eral pluggable modules have been developped that add more
complex cognitive and human-robot interaction abilities (see
below). Ultimately, the modules rely on an ontology back-end
that is made of one or several independant RDF stores. The
knowledge is actually stored in this back-end.

ORO is designed as a service: it can been seen as an
intelligent blackboard that allows other modules in the robot
to push or pull asserted and infered knowledge.

Knowledge is represented in ORO in first-order logic
formalism, as RDF triples (for instance <robot isIn
kitchen>). ORO relies on a dialect of RDF, OWLE| Descrip-
tion Logic, which is the decidable part of OWL. The underly-
ing RDF triples storage is the open-source Jena framewor
We use it in conjunction with the equally open-source Pelle
reasoner to ensure the continuous classification of the storage:
as soon as the robot adds a new fact in the knowledge base,
this fact is included in the complete set of asserted facts and
used for reasoning.

For instance, let us assume that the robot knows that
WaterContainer is the collection of all the objects that
may contain water. And let us consider that it knows about
some cup_1l (<cup_1 rdf:type Cup>). If the robot
acquires the fact (for instance by asking the human) that
a cup is a water container (<Cup rdfs:subClassOf
WaterContainer>) then it will automatically infer that
the cup_1 can contain water, i.e. <cup_1l rdf:type
WaterContainer>. The inferred statement is dynamically
added into the knowledge base.

B. The OpenRobots Ontology

One of the major issues that soon arises when dealing with
knowledge representation in human-robot interactions is the
lack of common-sense knowledge. While difficult to estimate,
the common sense knowledge (both declarative —rain wets—
and procedural —how to open a door-) represent a huge part
of our everyday knowledge, and the lack of such knowledge
by robots is especially frustrating in human-robot interactions.

Several important projects are trying to fill this gap by
providing machine-processable (the OPENMIND project[8]],
for instance) repository of common sense facts produced by
humans. These knowledge bases are extremely valuable but

!Project homepage: http://www.laas.fr/~slemaign/oro-server,
Zhttp://www.w3.org/TR/owl2-overview/
3http://jena.sourceforge.net

4http://clarkparsia.com/pellet/
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remain difficult to use in a pervasive way because of both
their uncompleteness and the lack of good connections with
underlying, unambigous concepts.

The knowledge that the robot acquires (by perception or
interaction) needs indeed to be connected to other chunks of
knowledge to become actually useful. This requires at least
an agreement on common identifiers to symbolize identical
concepts. To this end, the ORO server can be loaded with an
initial ontology. We have designed the OpenRobots Common
Sense Ontology, which precisely provides an upper set of
concepts upon which the robot can add and connect new
statements of the world.

This ontology is closely aligned on the open-source OPEN-
CY(ﬂ upper ontology. OPENCYC proposes a large taxonomy
of concepts and semantic relationships between concepts. We
have been reusing OPENCYC identifiers and its taxonomy
when possible (i.e., when the concept we wanted to model
did exist in OPENCYC), thus guaranteeing to a certain extent
the alignement of our ontology with a major, standard, upper
ontology. This potentially eases the exchange and addition of
knowledge from other sources (the aforementionned OPEN-
MIND project for instance, which belongs to the generic
LOD - Linked Open Data concept, as commonly referred in
the Semantic Web community. It includes querying Internet
sources, but also exchanging knowledge with other robots).

In its current version, the OpenRobots Common Sense
Ontology defines over 200 classes of concepts focused on
concepts related to human environments. It includes both very
broad categories like SpatialThing, TemporalThing,
Event or Action, and much more concrete concepts as
Table, Book, black... Robotic-specific concepts include
Robot that is defined to be a kind of IntelligentAgent,

Shttp://www.opencyc.org
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EmbodiedAgent and Artifact.

The ontology is stored as two OWL files
(openrobots.oro.owl is the main one, while the
second one holds the scenario-dependent instances, i.e. the
model of the world). They are available onling}

C. ORO main features

Besides simply storing and reasoning about knowledge, we
have implemented in ORO several features that we claim
useful for human-robot interaction: events registration, cate-
gorization capabilities, independent cognitive models for each
agent the robot knows and different profiles of memory.

1) The events framework: ORO allows external modules
to be triggered when specific events occur. Several type of
event can be registered (e.g., a new instance of a given class
appears or a set of facts becomes true). For instance, an
expressions like: “Tell me when any kind of tableware appears
on the table.” can be translated into the event Evt(obj) <
Jobj /type(obj, Tableware) A isOn(obj, table).

This has been designed to enable the implementation of
reactive behaviours (“waking up modules™) that would take
advantage of the inference capabilities of the reasoner.

2) Categorization: We have implemented several algo-
rithms (common ancestors, computation of the best discrim-
inant) to help the robot to cluster a set of concepts based
on their symbolic similarities (common properties, common
ancestors). The Spy game scenario (section[V-C)) shows a usage
of these categorization abilities.

3) Modelling of alternative cognitive model: As shown in
Figure [, ORO can store independent cognitive models for
each agent it interacts with. When ORO actually identifies a
new agent (or infers that some object is an agent), it creates
a new, separate, RDF triple storage. External modules like
supervision or dedicated perspective taking components may
then store facts or beliefs about agents’ beliefs [9]. This allows
to store and reason on two different (and possibly inconsistent)
models of the world.

4) Memory profiles: We have designed a simplified bio-
inspired memory model that allows us to store statements in
different memory profiles. These include short term memory
and long term memory. Each profile is characterized with
a lifetime, which is assigned to the stored facts. When the
lifetime of a fact expires, ORO automatically removes it.

D. The semantic level

ORO, by claiming its “cognitive” nature, brings something
more than a simple knowledge storage (i.e. what we would
expect from a database for instance).

As an ontology-based knowledge processing tool, ORO
allows us to connect together pieces of knowledge in a
coherent way, that is, to put chuncks of information about
the world in a symbolic context.

This opens many new opportunities in the design of robotics
architecture, not only providing individual modules (even low-
level ones, like perception) with advanced reasoning abilities,

Shttp://www.laas.fr/~slemaign/oro-server/oro-ontology.html

but also by aggregation of knowledge: this semantic level
allows to cleanly put together sources of information that
are traditionally difficult to combine, like visual perception,
geometrical reasoning, common-sense knowledge or human
input.

An unexpected example of this “semantic bonus” emerged
while we were setting up the “Odd One Out” experiment. The
perception routines provided segmented blobs corresponding
to objects, along with their colours. The supervision would
then feed ORO with the visible objects. At some point, ORO
suddently refused to add an object. What seemed at first
as a communication bug between modules, was actually the
consequence of a consistency check by ORO: Because of bad
light conditions, the color recognition was not very reliable,
and the same object was set to have two different colours
at the same time. That was inferred as impossible by ORO
and thus discarded. While we didn’t had time to implement
it, this kind of failure can clearly be used to improve low-
level perception results by “closing the loop” with high-level,
symbolic knowledge.

IV. INTEGRATION INTO ROBOTIC ARCHITECTURES

In the previous section we had an overview of the active
processes that are embedded in ORO and we explained how
ORO is a common knowledge framework for other modules
to represent and share, in a consistent way, the knowledge
they produce. But ORO integrates only few of the cognitive
abilities required to build a complete robot.

In [10], Langley et al. propose a list of capabilities that a
cognitive architecture should support to “cover the full range
of human-level intelligent activities”. These criteria are well
suited to show how ORO is integrated with components that
are currently implemented in the different robots in which
ORO has been deployed.

A. Perception, recognition and categorization

Recognition of objects or situations requires the identifica-
tion of unique and invariant patterns for each objects. To this
end, robots must percieve their environment either from raw
sensors like cameras or laser scanners or through higher level
mecanisms like motion capture or tags.

However, ORO is not directly fed by the sensors, but by
abstracted intermediate geometric models. MOVE3D [L1] is
such an intermediate world representation. Not only these
module feed ORO about object visibility, but also compute
spatial relationships between objects.

B. Decision making, planning, execution

Decision making (commonly attributed to the supervision
module) and planning use symbolic representation and rea-
soning systems to retrieve the current beliefs of the robot or
other agents (which include the current believed state of the
world) and to state goals, actions and plans.
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Supervisors, like SHARY [12] or CRAME] [14] use ORO
as well for categorization (see the Odd One Out and Spy
game example below) or reactive supervision through the event
system.

C. Interaction and communication

One of the first expectation of a framework like ORO is to
ease interaction with other agents (both humans and robots)
thanks to higher level symbolic representation of objects. ORO
has already been connected to several human-robot interfaces
(like speech-recognition and synthesis systen‘ﬁ), and on-going
developments target the integration of natural language pro-
cessing and bindings with external resources like WORDNET.

ORO is also used in experiments related to Perspective
Taking (see the Spy game example below) where the ability
of the robot to model human’s perspective on the world is a
prerequisite for the interaction.

D. Monitoring, remembering, reflection and learning

ORO eases the implemention of some of these higher
cognitive functions (referred by Sloman as “metamanagement
mechanisms”).

An example of monitoring has already been given previ-
ously with the perception of color mismatch.

In its current state, ORO already has a (naive) model of
memory as described in Section

Reflection (i.e., the ability for the robot to think and talk
about its own knowledge) is an immediate consequence of
the explicit and uniform modelling of the knowledge and its
structure in an ontology.

Finally, while learning is not yet tackled per se in ORO,
in our experiments we show humans teaching the robot new
symbolic structures (Odd One Out scenario).

E. Technical aspects of ORO integration

ORO was designed to be portable (command-line applica-
tion written in pure Java) and easy to integrate in existing
robotic cognitive architecture by having few dependencies
(besides the Java VM, the only two dependencies are Jena,
the RDF triple store, and Pellet, the reasoner).

ORO uses a custom (very simple) ASCII protocol over TCP
sockets that guarantees almost universal compatibility, and
easy testing and debugging with standard tools like Telnet.

Several middleware bindings and language-specific wrap-
pers have been developed to ease the integration of ORO
in existing software. Most notably, ORO plays nicely with
the ROS?| and YARH"| middlewares, and C++ (1iboro) and
Python (pyoro) have well maintained wrappers. Bindings for
TCL are also available.

TCRAM (Cognitive Robotic Abstract Machine) is a RPL-derived [13]
framework for rapid development of cognitive robot control programs we
currently develop.

8The CSLU Toolkit, http://cslu.cse.ogi.edu/toolkit/

9The Robotic Operating System, http://www.ros.org/

10http://eris.liralab.it/yarp/

V. EXPERIMENTAL USAGES

ORO has already been deployed on three different robots:

e the BERT?2 robot at BRL (YARP-based architecture)

o the Kimp robot at TUM-IAS (ROS-based architecture),

o the Jido robot at LAAS-CNRS (based on the in-house
Pocolibs middleware and the C++ liboro wrapper)

This is to illustrate its effective integration and sketch
potentialities of its use.

A. Knowledge acquisition: Point & Learn

We have implemented a
Point & learn behaviour on the
Bert robof'!| (Figure [2): a hu-
man shows an object to the
robot, and if the robot sees it
for the first time, it will ask for
the name and the type of the
object.

The object perception mod-
ule relies on motion capture to
identify and localize objects. A
detection module was responsi-
ble for updating ORO with the
list of objects currently seen by
the robot as well as their state
Fig. 2. Teaching the Bert robot (moving or not) and their rela-
new objects tions to other objects (touching
or not). On the other end, a human-robot interface based on
the CLSU Toolkit was in charge of speech recognition, speech
synthesis and natural language analysis.

By querying ORO for moving objects, the human-robot
interface retrieves the object ID that had the focus of attention
(last moving object), and asks the human for a name and a
type if the object was new.

Figure [3] reproduces a typical dialog with Bert.

At the end of this sequence, two more RDF statements are
added to the robot knowledge base: [5001 rdfs:label
"coffee—-cup"] and [5001 rdf:type Cup].

Due to the limitation of the speech recognition software,
only a predefined set of names or type could be recognized,
thus constraining the learning skills of the experiment.

B. Odd One Out

The Odd One Out scenario extends the Point & Learn
experiment and completes an on-going experiment at the IAS
laboratory where a robot is asked to list missing items on a
table being set, based on probabilistic reasoning on previously
recorded observations [15]].

We use ORO to introduce human interactions and common-
sense reasoning: the robot picks one after the other objects
(tea box, IceTea bottle, mug...) placed on the table that it
doesn’t know yet, it shows them to the human and asks about
the names and type of each of the new objects until the
human provides the name of a concept the robot already knows

"I'This experiment was conducted in the frame of the European CHRIS
project
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bert | Initializing... [about 5 sec] ...What’s next?
human | [moves an object]
bert | [does not know the object] How is it
called?
human | coffee-cup
bert | Did you say coffee-cup?
human | yes
bert | Ok. Now I know. What kind of object is
coffee-cup?
human | a cup
bert | Did you say cup?
human | yes
bert | So coffee cup is a cup. What’s next?
Fig. 3. Transcript of a chat with the Bert robot

Fig. 4. (a) Kimp, looking for objects it may know, and (b) viewed in RViz.
The clusters of point are given an unique identifier by the perception that
allow the supervision create the link between the physical objects and their
symbolic representation in ORO.

(Figure [V-B). The robot then tells which objects do not belong
to a typical breakfast table (objects that are neither food or
tableware).

The supervision (CRAM) automatically maintains up-to-date
the ORO server whenever objects enter or leave the field
of view. Therefore, integration of ORO can be seen as an
extension to the robot’s belief state that not only contains
abstract identifiers of the internal object representation used
in plans, but also the semantics and roles of objects in the
scenario.

The human interacts with the robot through a dedicated
XMPP bridge, allowing to chat with the robot with a standard
Jabber instant messaging client. Figure 5] corresponds to a chat
session with Kimp.

By asking in loop the human for the categories of an object
until it can connect it to a concept it already knows, the robot
accurately anchors a perception in its symbolic model and it is
able to reason about it. At the end of the experiment, the robot
identifies and returns the odd objects for the breakfast table
(i.e., in our example, objects that are neither Tableware or

Servus! The bavarian robot is up and fit!
What is the name of the WHITE CLUSTER on
the TABLE?

kimp
kimp

human | "Kimp’s mug” [Kimp adds 0BJ001 rdfs:label
"Kimp’s mug" stmt]
kimp | What kind of object is Kimp’s mug?

human
kimp

Mug

What is a Mug? [Kimp adds 0BJ001 rdf:type
Mug but it doesn’t know the Mug concept]
Tableware [Kimp knows about Tableware - be-
longs to the common-sense ontology. It adds Mug
rdfs:subClassOf Tableware]

human

(...)
kimp | What is the name of the BLACK CLUSTER on
the TABLE?
human | my laptop
kimp | What kind of object is my laptop?
human | Computer
kimp | What is a Computer?
human | Artifact
kimp | Do you want me to learn more objects?
human | no
kimp | These objects are odd: my laptop

Fig. 5. Transcript of a Jabber session with the robot Kimp. Compared to
dialog with Bert @}, we see here that the robot anchors the new objects in
its already acquired knowledge.

Fig. 6. Spy game scenario: (a) Real environment and (b) 3D environment
model, viewed in MOVE3D.

Food).

C. The Spy game

This game is based on the traditional children game “I
Spy”. The idea is to discover the object or concept one
of the participants is thinking of by asking questions such
as: “Is it green? Is it a machine? Is it on your left?”, etc.
When playing, children exploit their knowledge about the
world while categorizing and describing objects through useful
discriminants that will allow them to find out the answer as
fast as possible [16]].

The scenario for this game (Figure [V-C)) consists on a face-
to-face interaction where the human thinks of an object present
in the environment, while the robot queries the human until
either discovering the object or giving up, if no object was
found. A categorization example is presented in Figure [7]
The game starts with the human user giving a first hint



(communication is done through a keyboard and screen),
allowing the robot to start the search filtering those objects
that fulfill this first description. Based on this subset, ORO
provides a descriptor (or set of descriptors) that allows a
maximum discrimination among objects in the subset. The
robot queries the user about the value of the descriptor (or
the most discriminant among the set of descriptors) and with
this new information, the current subset of objects is filtered
again. The process is repeated until either obtaining a single
object that fulfills all the descriptor values, or failing (i.e. no
object found).

Artifact

N

Tableware GameObject Furniture
Bottle Cup Table Chair Shelf
Fig. 7. Example of object categorization used in the scenario.

We have integrated the game in the LAAS-CNRS lJido
robot [17]. Objects are identified through a tag-based vision
approac and motion capture is used for human tracking.
Their descriptions regarding categories (type of object) and
features (color, shape) are manually given in advance. Spatial
relationships (front, back, left, etc, and in, on and next to)
and visibility (only visible objects for both agents can be
considered in the game) are automatically computed on-
line [9]. Figure [§] shows an example of a round game.

VI. CONCLUSION

In this paper we have presented ORO, a knowledge process-
ing module for cognitive robotics. We also briefly introduced
the OpenRobots Common Sense Ontology. ORO is a socket
server aimed to be run on robots that firstly maintains a
consistent storage of facts, represented as RDF triples, and
secondarily runs several background processes, including on-
tology classification and reasoning, management of several
independent models for each different agent the robot meets,
and updating of statements according to bio-inspired memory
models.

While ORO is already useful and has been actually used
in several human-robot interaction scenarii on three different
robotic plateform, one of our aims is to offer a complete cog-
nitive library for practical use in semantic-rich environments
and human-robot interaction situations.

Several areas of improvement are currently being inves-
tigated: the system currently acquires knowledge from its
perception and own modelling of plans and motivation. At
simple levels, the robot can as well acquire knowledge from
its verbal interaction with humans. We would like to extend
these sources with a more generic access to external resources
(including on-line resources like Wikipedia). This will require

12 ARToolKit: |http://www.hitl.washington.edu/artoolkit/

human | It is a tableware.
jido | [retrieves possible objects: blue-bottle,
yellow-bottle, orange-bottle, cup-with-
handle]
[removes non visible objects: blue-bottle,
yellow-bottle, cup-with-handle]
[obtains discriminants: type, color.]
Which type of object is: bottle or cup?
human | Bottle.
jido | [obtains possible objects: blue-bottle,
yellow-bottle. ]
[obtains discriminants: color.]
What color the object is: blue or yellow?
human | Blue.
jido | [obtains possible objects: blue-bottle.]|
The object is the blue-bottle!
Fig. 8. Example of the robot playing Spy game.

to improve the current natural language processing capabili-
ties.

Other areas of research include richer models of memory
(including reinforcement learning), handling of inconsistent
states of the knowledge base (explanation of inconsistencies,
solution to pro-actively solve them), implementation of mech-
anisms to pro-actively look for new relations between concepts
(curiosity module) and the design of a generic framework for
acquisition and filtering of knowledge that could be used both
in human-robot verbal interaction and when retrieving facts
from the Internet.
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