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Planning robust motion strategies for a mobile robot

This paper reports on a recent work we have conducted concerning the development and the implementation of a robust motion planner for a mobile robot in a polygonal environment and in presence of uncertainty in robot control and sensing. Such a planner takes ezplicitly into account the uncertainty in robot control and produces a robust motion plan composed of sensor-based motion commands. The main originality ofthis approach is that it is able to account for a set of motion commands which may accumulate errors. It is based on a geometric analysis of the reachability and it generates motion strategies which may allow the robot to reduce its uncertainty.

A/ In the two-phase approach, a motion plan (or more generally a task plan) is first generated assuming no uncertainty and then, this plan is analyzed and patched in order to finally produce a robust task plan.

The analysis is mainly baaed on the propagation of uncertainty through the plan and its consequences on plan correctness [21, 14, 2, 15, 19, 22, ?, 18, 101. The plan is then modified by inserting complementary actions or sensor readings allowing to reduce uncertainty.

Introduction

While the problem of planning collision-free motions has received considerable attention, there has been only a limited number of contributions where uncertainties are taken explicitly into account in the planning process. However, uncertainties arising from sensor noise, control error and inaccurate models, constitute an integral part of the planning problem for a real robot moving in a real environment.

Consequently, the use of motion planners which do not take explicitly into account uncertainty is limited to situations where the uncertainties can be dealt with by simply growing the obstacles. This cannot be the case in assembly tasks, or in situations where the initial uncertainty is greater than the task tolerances.

Other challenging problems arise for mobile robots which are not equipped with an absolute relocalization procedure and which may accumulate position errors. Indeed, in such situations, as the error cannot be bounded by a fixed value, a growing of the obstacles is not sufficient.

One may argue that uncertainty may be reduced by reading and interpreting sensory data at execution time, allowing to build a new plan after executing a portion of the original plan, etc.. .This is certainly insufficient when it is necessary to reason in advance , taking into account the capacity of the available sensing functions (visibility, range, specularity, *this work is supported by the CEC Esprit 3 Project 6546 PROMotion uncertainty.. .), in order to generate a plan which allows to acquire the necessary knowledge to guide the robot towards the goal. Indeed, if the robot accumulates errors during its motion, it may even reach situations where it is "lost".

This paper reports on a recent work we have conducted concerning the development and the implementation of a robust motion planner for a mobile robot in a polygonal environment and in presence of uncertainty in control and sensing. Such a planner takes explicitly into account the uncertainty in robot control and produces a robust motion plan composed of sensor-based motion commands. The main originality of this approach is that it considers a set of motion commands which may accumulate errors. It is based on a geometric analysis of the reachability and it generates motion strategies which may allow the robot to reduce its uncertainty.

The paper is organized as follows. In section 2, we briefly discuss related work. Section 3 defines more precisely the problem we propose to tackle. In section 4 and 5, we describe how we perform a geometric analysis of the reachability taking into account the uncertainties, and how this analysis is used by the planner (section 6). We finally present some experimental results and discuss possible extensions.

Background and Related work

We do not have here the ambition to provide a detailed analysis of the relevant literature. The reader may refer to a very interesting state of the art and discussion in [ll, 12, 91.

Roughly speaking, the problem has been tackled in the literature following two general approaches: several contributions are based on a two-phase approach, while other contributions stem from the preimage backchaining approach.

When a plan cannot be patched, a backtrack can occur when planning is based on skeleton or script selection [START_REF] Lozano-Perez | Robot programming[END_REF]. The main interest of such an approach is that it can applied to problems which can be more general than motion planning (e.g. assembly, manipulation) and to robots with a high number of degrees of freedom. Its main drawback is that it is based on an a priori decomposition of the planning process and on the assumption that, in most situations, the plan can be locally patched.

B/

The second approach is the preimage backchaining approach which is based on the geometry of the Configuration Space. It has been originally proposed by [START_REF] Lozano-Perez | Representation and propagation of positionning uncertainties through manipulation robot programs[END_REF] and analyzed or extended through several contributions [7, 5,4, [START_REF] Latombe | Robot Motion Planning[END_REF]121. The underlying assumption is that it is necessary to take uncertainty explicitly into account in the planning process itself since it can have drastic consequences on the plan structure.

A preimage for a given motion command and for a given goal region (subset of the C-space), is a set of free configurations from which the command can be started and which guarantee that the robot will reach the goal region and stop inside it. Given a goal region and a start region,preimage backchaining consists in finding a sequence of commands (i.e. a plan) such that the inverse sequence allows an iterative construction of preimages starting from the goal and resulting in a preimage which contains the initial region.

While this problem, in its general formulation gives a useful computational framework, it raises "discouraging" complexity issues [4]. However this, by no means, affects its interest. It remains to find relevant instances of the general problem: 0 which integrate new sensor modalities (proximity 0 which provide sub-classes of the problem with 0 or which allow to implement algorithms of prac-

The problem that we have defined and the algorithm that we propose to solve it fall in these categories.

Note that we also need more elaborate models of different sensor modalities in order to be able to compute where (in the C-Space) they can be used and the nature of the measure they can provide together with its (pre-computed) estimated uncertainty. This should of course be done, taking into account the sensor characteristics (position relative to the robot frame, range, specularity.. .) in a given environment [6, 201. 3 Problem statement

The robot and the environment

Let us assume that the robot is a point moving in the plane amidst polygonal obstacles denoted by a set of oriented edges ej. We assume that the environment is perfectly known.

The robot is equipped with a position sensor (dead reckoning), and a proximity sensor which allows to detect contact with obstacles and to follow walls (edges). sensors, vision) and control algorithms [3, 81; "better" properties [START_REF] Lazanas | Landmark-based robot navigation[END_REF]; tical use even though they are not complete.

The error on position depends on past history (trajectory) and results in cumulative uncertainty.

We assume that the robot initial and final positions are in the free space or along a known edge with an associated uncertainty represented either by a disk or by an interval. The planner will provide a plan which allows, at any moment to know if the robot is at an uncertain position p: in the free space; p = ( 2 , y, E ) , where x, y denote the coordinates and E the value of the maximum error of the position sensor (dead reckoning)'; in the contact space, on a known edge ej; p = ( 2 , ~) where x denotes the nominal position along e, and E the value of maximum error; 0 or on a known obstacle vertex; the uncertainty is then set to zero'.

The commands and their models

There are several available motion primitives which are modelled by the type of initial situations where they can be applied, the final situation they can reach and the envelope of possible actual trajectories they can induce (Fig. 1):

0 MOVEDISTANCE(6), d ) 0 FOLLOW-WALLDISTANCE(d, [LEFT I RIGHT] ) 0 FOLLOW-WALL-UNTIL-VERTEX ( [LEFT I RIGHT]
These primitives are based on dead-reckoning and contact (or proximity) sensors for primitives designed to maintain contact (or k e d distance) with an edge. 2/ When the robot reaches without ambiguity an edge (after a IIOVE~TILXONTACT), the new uncertainty is modelled as an interval whose endpoints correspond to the intersection of the edge with the envelope of all possible trajectories.

3/ When the robot is commanded to follow an edge

(FOLLOWYALLDISTAICE) , we assume that the maximum value of the positioning error, increases linearly:

E ( Z ) = a.]].
-eo11 + EO with a E [0, 1 1 (Fig. 2-a).

4/ When the robot reaches a vertex (after a FOLLOWYALL-UITIL-VERTEX), E is reset to zero. If, from the reached vertex, the robot follows again the same edge (in the opposite direction) or an adjacent edge, using FOLLOW-WALLDISTANCE, the maximum value of the positioning error will again increase linearly, but with an initial value equal to zero: This will allow the planner to produce, when necessary, re-localization strategies along a given edge. In order to ensure a coherence between the different commands, we take: a = tan(h6). However, the algorithm we propose does need such an assumption.

~( 2 )

The planning problem

Given an initial and a goal position, in the free space or along a known edge together with their uncertainties (represented by a disk or by an interval), the planner should generate a sequence of motion commands whose execution guarantees to reach the goal with the desired uncertainty if the actual errors lie inside the control uncertainty cone AO.

We restrict the plan, except the initial and final steps, to contain a sequence of commands which allow the robot to follow edges or to reach an edge starting from another one.

In order to implement such a planner, we need a basic step which computes if a given entity (a disk or an edge) can be reached from another entity using the available commands. If a command exists, the entities will be said adjacent.

Informally, a target entity end, can be reached from an uncertain position p, if there exists at least one direction 6 such that, taking into account a given value of the uncertainty cone AO: 0 C1: the robot cannot miss entj (i.e. all possible paths inside the uncertainty cone, for all possible initial configurations, intersect e n t j ) ; entj is said to be Strongly visible from p; 0 C2: the robot cannot collide any other entity entk (i.e. no possible path inside the uncertainty cone, for all possible initial configurations intersect another entity before its intersection with e n t j ) ; if it collides an entity entk, entk is said to be Weakly visible from p; We develop, in the next sections, the computation of the disk-edge adjacency and edge-edge adjacency. While the first is quite simple ( §4), the second gives rise to the possibility of characterizing the adjacency from a complete edge and not only from an uncertain position on an edge ($5). This is possible because we have a knowledge on the evolution of uncertainty along an edge. It will provide us with a coherent way to combine and to compute the parameters for MOVE-UNTIL-CONTACT, FOLLOW-WALLDISTAICE and FOLLOW-WALLJJMTIL-VERTEX commands.

Disk-Edge Adjacency

This adjacency can be easily computed as illustrated by Fig. 3. The strong visibility is satisfied from at most one range of O values, while the weak visibility can correspond to one range of O values for each entity in the environment different from the target entity. The adjacency will be then verified for a set of O ranges corresponding to the set difference between the strong visibility range and the weak visibility ranges. The O- ranges are determined using the tangents to the disk going through the edges endpoints. Figure 4 shows an example of workspace and the adjacencies computed by the algorithm. Let us consider that the robot arrived on a given edge ei at position (zo,~,). We want to characterize the parameters of the motion commands which allow to reliably reach the other edges of the environment from this position. Some of these edges can be directly Figure 4: An example of diskledge adjacency reached with a MOVE-UNTIL-CONTACT using a computation similar to the case described in $4. However there can also be other edges which are not directly "visible" from the current position but which can be reached if the robot first executes a FOLLOWYALLDISTANCE along ej from zo to another position z. In some other cases, the additional uncertainty induced by FOLLOWYALLDISTANCE will be too important and a re-localization (using FOLLOW-UNTIL-VERTEX) will be required. In this section, we first introduce a notion of visibility between edges; then we explain how this notion is used to decompose the (z,O)-space (which parametrizes the set of motion commands) into regions where the reachability of specific edges is guaranteed. These regions allow to determine the adjacencies between the edges of the environment.

Visibility regions

An edge e, is said to be strongly (resp. weakly) visible from a position z along ei and for a commanded motion in direction 0, if for any (resp. some) uncertain position 5 E [z -~( z ) , z + ~( z ) ] ,

the straight line issued from 5 in direction 0 intersects the edge e,. The regions of the (2, B)-space which verify this definition.are called the strong (resp. weak) visibility regions from ej to ej; they are respectively denoted S V j and WVj.

These regions are limited by two curves Bmrn(e) and Bma,(z). For a linear evolution of the uncertainty ~( z ) , it can be easily shown that the tangents of these extrema1 orientations also depend linearly on z. Thus, SVj and WVj can be simply represented in the (e, tan(8))-space by trapezoidal regions. Figure 5 shows an example which illustrates the construction of the visibility regions.

Note that more complex situations occur when the start edge is intersected by the support line of ej. In this case, SVj and WVj may possibly consist of several 

Adjacency regions

The adjacency regions dj from ej to ej, consist of the (z,0) values such that the motions issued from any uncertain position z f c(z) along ej, and in any direction O f A0 are guaranteed to endup on e, ; that is, the robot will not miss ej and it will not be stopped on its way by another edge. We describe below the two steps of the algorithm we implemented in order to compute the dj regions.

The first step is performed without considering the directional uncertainty A(?. In this case, dj clearly corresponds to the sub-regions of SVj which are not contained into the union of the wvk regions associated to the edges lying between ei and e,. A, is first initialized to SVj ; then it is iteratively decomposed by considering each of the wvk. The basic operation of each iteration consists in computing the set difference between two regions. This computation can be easily performed by considering their representations in the (e, tan(O))-space; it results in decomposing each trapezoid into at most four trapezoidal regions.

The second step is needed to account for Ae. Hence, the adjacency regions dj only contain the points (z, 0) such that (2, tan(0 f A0) belongs to the trapezoids produced by the first step. Using the equations of the upper and lower lines defining each trapezoid, we derive the expression of the curves which limit the corresponding sub-region of dj . 

The Planner

The planner is given a set of polygonal obstacles, a value for the angle uncertainty cone AO, the initial and final positions represented by two discs Cr and CG. The search space is a directed graph G of uncertain positions p = ( 2 , y, E). The nodes are the initial and final positions pr and p~ and a discrete set of positions lying on the edges of the environment. An arc between two nodes correspond to a given motion command as defined in $3.2.

The planner initially constructs a graph G containing only the two nodes associated to pr and PG. In a first step, it simply tries to connect them by checking that the half-lines D 1 and DZ issued from PI (Fig. 7) If not, the initial node is expanded in order to generate a discrete set of positions lying on the "visible" edges of the environment. These successors are created for the extrema1 values of the legal &ranges. The arcs issued from PI correspond to a MOVElJliTILXOITACT motion command.

do
The other nodes of the graph are incrementally created during the search of a minimum-cost path connecting pr to PG. The costs assigned to the arcs are simply computed from the length of the nominal path connecting two adjacent nodes, and the search is carried out by a classical A* algorithm. Each iteration of the algorithm consists in expanding the "best" node of the OPEN list. We now describe the expansion of a current node denoted Pcur lying on an edge ecur. If Pcur can be directly connected to PG, the expansion simply consists in linking both nodes with a MOVEDISTAHCE arc and the planner returns success. Otherwise, the successors are generated as follows: pcur ie first connected with FOUOUYIJTIL-VERTEX motions to the two endpoints of edge ecur. As the robot is assumed to perfectly detect a corner of the environment, a null uncertainty is associated to both corresponding nodes ( p f e f l and Pright for the example of For all the other edges ej, the adjacency regions computed from eCbr to ei are used to generate motion commands guaranteed to reach the edge ei. Three cases can occur: 0 The set of adjacency regions Ai is empty (ie. the edge is too short to be reachable from eeur with the current uncertainty or it is completely obstructed by other edges): no successors are associated to this edge. This is the case of edge el on the example.

0 The location Pcur along the edge ecur is such that one (or more) feasible range of orientations exists in the Ai's regions (case illustrated by the A2 region shown in Fig. 8-b). A successor is then created for each of the two extrema1 orientations of the ranges (e: and 0; for the example). These new nodes are connected to Pcur by MOVE-UHTIL-COIOTACT commands.

0 When the vertical line issued in the (z,O)-space at the current z position does not intersect any cells of the Ai regions (case illustrated by the A3 regions of Fig. 8-b associated to the edge e3), the robot first needs to follow ecur toward the left (resp. the right) until it reaches a position denoted p' (resp. p") on the figure, and corresponding to the beginning of the nearest legal range. From this intermediate position p' (resp. p") reached via a FOLLOWDISTANCE command, a MOVEYNTILXONTACT motion command issued in direction 0: (resp. e;) allows to generate the successor p: (resp. p;) on edge e3.

Figure 8-c shows the successors created for the environment of Fig. 8-a; it also indicates the motion commands produced to connect Pcur to these nodes. The algorithms presented above have been implemented in C on a Sun Sparc 10 computer. We ran the planner on several workspaces, with various sizes of the initial and goal regions (€1 and 6 ~) and with different values of the directional uncertainty Ad.

Experimental Results

Figures 9, 10 and 11 illustrate some results obtained for a same polygonal workspace containing 98 edges. The black polyline joining the initial and goal regions represent the nominal trajectory and the grey regions show the areas that may by swept by the robot during the execution of the motion commands because of the uncertainties.

The first example (Fig. 9) was run for small values of both initial and control uncertainties (A0 = 5deg.).

Note that the positional uncertainty is reset at the end of the FOLLOWYIOTIL-VERTEX commands (positions p2, p4 and p6) because of the vertex based re-localization.

Only 35 nodes were developed during the search and the solution was obtained in half a second after the computation of the adjacency regions between the edges which required 6 seconds on a Sparc 10 workst at ion. The second example was run with the same value of A0 but with a larger radius for the initial disk. In this case, the initial uncertainty is too important to directly reach the polygon displayed at the center of the figure. After a first motion guaranteed to stop on the left-down wall of the workspace, and a precise vertex localization at position p2, this large polygon can be reliably reached with the next MOVE-UNTIL-CONTACT command (position p3). Figure 11 : Same example with a larger control uncertainty Finally, the third example was run with A0 set to 10 degrees. The small obstacles around the goal region cannot be used anymore to localize the robot and a completely different motion strategy is required as illustrated by Fig. 11. Note that the solution produced by the planner contains two FOLLOWDISTAIfCE commands between pz (resp. p6) and p3 (resp. p7). In both cases, the edge containing p4 (resp. ps) could not be reached directly from position pz (resp. p6) and the planner used the adjacency regions between the corresponding edges to compute the first position at which the next IIOVEYIfTIL-COBTACT command was guaranteed to succeed.

For the two last examples, 46 and 78 nodes were respectively developed during the search and the so- lution was obtained in both cases after less than one second of computation.

Discussion and Extensions

The main originality of the approach described above is its ability to produce robust motion plans composed of sensor-based motion commands which may accumulate errors, and to determine where the robot needs to re-localize in order to guarantee a successful execution of the trajectory.

Although the edge-edge adjacency described in 5 5 captures exactly all the guaranteed motions between two given edges of the workspace, the planner described in § 6 is not complete since the number of paths explored is a finite set (discrete points (z,8) selected into the computed adjacency regions). However, the planner becomes complete if we restrict the class of solutions to strategies where a vertex re-localization is systematically performed after the HOVE-UHTIL-COITACT commands (the errors do not depend anymore on the complete past history). Note that in this case, and when the error A8 tends to zero, the search space of the algorithm degenerates to a classical visibility graph.

The algorithm described in this paper solves a relatively simple instance of the motion planning problem in presence of uncertainty. We are currently investigating several extensions of the approach. Some of them are rather straightforward; the algorithms can be easily adapted to deal with a circular robot and to relax the assumption of a perfect proximity sensor. Another interesting extension would be to consider the information which can be provided by other types of sensors (distance to the obstacle, orientation of the edges) and to explore the possibility of producing conditional strategies.

Nevertheless, there are numerous situations where it should be enough to use a planner like the one we described, which is really able to find in a very reasonable time, non-trivial sensor-based motions strategies for a mobile robot equipped with proximity sensors.
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