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When the robot considers the human...

Rachid Alami, Mathieu Warnier, Julien Guitton, Séverin Lemaignan and Emrah
Akin Sisbot

Abstract This paper addresses some key decisional issues that are necessary for a
cognitive robot which shares space and tasks with a human. We adopt a constructive
approach based on the identification and the effective implementation of individual
and collaborative skills. The system is comprehensive since it aims at dealing with
a complete set of abilities articulated so that the robot controller is effectively able
to conduct in a flexible manner a collaborative task with a human partner. These
abilities include geometric reasoning and situation assessment based essentially on
perspective-taking and affordances, management and exploitation of each agent (hu-
man and robot) knowledge in a separate cognitive model, human-aware task plan-
ning and human and robot interleaved plan achievement.

1 Introduction

Human-robot interaction requires to equip the robot with explicit reasoning on the
human and on its own capacities to achieve its tasks in a collaborative way with
a human partner. This paper presents a robot control system which has been espe-
cially designed for a cognitive robot which shares space and task with a human. We
have adopted a constructive approach based on effective individual and collabora-
tive skills. The system is comprehensive since it aims at dealing with a complete set
of abilities articulated so that the robot controller is effectively able to conduct in a
flexible manner a collaborative task with a human partner.

We illustrate below how we deal with a typical human-robot interactive task
achievement and what are the abilities we claim are necessary. Section §2 proposes
a typical human-robot interaction problem that can be solved by the proposed robot

LAAS-CNRS

Université de Toulouse, UPS, INSA, INP, ISAE, LAAS
F-31077 Toulouse, France

e-mail: Firstname.Name @laas.fr



2 R. Alami, M. Warnier, J. Guitton, S. Lemaignan and E.A. Sisbot

controller. Section §3 reviews related work and analyses the context of our con-
tribution. Section §4 provides an overview of the robot controller and introduces
three activities which are described in §5, §6 and §7. Finally, Section §8 presents an
effective run on a real robot in face to face interaction with a person.

2 A typical human-robot interaction problem

Let us consider a robot which is supposed to achieve interactive object manipulation,
fetch and carry tasks and similar tasks in a domestic environment. The problem we
are dealing with here is the following. Given:

e a joint goal, which has been previously established and agreed upon (through a
process which is out of the scope of this paper),

e the current situation, acquired through perception or deduction from previous
perceptions, including the state of the environment of the robot and of the human,

the robot controller computes an action to execute and who (the human or the robot,
or both in case of a joint action) has to perform it, and then controls or monitors its
execution. The operation continues until the goal is achieved, is declared unachiev-
able or is abandoned by the human.

To do so, the robot has to be equipped with a number of decisional, planning and
interpretation abilities where its human partner is taken explicitly into account. It
needs to be able:

e to build and maintain relevant robot and human beliefs (from the robot perspec-
tive) with respect to state of the world and the task,
to build and maintain iteratively shared (human-robot) plans,
to refine and execute the actions it has to perform, and to monitor those achieved
by its human partner.

Besides, we would like to build such abilities in a generic way, and to provide
several levels of parametrization allowing to adapt to various environments, and var-
ious levels of involvement of the robot ranging from teammate behavior to assistant
or proactive helper.

3 Related work and vision

The human presence brings new requirements for robot’s abilities both at the func-
tional and at the deliberative levels [17]. The topics involve motion [19, 5, 22],
navigation [3, 33], manipulation [16] in presence of humans as well as perception
of human activities [8, 9]. Also, when interacting with humans, robots need to in-
corporate communication and collaboration abilities. Several theories dealing with
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collaboration [11, 14, 10] emphasize that collaborative tasks have specific require-
ments compared to individual ones, e.g. , since the robot and the person share a
common goal, they have to agree on the manner to realize it, they must show their
commitment to the goal during execution, etc. Several robotic systems have already
been built based on these theories [28, 31, 36, 6] and they all have shown benefits
of this approach. They have also shown how difficult it is to manage turn-taking
between communication partners and to interleave task realization and communica-
tion in a generic way. Finally, today only few systems [13, 6, 32] take humans into
account at all levels.

Perspective Taking is a human ability which allows one to put him/herself in an-
other person’s point of view. Studied in psychology literature [12, 39], this ability
is crucial when interacting with people by allowing one to reason on others’ under-
standing of the world in terms of visual perception, spatial descriptions, affordances
and beliefs, etc. Therefore, in the last years these notions have been gradually em-
ployed in Human-Robot Interaction. [7] presents a learning algorithm that takes into
account information about a teacher’s visual perspective in order to learn a task. [15]
apply visual perspective taking for action recognition between two robots. [38] use
both visual and spatial perspective taking for finding out the referent indicated by a
human partner.

Spatial reasoning [26], on the other hand, has been used for natural language pro-
cessing for applications such as direction recognition [18, 24] or language ground-
ing [37]. [35] presented a spatial reasoner integrated in a robot which computes
symbolic positions of objects.

Hello! Multi-modal Dialog '

Mutual
» Activity

Observation

Fig. 1 Robot reasoning about HRI and anticipation of human activities: sources of information are
multi-modal dialogue, and observation of environment and human activity

We envision HRI in a context where two agents (a human and a robot) share
a common space and exchange information through various modalities. Our aim
is to endow the robot with an explicit consideration of the human and with the
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ability to manage its interactions with him (Figure 1). This must be considered at
the architecture level as well as at the task/motion planning and execution level.

We have devised a decisional framework for human-robot interactive task achieve
ment that is aimed to allow the robot not only to accomplish its tasks but also
to produce behaviors that support its engagement vis-a-vis its human partner and
to interpret human behaviors and intentions. Together and in coherence with this
framework, we have developed and experimented various task planners and inter-
action schemes that allow the robot to select and perform its tasks while taking
into account explicitly the human abilities as well as the constraints imposed by the
presence of humans, their needs and preferences.

4 A Decisional framework

Interaction happens as a consequence of an explicit request of the human to satisfy
a goal or because the robot finds itself in a situation where it is useful if not manda-
tory. In both cases, the robot has a goal to satisfy. An important issue is the notion of
engagement, a process in which the robot will have to establish, maintain and termi-
nate a connection with a human partner. This covers goal establishment, selection of
an incremental refinement of the task that is intended to be achieved, and execution
control including monitoring, and even influencing, human task performance and
his/her commitment to the goal. The human involvement may range from a direct
participation to the task achievement, to a simple “acceptance” of robot activity in
his/her close vicinity.

Our robot is controlled by a three layer architecture [1]. We present briefly its
decisional layer. The proposed decisional framework consists of several entities,
having each a specific role as illustrated by Figure 2. We describe how the robot is
controlled through an analysis of the three main activities performed by the robot
controller:

1. Situation assessment and context management
2. Goals and plans management
3. Action refinement, execution and monitoring

The next three sections describe the three robot controller activities and how they
make use of a number of key components in the architecture:

SPARK: Spatial Reasoning and Knowledge module [34]

ORO: a knowledge management module [20]

HATP: a Human-Aware Task Planner [2]

A set of Human aware motion, placement and manipulation planners [32, 23, 27]

Other decisional activities, such as situated dialog ([29, 21], not presented here)
have been developed that use the same set of components.
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Robot Controller
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Fig. 2 Architecture of the robot control system

5 Situation assessment and context management

This activity involves the geometric and temporal reasoning component, the sym-
bolic facts and belief management component and the dedicated robot controller
activity (Figure 2).

We assume that perception provides in real-time the identity and the position
of objects when they are in the field of view of the sensors. In our implemented
examples, the robot is localised using a standard horizontal laser-scanning based
localisation system, the objects are identified and localized using ARToolkit [4] and
the humans are tracked using a commercial motion capture system and a Kinect
device from Microsoft.

5.1 Geometric and Temporal Reasoning component

The geometric reasoning component plays a central role in our architecture. It is
called SPARK (Spatial Reasoning and Knowledge [34]) in the current implementa-
tion. It is responsible for geometric information gathering and it embeds a number of
decisional activities linked to abstraction (symbolic facts production) and inference
based on geometric and temporal reasoning. SPARK maintains all geometric po-
sitions and configurations of agents, objects and furniture coming from perception
and previous or a priori knowledge.

Symbolic facts production: Geometric state of the world is abstracted in symbolic
facts that can be classified in three different categories.
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Fig. 3 An example illustrating the reachable relation. The relation is computed from the perspec-
tives of both the robot and the human. The computed posture at each step is illustrated with a global
view of the scene (top), and from a closest view (bottom).

Relative positions of object and agents, €.g. (GREY_TAPE isOn TABLE).
Perception and manipulation capacity and state of agents, e.g. (ROBOT looksAt
GREY_TAPE), (GREY_TAPE isVisibleBy HUMANL).

e Motion status for object or agent parts, €.g2. (GREY_TAPE isMoving true),
(ROBOT-HEAD isTurning true).

Reasoning about human perspective allow to compute facts such as: (GREY_TAPE
isBehind HUMANL1), (GREY_TAPE isVisibleBy HUMAN1).

Figure 3 illustrates different situations for the reachable relation. In this case, the
robot and its human partner are placed face to face, in a table-top setup (Figure 3.1).
The robot first estimates if the small grey box is reachable to itself. This is done
by finding a collision free posture to reach the object (Figure 3.2). Next the robot
switches to the human’s perspective to estimate if the same object is reachable to the
human as well. In the last scene, the human moves towards his left, farther from the
object (Figure 3.4). The situation is then reevaluated. In this occasion though, the
reasoner cannot find a satisfactory posture for the human to reach the box because

he is too far from the target.
The set of facts computed in the situation depicted by Figure 5.1 is the following:

ROBOT HUMAN1
PINK_TRASHBIN isReachable false PINK_TRASHBIN isReachable true
WALLE_TAPE isReachable false WALLE_TAPE isVisible true
LOTR_TAPE isReachable true LOTR_TAPE isReachable false
GREY_TAPE isReachable true GREY_TAPE isReachable false
WALLE_TAPE isVisible true WALLE_TAPE isReachable true
LOTR_TAPE isVisible true LOTR_TAPE isVisible true
GREY_TAPE isVisible true GREY_TAPE isVisible true
WALLE_TAPE isOn TABLE WALLE_TAPE isOn TABLE
LOTR_TAPE i1sOn TABLE LOTR_TAPE i1sOn TABLE
GREY_TAPE isOn TABLE GREY_TAPE isOn TABLE

Hypotheses on objects states and positions: It is sometimes difficult or even im-
possible to see and/or track an object in certain states. This happens, for instance,
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(a) Initial state (b) 3d model view of initial state

Fig. 4 In this situation, there are three tapes on the table. Two tapes are only reachable by the robot:
the LOTR_TAPE (black in the 3d model) and GREY_TAPE. The third tape WALLE_TAPE (white
in the 3d model) and the trashbin PINK_TRASHBIN are only reachable by the human HUMANI.
All tapes are on the table TABLE.

when the object has been put in a container, when it is in the robot gripper or in the
human hand, and more generally in any state in which it is hidden by something
else. Our robot has a model of the possible symbolic states for an object (whether
the object is on a furniture, in an agent hand, in a container, etc.). According to
the robot perception of what has happened since the object was last seen, the robot
tries to maintain a belief of the current possible symbolic states and their associated
probabilities for this object. Such information can be used to update the beliefs using
input from exploration, dialog, human visual focus,... SPARK currently provides a
simple implementation of such a functionality. The only managed hypotheses are
in container and in agent hand. We can have only one hypothesis at the same time.
Hypothesis validity is checked geometrically in case of incoming perception values.

Primitive action recognition: Monitoring human activity is crucial to maintain a
coherent state of the world. Full human action and activity monitoring is a difficult
task that requires knowledge and reasoning both on high level facts like goals, in-
tentions and plans, as well as bottom-up data from agent and object motions. Simple
temporal and geometric reasoning on human hand trajectories and potential objects
placements can provide some useful clues for high level human monitoring pro-
cesses. We call this temporal and geometric reasoning primitive action recognition.

For example, a pick, a throw or a place action can be recognized by observing
that an object on table and an empty human hand are close to each other, or that the
human hand holding an object is close to a container, etc. Human hand position is
either directly perceived or inferred from its initial perceived trajectory. We have a
simple implementation of such a primitive action recognition in SPARK that relies
on monitoring human hand and its motion near objects or above containers.
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5.2 Symbolic facts and beliefs management

The facts produced by the geometric and temporal reasoning component are stored
in a central symbolic knowledge base, called ORO. Besides acting as a facts
database, the ORO platform [20] exposes several functions: operations on knowl-
edge statements relying on inference (through a continuous first-order logic classi-
fication process), management of per-agent symbolic models, and also higher cog-
nitive and human-robot interaction related functionalities like categorization of sets
of concepts, profiles of memory (that enable the robot to “forget” about some facts),
natural language grounding [21]....

ORO stores independent knowledge models (in our implementation, as ontolo-
gies) for each agent (the robot and the humans it interacts with). The robot archi-
tecture components (like the executive layer or the situation assessment component)
can then store the agents’ beliefs in specific models. Each of these models is inde-
pendent and logically consistent, enabling reasoning on different perspectives of the
world that would otherwise be considered as globally inconsistent (for instance, an
object can be visible for the robot but not for the human. This object can have at the
same time the property isvisible true and isvisible false in two different
models). This feature actually allows us to consider the robot to be endowed with a
simple theory of mind [30]: it can explicitly model the belief state of its interactors.

ORO also provides an event mechanism that allows components to be triggered
when specific events occur. A component can for instance subscribe to events of
kind [?agent isVisible true, ?agent type Human]. As soon as the perception
layer detects a human in the robot’s field of view and accordingly updates the knowl-
edge base, the executive layer would be triggered back. The event framework also
takes advantage of the inference capabilities of ORO. Thus an event can be indi-
rectly triggered if its triggering conditions can be inferred to be true.

5.3 Situation Assessment and Context Management Controller

Building, updating and maintaining a correct state of the world at geometric and
symbolic level is crucial to the capacity of the robot to carry on successfully a multi-
step interaction with a human. Tight integration between the robot controller and
the geometric and temporal reasoning functions in SPARK and symbolic facts and
beliefs management in ORO is central.

The robot controller has access to the symbolic facts in ORO that are automat-
ically updated whenever object and agent positions are changed. Robot controller
can also access geometric perceived or inferred positions of objects and geometric
positions and postures of the human that will be used to orient its cameras. Building
and updating the state of the world first relies on perceiving objects. Robot controller
can use:
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e Exploration policies: robot will exhaustively scan the table to see all what can be
seen.

e Search policies: robot will search an object until it is detected if possible, scan-
ning all the table and looking in human hand.

Robot reasons on possible positions for non perceived objects. These hypothe-
ses could be updated using new input from dialogue, human action and focus of
attention. Currently, we manage at most one hypothesis per object. This hypothesis
is produced by robot controller through an inference on robot or human action. In
case of perception conflicts with low probability for the current hypothesis, robot
controller will break this hypothesis and delete corresponding symbolic fact in the
ontology.

Robot must reacts to change in the world not linked to robot action to drive world
update. Robot controller uses SPARK to monitor human hand motion and primitive
action recognition for pick and throw. As mentioned above these primitive action
recognition should be used with higher level information on goals, intentions and
plans and some exploration to achieve complex human action and activity monitor-
ing. In the current implementation, these primitive actions are over-optimistically
interpreted as the corresponding actions pick object and throw object.

6 Goal and Plan Management

The Goal and Plan Management activity involves the human-aware symbolic task
planner component and the dedicated robot controller activity (Figure 2).

6.1 Symbolic Task Planning

In order to devise how a given goal can be accomplished, the robot has to elaborate
aplan, i.e. a set of actions to be achieved by the robot and its human partners. This
is the role of a HATP [2] (for Human Aware Task Planner). HATP is based on a
Hierarchical Task Network (HTN) refinement which performs an iterative task de-
composition into sub-tasks until reaching atomic actions [25]. The planning domain
defines a set of methods describing how to decompose a task and can be seen as the
Howto knowledge of the robot. HATP is able to produce plans for the robot’s actions
as well as for the other participants (humans or robots). It can be tuned by setting
up different costs depending on the actions to apply and by taking into account a set
of constraints called social rules. This tuning aims at adapting the robot’s behavior
according to the desired level of cooperation of the robot.

Agents and action streams: The robot plans not only for itself but also for the other
agents. The resulting plan, called “shared plan” is a set of actions that form a stream
for each agent involved in the goal achievement. Depending on the context, some
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“shared plans” contain causal relations between agents. For example, the second
agent needs to wait for the success of the first agent’s action to be able to start
its own action. When the plan is performed, causal links induce synchronization
between agents. Figure 5 illustrates a plan with two streams.

TAKE (HUMAN1, THROW (HUMAN1, TAKE (HUMAN1, THROW (HUMAN1,
GREY_TAPE, TABLE) GREY_TAPE, Trashl) WALLE_TAPE, TABLE) ~ WALLE_TAPE, Trash1)

TAKE (ROBOT, THROW (ROBOT, TAKE (ROBOT, PUTRV (ROBOT, TAKE (ROBOT, THROW (ROBOT,
BLACK_TAPE, TABLE)  BLACK_TAPE, Trash2) WALLE_TAPE, TABLE) WALLE_TAPE, TABLE) LOTR_TAPE, TABLE) LOTR_TAPE, Trash2)

Fig. 5 A plan produced by HATP with 2 streams

Action costs and social rules: A cost and a duration function is associated to each
action. The duration function provides a duration interval for the action achievement
and is used, in one hand, to schedule the different streams and, in the other hand, as
an additional cost function. In addition to these costs, HATP also takes into account a
set of social rules. Social rules are constraints aiming at leading the plan construction
towards the best plan according to some human preferences. The social rules we
have defined so far deal with:

undesirable state: to avoid a state in which the human could feel uncomfortable;
undesirable sequence: to eliminate sequences of actions that can be misinter-
preted by the human;

effort balancing: to adjust the work effort of the agents;

wasted time: used to avoid long delays between the actions of the human partner;
intricate links: to limit dependencies between the actions of two or more agents.

TAKE (HUMAN1, THROW (HUMAN1, TAKE (HUMAN1, THROW (HUMAN1,
GREY_TAPE, TABLE) GREY_TAPE, Trash1) ~ WALLE_TAPE, TABLE) ~ WALLE_TAPE, Trashl)

L )
N

TAKE (ROBOT, PUTRV (ROBOT, TAKE (ROBOT, THROW (ROBOT, TAKE (ROBOT, THROW (ROBOT,
WALLE_TAPE, TABLE) WALLE_TAPE, TABLE)  BLACK_TAPE, TABLE) BLACK_TAPE, Trash2) LOTR_TAPE, TABLE) LOTR_TAPE, Trash2)

Fig. 6 A plan with the wasted time social rule



When the robot considers the human... 11

Figure 6 illustrates an alternative plan to the previous one (Figure 5) if the wasted
time social rule is used. The obtained shared plan is the best plan according to a
global evaluation of these multiple criteria.

Several levels of cooperation: By tuning its costs and adapting its social rules,
HATP can be used to compute various alternative plans. These plans can be catego-
rized into several levels of cooperation

helping the human to achieve his goal by acting for him

sharing concrete resources by handing some objects

collaboration of the robot and the human by coordinating their actions towards a
human-robot joint goal.

6.2 Goal and plan Controller

Figure 7 sums up the Goal and Plan Management as implemented in the robot con-
troller. When an event announcing a new goal is caught by the controller, the validity
of this goal is tested: does it corresponds to capabilities of agents? is it not already
achieved? Then, the goal is sent to HATP which produces a first plan. A goal is
considered achievable as long as the planner computes a valid plan and it is not
abandoned by the human.

Plan execution consists in the management of all the actions of the plan. Human
and robot are not acting both at the same time. In case of plan failure a new plan is
requested and executed.

The management at the action level is done in three steps. First, the action pre-
conditions are tested over the current state of the world. Then the action is executed
and monitored (only monitored of it corresponds to a human action). Finally, the
expected effects are verified in order to acknowledge the action achievement.

Concerning the speech acts during plan management, the robot informs its part-
ners on the goal existence and status, plan existence and status, ongoing plan action,
plan action failure, failing facts for action precondition or effect assessment.

7 Action execution and monitoring

The action execution and monitoring task involves the motion and task planning,
the effectors and the dedicated robot controller activity (Figure 2).

Human-aware motion, placement and manipulation planning: In our scenarios,
actions are only object manipulation actions: Pick, Place, Throw, Give. Motion and
Task planning allows to compute final object placement, grasp and arm motion tra-
jectories taking into account task specific constraints and human postures, abilities
and preferences: see [32, 23, 27] for details.
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Fig. 7 Automaton for goal and plan management

Execution and Monitoring Robot Controller: Depending on the context and on
the shared plan elaborated by HATP for a given goal, the robot controller decides
to execute an action or to ask its human partner to do it. Actions feasibility by the
human or the robot are regularly reconsidered based on the reachability / visibility
computation mechanisms.

Robot action execution is based on simple automatons that translate symbolic
planning atomic actions into sequences of planned arm motions and gripper com-
mands to execute according to current state of the 3-tuple (gripper, object, furniture).
We have three states according to whether the object is in gripper and if it is in grip-
per whether it is on furniture. These states are directly obtained from the updated
symbolic state of the world in the ontology.

For plan action monitoring, primitive actions recognition defined above are used.
A primitive action detection is interpreted as action success if it is the expected one
and failure otherwise. The robot also reacts to the absence of activity.

8 An illustrative example

We assume here that the robot (and the human) has been given the joint goal
“CLEAN TABLE”. For HATP, this means putting all tapes that are currently on
the table in the trashbin. Depending on the state of the world and agent preferences,
different plans are produced.
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Figure 8 shows a plan produced to clean the table based on the initial the initial
state given in § 5.1.

TakeObject (HUMAN1, ThrowObject (HUMAN1, TakeObject (HUMAN1, ThrowObject (HUMAN1, TakeObject (HUMAN1, ThrowObject (HUMAN1,
WALLE_TAPE, TABLE) WALLE_TAPE, PINK_TRASHBIN) GREY_TAPE, TABLE) GREY_TAPE, PINK_TRASHBIN) LOTR_TAPE, TABLE) ~ LOTR_TAPE, PINK_TRASHBIN)

O—0O0—FA—C0—A—0

PutObjectVisibleAndReachable PutObjectVisibleAndReachable

TakeObject (ROBOT, ~ (ROBOT, GREY_TAPE, TABLE)  TakeObject (ROBOT, ~ (ROBOT, LOTR TAPE, TABLE)
GREY_TAPE, TABLE) LOTR_TAPE, TABLE)

Fig. 8 A plan produced by HATP for clean the table based on the initial state given in § 5.1

Let us now take a simpler example to illustrate a full run of the system. We have
only one tape on the table and it is is reachable only by the robot while the throw
position on top of the trashbin is reachable only by the human.

Figure 8 illustrates the main processes occurring during a multi-step human-robot
collaborative goal achievement. The plan produced is quite straightforward and is
shown in the third row called “Goal and Plan”. It consists in 4 successive actions
involving the robot and the human. Robot grasps the tape and then places it on the ta-
ble at a position where it is visible and reachable for the human. Human then is asked
to pick the tape and throw it in the trashbin. The first row, named “Cameras”, shows
several snapshots corresponding to various execution steps. Snapshot 1 presents the
initial situation. Snapshots 2, 3, 4 and 5 give the state after the successive achieve-
ment of the four actions in the plan. The second row, named “3D Model”, shows
the display of SPARK at the same instants. The fourth, row called “Robot Speech
Acts”, gives robot speech acts produced along the execution to inform the human
partner about goal and plan creation and status and to verbalize the actions that the
human is asked to execute. The fifth row illustrates robot knowledge on itself and
on the objects. The sixth row illustrates the robot knowledge about the human state.
The seventh row gives ongoing robot action with action preconditions and effects
assessment as well as motion execution tasks. Motion trajectory typology can be
found between the 3D Model views. The eighth row gives ongoing human action
with action preconditions and effects assessment and monitoring activity.

9 Conclusion and future work

In this paper we have presented a decisional framework designed for robots operat-
ing in a human environment. Our objective is to provide a management of human-
robot interaction that is an integral part of a general robot control architecture. This
was done in order to provide a principled way to deal with HRI scenario. The frame-
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Fig. 9 An example of a human-robot collaborative goal achievement
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work is also suitable for the development and experiment of task planners and inter-
action schemes that explicitly consider human abilities and preferences.

The design choices and the results presented here are still preliminary. While the
general scheme we propose might be difficult to implement in a general sense, we
believe that it is a reasonable challenge to implement it in the case of a personal
robot assistant essentially devoted to fetch-and-carry, as well as for interactive ma-
nipulation tasks and associated activities.
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