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Abstract— Over the last four years, we have been slowly
ramping up explicit knowledge representation and manipula-
tion in the deliberative and executive layers of our robots.
Ranging from situation assessment to symbolic task planning,
from verbal interaction to event-driven execution control, we
have built up a knowledge-oriented architecture which is now
used on a daily basis on our robots.

This article presents our design choices, the articulations
between the diverse deliberative components of the robot, and
the strengths and weaknesses of this approach. We show that
explicit knowledge management is not only a convenient tool
from the software engineering point of view, but also pushes for
a different, more semantic way to address the decision-making
issue in autonomous robots.

I. A KNOWLEDGE-ORIENTED ARCHITECTURE

A. Towards the cognitive robot at LAAS

Natural interaction and cooperation are on the (dare we
say, short-term) agenda for the human-robot interaction
community. They are keys to the broad class of interactive
manipulation problems: several agents agree on a (more or
less implicit) joint goal that requires some sort of cooper-
ation to be successfully achieved. This class of problems
involves both dialogue and manipulation and they are often
initially underspecified: they require iterative and interactive
resolution.

Over the last years we have focused our efforts on
identifying the cognitive prerequisites of these challenges,
and giving them experimental reality on the robots: what
is required for sentences like “Let’s set the table together”
to be understood by the robot, correctly interpreted in the
spatial and temporal context of the interaction, and eventually
transformed into a set of actions.

We have chosen to tackle the challenge from several ends:
human-aware navigation and motion planning [1], situation
assessment coupled with motion planning [2], projection
of “mightabilities” that anticipates what surrounding agents
may do [3], and the design and deployment of a pervasive
knowledge-oriented software architecture.

The last item is the focus of this paper: what “knowledge-
oriented” architecture means, and what its benefits and
drawbacks are.

B. Scope of the article

In essence, this article portrays our use of explicit semantic
interfaces to integrate several deliberative components into
a decisional architecture for our robots. It reports on our

experience with acquiring, managing and reusing grounded
knowledge in the context of human-robot interaction.

Unlike previous publications by the authors that introduced
the deliberative modules of our robots independently from
each other, this contribution is an account of the importance
of explicit knowledge manipulation when integrating them
into a large cognitive architecture.

While we do not present experiments in this paper, the ideas
and techniques we present all have been implemented and
tested on several robots (see previously reported experiments
in [4]–[7], [9]). Videos presenting some of these experimental
results can be watched online at http://www.laas.fr/
~slemaign.

Also note that this paper does not provide extensive review
of existing literature. We kindly refer the reader to the
aforementioned articles for in-depth discussion of related
works in the different fields of cognitive architectures for
robots.

C. Article overview

In the next section, we first introduce the deliberative layer
of our robots at the functional level. It represents what we
call a knowledge-oriented architecture, built around a central
knowledge management tool called the OpenRobot Ontology
(ORO) server.

The following sections present each of the facets of this
deliberative layer: how knowledge is produced asynchronously
from geometric reasoning, how the robot conducts grounded
multi-modal interaction with humans, how knowledge is used
by decision-making components like the robot controller or
the task planner, and finally, how our knowledge-oriented
architecture enables the implementation of specific internal
cognitive processes.

We conclude the article with a discussion about the
strengths and weaknesses of such a knowledge-oriented
architecture, from three perspectives: the software architect,
the AI expert and the cognitician.

II. THE LAAS DELIBERATIVE LAYER

Fig. 1 gives an overview of the connections between the
deliberative components of our architecture [8].

This architecture moves away from standard layered ap-
proaches. Interactions between components at the deliberative
level are mostly bidirectional and we do not introduce layers
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Fig. 1. Overview of the LAAS deliberative layer. Knowledge is centrally managed in an active semantic blackboard, pictured above with a thick border.

of abstraction amongst software components1. This is nicely
illustrated by the dialogue input processing. This component
does not simply act as an alternative perceptual input to the
symbolic database; it also actively queries previously acquired
knowledge to disambiguate and validate the newly created
symbolic knowledge (see section IV).

Our architecture relates to Beliefs, Desires, Intentions (BDI)
architectures. BDI architectures are primarily focused on
practical reasoning, i.e. the process of deciding, step by step,
which action to perform to reach a goal (as summarized by
Woolridge [11]). The management of the interaction between
knowledge (the beliefs) and task and plan representation and
execution (the desires and the intentions) is central, and aims
at selecting at each step the best subgoal. It becomes then
an intention that the robot commits to.

This interaction between knowledge and actions is also
central to our approach (as for any cognitive system):
it is one of the activities of the robot, actually shared
between communication components (that can acquire desires
from interaction with agents, amongst other things) and an
execution controller that may decide to take an incoming
desire into account to create its own internal goals. The
controller generates and manages intentions from these goals
with the help of a symbolic task planner, that also has direct
access to the knowledge base.

This activity is however not the backbone of our archi-
tecture. Other activities are conducted in parallel, without
being explicitly considered as desires: assessment of the
situation and the environment, dialogue (including perfor-
mative dialogue that can possibly change the internal state
of the robot, but does not lead to the creation of desires,
like question answering or statement assertion), various
background monitoring and recognition tasks, etc.

1We do have lower-level modules to execute actions or manage sensors,
but all cognition-related modules reside at the same level.

Regarding the anchoring question, this architecture is
bidirectional. The components we described provide a bottom-
up grounding process: geometric reasoning and dialogue
processing modules constantly build and push new symbolic
contents about the world to the knowledge base where it
becomes accessible to decisional layers. In parallel, the
knowledge base relies on reasoning in a top-down way
to produce new facts that may in return trigger physical
behaviours.

Knowledge model

In our architecture (Fig. 1), knowledge manipulation
relies on a semantic blackboard: a central server (the ORO
server [4]) stores knowledge as it is produced by each of the
deliberative components. It conversely exposes a json-based
RPC API to query the knowledge base [12].

Knowledge is represented as RDF triples in the OWL sub-
language. Each time triples are added or removed from the
knowledge base, a Description Logics reasoner (PELLET2)
classifies the whole ontology and inserts all possible inferred
triples.

Relying on RDF triples and Description Logics has
advantages such as the availability of numerous mature open-
source libraries to manipulate the ontology, interoperability
with several major on-line knowledge bases (like OPENCYC,
WORDNET or DBPEDIA), open-world reasoning, and the
formal guarantee of decidability (it is always possible to
classify a Description Logics ontology).

It also has notable limitations, both fundamental (the
suitability of Description Logics when reasoning on –typically
non-monotonic– commonsense knowledge is questionable)
and practical: RDF triples imply only binary predicates (〈
subject predicate object〉), which constrains the expres-
siveness of the system or leads to cumbersome reifications.

2http://clarkparsia.com/pellet/



Fig. 2. Functional overview of knowledge base (ORO server, top part) and
the geometric situation assessment module (SPARK, bottom part)

Alternatives exist (like KNOWROB [13]) that mix RDF
with more expressive logic languages like PROLOG, at
the price, however, of other limitations, like closed-world
reasoning or immutable T-Box. The classification performance
is another issue: from our experience, with an ontology
sized for a standard experiment (about 100 classes and
200 instances), classification typically takes about 100ms,
which becomes problematic during interactions. Besides,
the performances are difficult to predict, since a seemingly
inoffensive new statement may indirectly change radically
the logical complexity of the whole knowledge model and
lead to notable degradation of classification time.

This knowledge model also largely excludes representation
of continuous phenomena (like time) or uncertain phenomena.
When required (for instance for action recognition), these are
managed inside the corresponding components, and are not
exposed at the semantic level.

Tools to manipulate and reason over ontologies are readily
available, mature, and already well accepted in the robotic
community [13], [14]. While alternatives like Answer Set
Programming have also been successfully investigated in
robotics [15], [16], in particular to deal with non-monotonic
reasoning, we did not actually hit any brick wall while work-
ing with OWL ontologies. We may reconsider this choice at a
later stage, but until now it has proven an effective framework
to quickly explore implementations of new cognitive abilities
(for instance, it has been conceptually and technically easy
to add support for independent knowledge models, one per
the agents the robot interacts with –see section VI-A).

Besides, because ontologies and RDF statements are
relatively simple concepts to grasp, it also effectively helped
to grow awareness amongst colleagues on the significance of
the “semantic level” when developing new components for
the robot.

III. SITUATION ASSESSMENT

Anchoring perceptions in a symbolic model requires
perception abilities and their symbolic interpretation. We rely

on a dedicated geometric and temporal reasoning module
called SPARK (SPAtial Reasoning & Knowledge [9]). It
is a situation assessment reasoner that generates symbolic
knowledge from the geometry of the environment with respect
to relations between objects, robots and humans (Fig. 2), also
taking into account the different perspective that each agent
has on the environment.

SPARK is an amodal geometric model of the environment
that serves both as basis for the fusion of the perception
modalities and as bridge with the symbolic layer. This
geometric model is continuously updated at run-time by the
robot based on its sensors (in our experiments, objects are
identified and localised through 2D barcodes, while humans
are tracked with Kinect-like devices, optionally assisted by
motion capture to accurately track the head motion, which is
required to compute what the human is looking at).

Computed symbolic relations: Over twenty physical rela-
tions are continuously computed by SPARK: spatial relations,
both agent-independent (like isOn, isNextTo or isMoving),
and agent-dependent (like isNear, leftTo), and also affor-
dances: sees, looksAt, pointsAt, canReach. Visibility
(with two levels corresponding to the field of view and the
field of attention) and pointing are computed by placing virtual
cameras in the SPARK 3D model, while reachability relies
on inverse kinematics. Several filters (based on hysteresis,
expected object behaviour, etc.) allow to partially account for
perception noise [7].

Ego-centric and allo-centric frames: SPARK enables
perspective-taking: spatial relations between entities can be
computed from different viewpoints, which let the robot
build a different, perspective-aware symbolic model of the
environment for each agent it interacts with. These models
are separately stored in the knowledge base.

This allows us to deal with ambiguities that arise when
one speaker refers to an object within a reference system
(or changes the reference system, i.e. switches perspective)
without making the reference frame explicit [17], [18].

As a result, the robot stores models of the environment
either in the ego-centric reference frame (from the robot
perspective) or in the allo-centric frame (addressee-centred).

IV. COMMUNICATION

Natural language grounding: Natural language process-
ing is one of the fields of human-robot interaction for which
the introduction of the semantic layer has been most beneficial.
In [6] we detail the techniques and the tool called dialogs
that we have developed for natural English language parsing
and grounding, along with verbalisation and (minimalist)
dialogue management.

Natural language input (in experiments, we rely on an
Android-based interface, with Google speech recognition)
is parsed into a grammatical structure, and atoms of each
sentence are resolved with the help of the ontology to ground
concepts like objects (i.e. when a user says “pick the can”,
resolve to which instance of can the user is referring to)
and actions. Sentences are sorted into questions, desires and
statements, and processed accordingly.



The system supports quantification (“give me {a | the |
some | all | any | ...} can”), thematic roles (action-specific
predicates that qualify the actions), interactive disambiguation
(the robot asks questions when it needs more information),
anaphora resolution (“give it to me”) based on dialogue
history. It also permits knowledge extension by learning
new semantic structures (for instance, a sentence like “learn
that cats are animals” is converted into 〈 Cat subClassOf

Animal〉), interprets common temporal and place adverbs
(like above or tomorrow) and translates to a certain extend
states (“I’m tired”) into experiences (〈 HUMAN experiences

state_1, state_1 hasFeature tired〉).
Limits of disambiguation at semantic level: One proto-

typical example of semantic disambiguation has been given in
[5] with the child game spygame: two players are facing each
other with a set of random objects in-between, one player
mentally choose one object, and the other player has to guess
the object by asking closed questions like Is your object small
or large? Based on the knowledge it has acquired, the robot
is able to minimize the number of questions required to find
the object.

When playing this kind of game, however, the issue
arises that the robot has no way to select which knowledge
about the object is relevant in the interaction context. For
instance, the knowledge base may store facts like 〈 obj1 type

ActiveConcept〉 (which internally means that this concept
was mentioned in a discussion in the last few seconds):
this information is not a relevant property of obj1 when
trying to disambiguate concepts with humans. This distinction
between internal knowledge (meaningful to the system only)
and common knowledge (whose meaning is understood by
all the interactors) has not been properly dealt with in our
architecture.

Besides, even knowledge that belongs to the common
knowledge may not be appropriate in a given interaction
context. For instance, the system may compute that at a
given instant the human is looking at the object: 〈 human

looksAt obj1〉. This property makes sense to both parties,
but in the context of the spygame, we would like to mainly
use immanent properties, not volatile like a gaze. More
research is required to identify relevant interaction contexts
and knowledge classes attached to them.

A. Multi-modal communication

Because all components rely on the same RDF formalism to
format their outputs, the different communication modalities
(explicit like verbal, deictic or based on gaze, or implicit like
postures) are presented in a homogeneous way. The dialogue
grounding process makes use of them at two distinct levels.

First, particular steps of the grounding process explicitly
check for the presence and value of specific facts: for instance,
when a set of instances matches a category (the human says
“give me the bottle” and the robot knows about three bottles),
the module may decide (it actually depends on the quantifier
preceding the class) to discard some of them based on their
visibility for the speaker (implicit communication context
built on the human posture).

Another example, when the human says “this”, the robot
checks if the human is currently pointing at some object. In
that case, this is replaced by the object focused on.

Note that, while the system benefits from the complemen-
tary modalities, they are not all required. The dialogue system
would for instance happily run with only the verbal modality,
at the cost of weaker interaction.

The second level of integration of multi-modality is
implicit: by computing symbolic properties from the geometry,
richer descriptions and hence discrimination possibilities are
available: for instance, if reachability is available, the robot
may ask “do you mean the bottle that is accessible to me?” to
discriminate between the three bottles. That way, procedures
relying on discrimination transparently benefit from added
modalities.

V. ROBOT CONTROL

A. Desires and experiences

Our robot execution controllers (OpenPRS-based SHARY
or Python-based PYROBOTS) have deep integration with the
knowledge base. It serves as the primary source of information
for semantic-aware decision-making.

We split the interaction situations stemming from the
situation assessment and communication components in
two categories: desires (performative act) and experiences
(assertive act).

Desires are typically human orders (“Give me that book”).
The nature of the desired action (to pick, give, look, bring,
show...), along with the action parametrization (what is acted
on? who should perform the action? etc.) are extracted from
the knowledge base, and either passed to a task planner
(presented in the next section) or executed if the procedure
is directly available.

Experiences, on the other hand, comprise of emotions,
states and questions (when asking a question, we consider the
human to be in an interrogative state). When the knowledge
base recognizes that an agent experiences a particular emotion
or state, the execution controller may decide to handle it,
typically by trying to answer the question or using the
emotional or physical state as a parameter for subsequent
actions. As an example, when the speaker says “I feel tired”,
we change the motion planner parametrization to lower
the effort the human needs to provide for the following
joint manipulation tasks. Note that this example has been
implemented as a proof-of-concept. We have not yet tried
to define a theoretical framework that would support action
alteration based on the user’s experienced states.

B. Event-driven control

The ORO server proposes two paradigms to access its
content: RPC-style queries (based on the standard SPARQL
language) or events. In its simplest form, a module can
subscribe to an event by passing through an event pattern (in
its basic form, a partial statement like 〈 ? type Elephant〉)
and a callback. Each time a new instance of elephant appears
in the knowledge base, the callback is triggered.



This allows us to write reactive robot controllers with a
high level of expressiveness: for instance, by subscribing to
the event 〈 human1 desires ?action, ?action type Look,

?action hasGoal myself〉, we could trigger a behaviour
when the human expresses (through dialogue, gestures...)
that he wants to look at the robot itself.

The robot controller designer does not need to directly
care about how this desire is produced (this is delegated to
perception modules), he can focus on the semantic of the
desire.

Note also that we take advantage of the reasoning capa-
bilities of the system: for example, the goal of the action
(〈 action hasGoal myself〉) may not be explicitly asserted,
but inferred by the reasoner based on other assertions.

C. Task planning

Our execution controllers rely on symbolic task planning
to convert faraway desires into a succession of atomic actions.
We use in our architecture the HATP planner (for Human
Aware Task Planner [10]). HATP is based on a Hierarchical
Task Network (HTN) refinement, which performs an iterative
task decomposition into sub-tasks until reaching atomic
actions. The planning domain defines the set of methods
describing how to decompose a task and represents the
procedural knowledge of the robot.

In order to produce a collaborative behaviour, the robot
plans not only for itself but also for the other agents. The
planning domain of each agent is instantiated from the agent-
specific model in the ORO server. The resulting plan, called
shared plan is a set of action streams, one per agent involved
in the goal achievement. HATP can also be tuned by setting
up different costs depending on the actions to apply and by
taking into account a set of constraints called social rules.
This tuning aims at adapting the robot’s behaviour according
to the desired level of cooperation of the robot.

Two important remarks: because HATP is a generic
symbolic task planner, we have been able to design a planning
domain at a semantic level which is close to the one used in
the human-robot dialogue (the planner vocabulary contains
concepts like give, table, is on...). Hence only a few
ontology rules have been required to map both the knowledge
extracted from the situation assessment and the statements
originated from the verbal interaction to the planner domain.

Second remark, after some research (see appendix B of [19]
for a detailed discussion) we have decided to represent
neither the planning domain nor the resulting plans in the
knowledge base: the planning domain (with task pre- and
postconditions) is stored in a specific format, outside of the
central declarative knowledge repository, and the plans are
directly communicated to the robot controller. Thus, like many
other cognitive architectures, we have independent declarative
and procedural knowledge stores.

VI. INTERNAL COGNITIVE PROCESSES

A. Theory of Mind

Theory of Mind (originally defined in [20]) is the cognitive
ability that a subject possesses to represent the mental state of

another agent, possibly including knowledge that contradicts
the subject’s own model: for example, a book can be at the
same time visible for myself, and not visible for you.

Children develop this skill, which is essential to understand
others’ perspectives during interactions, around the age of
three. It supposes the ability to build, store and retrieve
separate models of the knowledge of the interactors.

Our knowledge base implements such a mechanism: when
the robots infers a new agent has been introduced in the
knowledge base, it initializes a new, independent, ontology
for this agent. All the ontologies that are created share the
same common-sense knowledge, but rely on each agent’s per-
spective for the actual instantiation: the robot (geometrically)
computes that the book is in its own field of view, but not
in the human one. The robot knowledge contains the fact
〈 book isVisible true〉 while the human model contains 〈
book isVisible false〉.

One classical application of this cognitive skill is the so-
called False-Belief experiment (also known as the Sally and
Ann experiment) [21]: a child is asked to watch a scene where
two people, A and B, manipulate objects. Then A leaves and
B hides away one object. When A comes back, we ask the
child “where do you think A will look for the object?”. Before
acquiring a theory of mind, children are not able to separate
their own (true) model of the world (where they know that
the object was hidden) from the model of A, which contains
false beliefs on the world (A still thinks the object is at its
original position since he did not see B hiding it). Using
separate knowledge models in the knowledge base, we have
been able to replicate this experience with our robots [7].

B. Working memory

The ORO server also features a mechanism to mimic min-
imalistic forms of biological memory. When new statements
are inserted in the knowledge base, a memory profile is
optionally attached to them.

Three such profiles are predefined: short term,
episodic and long term. They each correspond to a
different lifetime for the statements (respectively 10 seconds, 5
minutes and no time limit). After this duration, the statements
are automatically removed from the knowledge base.

This approach is limited. In particular, episodic memory
primarily refers to the semantics of the statements (that is
expected to be related to an event) and not to a specific life
duration.

We rely however on this short term memory for a particular
use-case: active concepts. Some modules, like the natural
language processor, use the short term memory profile to
mark for a few seconds important concepts that are currently
manipulated by the robot. For example, if a human asks the
robot: “Give me all red objects”, the human, the Give action,
and each red objects that are found are successively marked
as active concepts by inserting statements such as 〈 human

type ActiveConcept〉 in the short-term memory (which can
be considered, in this case, to be a working memory). We
use this feature to trace certain knowledge-related processes.



Fig. 3. This diagram shows the average number of interactions with
the knowledge base during a one-hour long experiment with the robot.
Interactions are either knowledge alteration (addition/removal of statements)
or queries. They are averaged on a sliding window of 60 seconds.

C. Cognitive activity

Fig. 3 is a plot of the interactions (knowledge alterations
or knowledge queries) between the robot’s modules and the
central knowledge base during a one-hour long experiment.
Because most of the communication between the modules
are in fact supported by the knowledge base in our archi-
tecture (Fig. 1), it reflects well the exchanges of semantic
informations within the deliberative layer of the robot, which
we can tentatively call the cognitive activity of the robot.

This simplistic measurement needs to be refined to take
into account the fact that the raw number of RPC calls
to the knowledge base only imperfectly reflect the actual
cognitive processes running on, but it opens interesting
perspectives nevertheless. We could for instance investigate
possible correlations with the cognitive activity of a human
partner (measured via EEG or qualitative feedback).

VII. DISCUSSION

Altogether, the components we have presented compose
an architecture that we call knowledge-oriented:

• Knowledge is explicitly stored in one central and
consistent repository of facts, accessible for all modules.

• Knowledge is represented in a strict formalism (OWL
statements) and with a clearly defined vocabulary (stated
in the common-sense ontology).

• The first two points enable a loosely-coupled architecture
where modules can be removed or replaced easily by
other ones as long as they share the same semantics
(modules are defined by the knowledge they produce),

• We adopt a symbolic, reactive, event-driven approach
to robot control. By managing events at the same level
as the reasoner, we take full advantage of the inference
abilities of ORO to trigger events whose true conditions
can be inferred.

• Finally, this architecture allows for the combination
of very different knowledge modalities in a single

homogeneous environment, bringing mutual benefits
to components. For instance, the dialogue processing
module can perfectly run without any geometric percep-
tion, but its disambiguation routines can transparently
benefit from it when available (since richer symbolic
descriptions of objects are then available).

Those items are not new per se. It seems however
interesting to underline the shift of focus this implies during
the design and integration phases. We can adopt three
perspectives to discuss the techniques we have presented
here: first, the architect perspective: what are the pros
and cons of our approach from an engineer’s point of
view. Then, the logician perspective: does the promises of
automated reasoning for robots really come to fruition with
ontologies? And finally the cognitician perspective or how
explicit knowledge manipulation endows our robots with new
cognitive capabilities.

A. The Architect view: loose coupling and modalities merging

In this article, we have presented several sub-systems of
our robots: a module for geometric reasoning and situation
assessment (written in C++), a natural language interface
(written in Python), a symbolic task planner (written in
C++), two execution controller (one written in Python, one
in PRS). These modules communicate together through RDF
statements with only a few exceptions.

Since these statements are anchored in the robot’s pool
of knowledge, they actually convey shared and unambigu-
ous meaning through the system. This has one important
consequence from the perspective of the system architecture:
interfaces between modules are only defined in terms of
knowledge consumption and/or production. This brings good
decoupling properties. For instance, the output of the dialog
module is a new situation desired by the speaker. This module
can be transparently replaced or completed by any other
module that produces the same chunks of knowledge. Only
a thin protocol layer remains to get the modules to interact
with each other. This allows us to implement (otherwise
difficult) merging of radically different perception modalities
like vision (the robot sees an object on a table: the output
would look like 〈 obj1 isOn table1〉) and verbal description
(a human says to the robot the object on the table is red: it
leads to a query 〈 ? isOn table1〉 and then a new assertion:
〈 obj1 hasColor red〉).

Another consequence is that the communication channels
are de facto defined by the semantics of the information
they convey. This allows the system designers to think in
terms of which module produces or needs which knowledge,
instead of which module produces which service. We found
this approach to be helpful when implementing cognitive
functions like the theory of mind, the perspective taking or
the natural language grounding.

Finally, another good property of knowledge-based com-
munication between modules is the cognitive observability of
the system: by logging queries between modules (which is
even easier in our case since we rely on a central knowledge
management), one can trace the interactions between the



robot subsystems at a high abstraction level. We address the
significance of this property from the cognitive point of view
below.

The knowledge-oriented architecture also has shortcomings.
We can name here a few.

Because the sources of knowledge the robot has to deal
with are multiple and often not known at startup (typically, the
knowledge generated by a verbal interaction with a human),
it is difficult to formally guarantee reliability.

Also, it must be noted that actuation itself is directly piloted
by the execution controller through standard RPC calls (ROS
actions and/or Pocolibs requests): no knowledge abstraction
takes place.

Also on the sensing side, we have to bypass the semantic
layer in certain cases (extension of the symbolic task planner
with geometric constraints is one example).

Many aspects like uncertainty management, modal logics,
non-monotonic reasoning are not well addressed with the
Description Logic formalism, and remain to be explored to
gain the level of expressiveness required to cover many of
the more complex human-robot interaction scenarios.

B. The Logician view: the importance of trivial inferences

Where to find milk? Milk is a subclass of dairy
which is itself a subclass of a perishable goods.
The usual storage place for perishable goods is the
fridge, so the milk is likely to be found in a fridge.

This example of reasoning, quoted from Moritz Tenorth,
is a good example of simple yet non-trivial reasoning.
As a matter of fact, only very few of such prototypical
reasoning cases were positively identified in our scenarios
and experiments (and consequently implemented as rules in
ORO).

The design choices of our architecture partially explain
that fact: first, the planning task (which is a typical reasoning
task) is delegated to a dedicated, external planner (HATP).
Then, time is not represented in ORO, and consequently no
temporal reasoning takes place at this level: action recognition
or monitoring are handled by other layers, and the underlying
reasoning tasks are not implemented as explicit symbolic
rules in the knowledge base.

The experiments we have conducted are also likely to
have too simplistic semantics to let complex reasoning needs
emerge. Scenarios with more complex semantics would be
desirable to better stress the expressiveness and inference
abilities provided by Description Logics.

Is reasoning at the knowledge level immature or even super-
fluous, then? Not so: hundreds of trivial (from a human point
of view) inferences are continuously produced by the system
(translating inheritance relations, domain/range constraints,
transitivity, etc.) and encode a large amount of common-sense
knowledge that can not be otherwise conveniently asserted.
These trivial inferences are all the more important that an
expressive knowledge representation language is used. Since
a language like OWL allows it to directly represent high-level
concepts like partitions, cardinality restrictions, properties’
ranges and domains, it leads to a more implicit description

of the available knowledge. This in turn pushes for a lot of
“trivial” reasoning to make the knowledge pool explicit, and
hence largely reusable by the deliberative subsystems. With
the progress in the understanding of the relations between
expressiveness and (tractable) satisfiability, along with the
progress of reasoners, more and more of the assertions do not
need to be explicit anymore, and consequently are delegated
to the reasoner.

We think that common-sense encoding is likely to remain
the main application of reasoning in our architecture, where
reasoning related to decision making mostly happens outside
the knowledge representation system.

C. The Cognitician view: palpable knowledge and semantic
thinking

The original motivation to introduce explicit knowledge
management in our architecture was to transform the knowl-
edge in the robot from some ubiquitous, pervasive, multi-
modal and, most importantly, mostly undefined feature of the
system into an observable, quantifiable, manipulable resource:
a palpable feature of the system.

This transformation, both from the technical point of view
(the ORO server, the ontologies, the bindings, etc.) and as a
more subtle change in the practises related to the development
of robotic components, is probably the main outcome of this
work.

Knowledge is not an abstract concept anymore: it is a
set of statements, in most cases directly intelligible to the
developers, stored in one place. We can export them, monitor
them, review them, question them.

Communication between the robot’s modules is now con-
ceived in terms of what are the semantics of the information
flows, instead of a simple compatibility of interfaces. When
defining the frontiers of a robotic component, we do not think
anymore only in terms of is the interface complete and self-
contained, but also in terms of is the semantic complete and
consistent?. This allows a deeper, more correct modularity:
two modules that share the same, well-defined semantic can
be confidently exchanged. When we remove or disable a
component (the dialogue processing, the geometric reasoning,
...), we know precisely what knowledge will not be available
anymore.

We call this new property of our robot, that allows for
both qualitative and quantitative analysis of the beliefs, its
cognitive observability.

It is somewhat related to the idea of cognitive penetrability
introduced by Pylyshyn [22] in 1989, in the context of the
study of possible strong equivalences between computational
models and the psychological reality:

[One of the criterion] relies on the assumption that
we can identify certain clear cases of phenomenon
that should be accounted for at the knowledge
level, that is, in terms of the representations alone,
rather than in terms of properties of the cognitive
architecture. Phenomena that depend in a rational
way on subjects’ goals, beliefs, and utilities are a
case in point. For example in psychophysics we



assume that if a measure (such as a threshold)
changes systematically as we change the payoffs
(that is, the relative cost of errors of commission
and of omission), then the explanation of that
change must be given at the knowledge level –
in terms of decision theory – rather than in terms
of properties of sensors or other mechanisms that
are part of the architecture. In general showing that
certain empirical phenomena are sensitive to goals
and beliefs (or what I call cognitively penetrable)
is prima facie evidence that they should not be
attributed to properties of the architecture.

The introduction of an explicit knowledge level in our
architecture makes it possible to effectively assess the
cognitive penetrability of the whole robot behaviours (this
is however not new, and traditional BDI architectures would
also make this claim).

Even more, this architecture also contributes to bring closer
robotics and cognitive psychology: it provides clear entry
points to implement some classical psychology tests to robots,
be it related to perspective taking, to language understanding,
to a theory of mind (such as the False-Beliefs experiment),
etc.

VIII. CONCLUSION

This article does not claim to provide an exhaustive
assessment of the strengths and weaknesses of explicit
knowledge management in a large robotic architecture. Most
of the “lessons” that we have “learned” are not new, and the
various scientific communities (task planning, architecture
control, NLP, geometric reasoning, social psychology...) that
are related to human-robot interaction and robotic cognition
already know them.

One of the difficult challenges of cognitive robotics,
however, is to overcome the relative isolation of each of these
communities to build an autonomous embodied agent, able
to interact with humans. This contribution modestly offers a
critical look at one instance of such a “real-world” robotic
architecture, that tackles several of the facets of cognitive
robotics.

If we had a single “lesson” to retain, it would likely be
that one: shifting from a robotic design based on modules
and APIs to a system based on modules and human-level
semantic interfaces has been the main facilitator both for
glueing together heterogeneous deliberative modules in a
meaningful way, and quickly developing prototypes for new
upper-cognition abilities, like natural dialogue and theory of
mind.
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