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Abstract 
This paper reports on a recent work we have con- 

ducted concerning the development and the implemen- 
tation of a robust motion planner for a mobile robot 
in a polygonal environment and in presence of uncer- 
tainty in robot control and sensing. Such a planner 
takes ezplicitly into account the uncertainty in robot 
control and produces a robust motion plan composed of 
sensor-based motion commands. The main originality 
of th is  approach is that it is able to account for a set of 
motion commands which may accumulate errors. It  is 
based on a geometric analysis of the reachability and it 
generates motion strategies which may allow the robot 
to reduce i ts  uncertainty. 

1 Introduction 
While the problem of planning collision-free mo- 

tions has received considerable attention, there has 
been only a limited number of contributions where 
uncertainties are taken explicitly into account in the 
planning process. However, uncertainties arising from 
sensor noise, control error and inaccurate models, con- 
stitute an integral part of the planning problem for a 
real robot moving in a real environment. 

Consequently, the use of motion planners which do 
not take explicitly into account uncertainty is limited 
to situations where the uncertainties can be dealt with 
by simply growing the obstacles. This cannot be the 
case in assembly tasks, or in situations where the ini- 
tial uncertainty is greater than the task tolerances. 

Other challenging problems arise for mobile robots 
which are not equipped with an absolute re- 
localization procedure and which may accumulate po- 
sition errors. Indeed, in such situations, as the error 
cannot be bounded by a fixed value, a growing of the 
obstacles is not sufficient. 

One may argue that uncertainty may be reduced 
by reading and interpreting sensory data at execu- 
tion time, allowing to build a new plan after execut- 
ing a portion of the original plan, etc.. .This is cer- 
tainly insufficient when it is necessary to reason in 
advance , taking into account the capacity of the avail- 
able sensing functions (visibility, range, specularity, 
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uncertainty.. .), in order to generate a plan which al- 
lows to acquire the necessary knowledge to guide the 
robot towards the goal. Indeed, if the robot accu- 
mulates errors during its motion, it may even reach 
situations where it is "lost". 

This paper reports on a recent work we have con- 
ducted concerning the development and the implemen- 
tation of a robust motion planner for a mobile robot 
in a polygonal environment and in presence of uncer- 
tainty in control and sensing. Such a planner takes 
explicitly into account the uncertainty in robot con- 
trol and produces a robust motion plan composed of 
sensor-based motion commands. The main originality 
of this approach is that it considers a set of motion 
commands which may accumulate errors. It is based 
on a geometric analysis of the reachability and it gen- 
erates motion strategies which may allow the robot to 
reduce its uncertainty. 

The paper is organized as follows. In section 2, we 
briefly discuss related work. Section 3 defines more 
precisely the problem we propose to tackle. In sec- 
tion 4 and 5, we describe how we perform a geometric 
analysis of the reachability taking into account the un- 
certainties, and how this analysis is used by the plan- 
ner (section 6). We finally present some experimental 
results and discuss possible extensions. 

2 Background and Related work 
We do not have here the ambition to provide a de- 

tailed analysis of the relevant literature. The reader 
may refer to a very interesting state of the art and 
discussion in [ll,  12, 91. 

Roughly speaking, the problem has been tackled 
in the literature following two general approaches: 
several contributions are based on a two-phase ap- 
proach, while other contributions stem from the preim- 
age backchaining approach. 

A/ In the two-phase approach, a motion plan (or 
more generally a task plan) is first generated assum- 
ing no uncertainty and then, this plan is analyzed and 
patched in order to finally produce a robust task plan. 
The analysis is mainly baaed on the propagation of 
uncertainty through the plan and its consequences on 
plan correctness [21, 14, 2, 15, 19, 22, ?, 18, 101. The 
plan is then modified by inserting complementary ac- 
tions or sensor readings allowing to reduce uncertainty. 
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When a plan cannot be patched, a backtrack can occur 
when planning is based on skeleton or script selection 
[15]. The main interest of such an approach is that 
it can applied to problems which can be more general 
than motion planning (e.g. assembly, manipulation) 
and to robots with a high number of degrees of free- 
dom. Its main drawback is that it is based on an a 
priori decomposition of the planning process and on 
the assumption that, in most situations, the plan can 
be locally patched. 

B/ The second approach is the preimage backchain- 
ing approach which is based on the geometry of the 
Configuration Space. It has been originally proposed 
by [16] and analyzed or extended through several con- 
tributions [7, 5,4,  11, 121. The underlying assumption 
is that it is necessary to take uncertainty explicitly into 
account in the planning process itself since it can have 
drastic consequences on the plan structure. 

A preimage for a given motion command and for a 
given goal region (subset of the C-space), is a set of 
free configurations from which the command can be 
started and which guarantee that the robot will reach 
the goal region and stop inside it. Given a goal region 
and a start region,preimage backchaining consists in 
finding a sequence of commands (i.e. a plan) such that 
the inverse sequence allows an iterative construction 
of preimages starting from the goal and resulting in a 
preimage which contains the initial region. 

While this problem, in its general formulation gives 
a useful computational framework, it raises “discour- 
aging” complexity issues [4]. However this, by no 
means, affects its interest. It remains to find relevant 
instances of the general problem: 

0 which integrate new sensor modalities (proximity 

0 which provide sub-classes of the problem with 

0 or which allow to implement algorithms of prac- 

The problem that we have defined and the algorithm 
that we propose to solve it fall in these categories. 

Note that we also need more elaborate models of 
different sensor modalities in order to be able to com- 
pute where (in the C-Space) they can be used and the 
nature of the measure they can provide together with 
its (pre-computed) estimated uncertainty. This should 
of course be done, taking into account the sensor char- 
acteristics (position relative to the robot frame, range, 
specularity.. .) in a given environment [6, 201. 
3 Problem statement 
3.1 The robot and the environment 

Let us assume that the robot is a point moving in 
the plane amidst polygonal obstacles denoted by a set 
of oriented edges ej. We assume that the environment 
is perfectly known. 

The robot is equipped with a position sensor (dead 
reckoning), and a proximity sensor which allows to de- 
tect contact with obstacles and to follow walls (edges). 

sensors, vision) and control algorithms [3, 81; 

“better” properties [13]; 

tical use even though they are not complete. 

The error on position depends on past history (trajec- 
tory) and results in cumulative uncertainty. 

We assume that the robot initial and final positions 
are in the free space or along a known edge with an 
associated uncertainty represented either by a disk or 
by an interval. The planner will provide a plan which 
allows, at any moment to know if the robot is at an 
uncertain position p: 

in the free space; p = (2,  y, E ) ,  where x, y denote 
the coordinates and E the value of the maximum 
error of the position sensor (dead reckoning)’; 
in the contact space, on a known edge ej; p = 
( 2 , ~ )  where x denotes the nominal position along 
e, and E the value of maximum error; 

0 or on a known obstacle vertex; the uncertainty is 
then set to zero’. 

3.2 The commands and their models 
There are several available motion primitives which 

are modelled by the type of initial situations where 
they can be applied, the final situation they can reach 
and the envelope of possible actual trajectories they 
can induce (Fig. 1): 

0 MOVEDISTANCE(6), d )  

0 FOLLOW-WALLDISTANCE(d, [LEFT I RIGHT] ) 
0 FOLLOW-WALL-UNTIL-VERTEX ( [LEFT I RIGHT] 
These primitives are based on dead-reckoning and 

contact (or proximity) sensors for primitives designed 
to maintain contact (or k e d  distance) with an edge. 

0 MOVE-UHTIL-CONTACT(~> 

81 

, n 

~~~ ~~ 

Figure 1: Model of the different primitives 

1/ When the robot is commanded to move in a given 
direction 6 (MOVEDISTANCE, MOVE-UNTIL-CONTACT), 
the robot follows a path such that the tangent to the 

‘the disk centered on (z,g) with a radius equal to c may 

2it is straightforward to extend it to a fixed value 
overlap obstacles 

1313 

Authorized licensed use limited to: LAAS. Downloaded on November 22,2023 at 17:15:50 UTC from IEEE Xplore.  Restrictions apply. 



path at any point makes an angle with the direction O 
which is smaller than a pre-specified value AO called 
the angle of the control uncertainty cone. 

2/ When the robot reaches without ambiguity an 
edge (after a IIOVE~TILXONTACT), the new uncer- 
tainty is modelled as an interval whose endpoints cor- 
respond to the intersection of the edge with the enve- 
lope of all possible trajectories. 
3/ When the robot is commanded to follow an edge 

(FOLLOWYALLDISTAICE) , we assume that the maxi- 
mum value of the positioning error, increases linearly: 
E ( Z )  = a.]]. - eo11 + E O  with a E [0, 11 (Fig. 2-a). 

4/ When the robot reaches a vertex (after a 
FOLLOWYALL-UITIL-VERTEX), E is reset to zero. If, 
from the reached vertex, the robot follows again the 
same edge (in the opposite direction) or an adja- 
cent edge, using FOLLOW-WALLDISTANCE, the maxi- 
mum value of the positioning error will again in- 
crease linearly, but with an initial value equal to zero: 
~ ( 2 )  = a.2 (Fig 2-b and 2-c). 

W d 

Figure 2: Evolution of the uncertainty along an edge 

This will allow the planner to produce, when neces- 
sary, re-localization strategies along a given edge. In 
order to ensure a coherence between the different com- 
mands, we take: a = tan(h6). However, the algorithm 
we propose does need such an assumption. 
3.3 The planning problem 

Given an initial and a goal position, in the free space 
or along a known edge together with their uncertain- 
ties (represented by a disk or by an interval), the plan- 
ner should generate a sequence of motion commands 
whose execution guarantees to reach the goal with the 
desired uncertainty if the actual errors lie inside the 
control uncertainty cone AO. 

We restrict the plan, except the initial and final 
steps, to contain a sequence of commands which allow 
the robot to follow edges or to reach an edge starting 
from another one. 

In order to implement such a planner, we need a 
basic step which computes if a given entity (a disk or 
an edge) can be reached from another entity using the 
available commands. If a command exists, the entities 
will be said adjacent. 

Informally, a target entity end, can be reached from 
an uncertain position p, if there exists at least one 
direction 6 such that, taking into account a given value 
of the uncertainty cone AO: 

0 C1: the robot cannot miss entj (i.e. all possible 
paths inside the uncertainty cone, for all possible 
initial configurations, intersect e n t j ) ;  ent j  is said 
to be Strongly visible from p; 

0 C2: the robot cannot collide any other entity 
entk (i.e. no possible path inside the uncertainty 
cone, for all possible initial configurations inter- 
sect another entity before its intersection with 
e n t j ) ;  if it collides an entity entk,  entk is said 
to be Weakly visible from p; 

We develop, in the next sections, the computation 
of the disk-edge adjacency and edge-edge adjacency. 
While the first is quite simple (§4), the second gives 
rise to the possibility of characterizing the adjacency 
from a complete edge and not only from an uncer- 
tain position on an edge ($5) .  This is possible be- 
cause we have a knowledge on the evolution of uncer- 
tainty along an edge. It will provide us with a coher- 
ent way to combine and to compute the parameters 
for MOVE-UNTIL-CONTACT, FOLLOW-WALLDISTAICE and 
FOLLOW-WALLJJMTIL-VERTEX commands. 

4 Disk-Edge Adjacency 
This adjacency can be easily computed as illustrated 

by Fig. 3. The strong visibility is satisfied from at most 
one range of O values, while the weak visibility can 
correspond to one range of O values for each entity in 
the environment different from the target entity. The 
adjacency will be then verified for a set of O ranges 
corresponding to the set difference between the strong 
visibility range and the weak visibility ranges. The O- 
ranges are determined using the tangents to the disk 
going through the edges endpoints. Figure 4 shows an 
example of workspace and the adjacencies computed 
by the algorithm. 

Figure 3: 0-ranges associated to the &&-edge adjacency 

5 Edge-Edge adjacency 
Let us consider that the robot arrived on a given 

edge ei at position (zo,~,). We want to characterize 
the parameters of the motion commands which allow 
to reliably reach the other edges of the environment 
from this position. Some of these edges can be directly 
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Figure 4: An example of diskledge adjacency 

reached with a MOVE-UNTIL-CONTACT using a computa- 
tion similar to the case described in $4. However there 
can also be other edges which are not directly “visible” 
from the current position but which can be reached 
if the robot first executes a FOLLOWYALLDISTANCE 
along ej from zo to another position z. In some 
other cases, the additional uncertainty induced by 
FOLLOWYALLDISTANCE will be too important and a 
re-localization (using FOLLOW-UNTIL-VERTEX) will be 
required. In this section, we first introduce a notion 
of visibility between edges; then we explain how this 
notion is used to decompose the (z,O)-space (which 
parametrizes the set of motion commands) into regions 
where the reachability of specific edges is guaranteed. 
These regions allow to determine the adjacencies be- 
tween the edges of the environment. 

5.1 Visibility regions 
An edge e, is said to be strongly (resp. weakly) vis- 

ible from a position z along ei and for a commanded 
motion in direction 0, if for any (resp. some) un- 
certain position 5 E [z - ~ ( z ) ,  z + ~(z) ] ,  the straight 
line issued from 5 in direction 0 intersects the edge e,. 
The regions of the (2, B)-space which verify this defi- 
nition.are called the strong (resp. weak) visibility 
regions from ej to ej; they are respectively denoted 
S V j  and WVj. 

These regions are limited by two curves Bmrn(e) 
and Bma,(z). For a linear evolution of the uncer- 
tainty ~ ( z ) ,  it can be easily shown that the tangents 
of these extrema1 orientations also depend linearly on 
z. Thus, SVj and WVj can be simply represented in 
the (e, tan(8))-space by trapezoidal regions. Figure 5 
shows an example which illustrates the construction 
of the visibility regions. 

Note that more complex situations occur when the 
start edge is intersected by the support line of ej. In 
this case, SVj and WVj may possibly consist of several 

Figure 5:  Strong and Weak visibility regions 

trapezoidal subregions ’. 
5.2 Adjacency regions 

The adjacency regions dj from ej to ej, consist 
of the (z,0) values such that the motions issued from 
any uncertain position z f c(z) along ej, and in any 
direction O f  A0 are guaranteed to endup on e, ; that is, 
the robot will not miss ej and it will not be stopped 
on its way by another edge. We describe below the 
two steps of the algorithm we implemented in order to 
compute the dj regions. 

The first step is performed without considering the 
directional uncertainty A(?. In this case, dj clearly 
corresponds to the sub-regions of SVj which are not 
contained into the union of the wvk regions associ- 
ated to the edges lying between ei and e,. A, is first 
initialized to SVj ; then it is iteratively decomposed 
by considering each of the wvk. The basic operation 
of each iteration consists in computing the set differ- 
ence between two regions. This computation can be 
easily performed by considering their representations 
in the (e, tan(O))-space; it results in decomposing each 
trapezoid into at most four trapezoidal regions. 

The second step is needed to account for Ae. Hence, 
the adjacency regions dj only contain the points (z, 0) 
such that (2, tan(0 f A0) belongs to the trapezoids 
produced by the first step. Using the equations of 
the upper and lower lines defining each trapezoid, we 
derive the expression of the curves 
which limit the corresponding sub-region of dj . 

Figure 6-b shows a simple environment and the ad- 
jacency regions A7 computed between the edges el 
and e7. The external contours correspond to the 
boundary of the adjacency regions before “shrinking” 
by 110. 

and 

3at most two disconnected regions for SV, and three con- 
nected regions for WVj.  See [l] for a more detailed analysis. 
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Figure 6: Example of adjacency regions from e1 to e7 

6 The Planner 
The planner is given a set of polygonal obstacles, a 

value for the angle uncertainty cone AO, the initial and 
final positions represented by two discs Cr and CG. 
The search space is a directed graph G of uncertain 
positions p = (2 ,  y, E). The nodes are the initial and 
final positions pr and p~ and a discrete set of positions 
lying on the edges of the environment. An arc between 
two nodes correspond to a given motion command as 
defined in $3.2. 

The planner initially constructs a graph G contain- 
ing only the two nodes associated to pr and PG. In a 
first step, it simply tries to connect them by checking 
that the half-lines D1 and DZ issued from PI (Fig. 7) 
do not intersect any edge e, and both intersect the 
circular region CG.  In this case, the single motion 
command MOVEDISTABCE(6IG, d r ~ )  issued in direc- 
tion f?IG and terminating after a nomind distance drG 
is guaranteed to  end somewhere inside the goal region. 

./ b/ e/ 

Figure 7: a/ PG and PI are connected. b/.and .c/ PG 
and p~ cannot be connected (b/ potential coheon with the 
environment, c /  final error too large) 

If not, the initial node is expanded in order to gen- 
erate a discrete set of positions lying on the “visible” 
edges of the environment. These successors are created 
for the extrema1 values of the legal &ranges. The arcs 
issued from PI correspond to a MOVElJliTILXOITACT 
motion command. 

The other nodes of the graph are incrementally cre- 
ated during the search of a minimum-cost path con- 
necting pr to PG. The costs assigned to the arcs 
are simply computed from the length of the nominal 
path connecting two adjacent nodes, and the search is 

carried out by a classical A* algorithm. Each itera- 
tion of the algorithm consists in expanding the “best” 
node of the OPEN list. We now describe the expan- 
sion of a current node denoted Pcur lying on an edge 
ecur. If Pcur can be directly connected to  PG, the ex- 
pansion simply consists in linking both nodes with a 
MOVEDISTAHCE arc and the planner returns success. 
Otherwise, the successors are generated as follows: 
pcur ie first connected with FOUOUYIJTIL-VERTEX mo- 
tions to the two endpoints of edge ecur. As the robot 
is assumed to perfectly detect a corner of the environ- 
ment, a null uncertainty is associated to both corre- 
sponding nodes (pfef l  and Pright for the example of 
Fig. 8 which illustrates the node expansion mecha- 
nism). 

Id 

~~~ 

Figure 8: Node expansion mechanism 

For all the other edges ej, the adjacency regions 
computed from eCbr to ei are used to generate motion 
commands guaranteed to reach the edge ei. Three 
cases can occur: 

0 The set of adjacency regions Ai is empty (ie. the 
edge is too short to be reachable from eeur with the 
current uncertainty or it is completely obstructed by 
other edges): no successors are associated to this edge. 
This is the case of edge el on the example. 

0 The location Pcur along the edge ecur is such that 
one (or more) feasible range of orientations exists in 
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the Ai’s regions (case illustrated by the A2 region 
shown in Fig. 8-b). A successor is then created for each 
of the two extrema1 orientations of the ranges (e: and 
0; for the example). These new nodes are connected 
to Pcur by MOVE-UHTIL-COIOTACT commands. 

0 When the vertical line issued in the (z,O)-space 
at the current z position does not intersect any cells 
of the Ai regions (case illustrated by the A3 regions 
of Fig. 8-b associated to the edge e3), the robot first 
needs to follow ecur toward the left (resp. the right) 
until it reaches a position denoted p’ (resp. p”) on 
the figure, and corresponding to the beginning of the 
nearest legal range. From this intermediate position p’ 
(resp. p”) reached via a FOLLOWDISTANCE command, 
a MOVEYNTILXONTACT motion command issued in di- 
rection 0: (resp. e;) allows to generate the successor 
p: (resp. p;) on edge e3. 

Figure 8-c shows the successors created for the envi- 
ronment of Fig. 8-a; it also indicates the motion com- 
mands produced to connect Pcur to these nodes. 

7 Experimental Results 

Figure 9: 
uncertainty 

Solution obtained for small initial and control 

The algorithms presented above have been imple- 
mented in C on a Sun Sparc 10 computer. We ran 
the planner on several workspaces, with various sizes 
of the initial and goal regions (€1 and 6 ~ )  and with 
different values of the directional uncertainty Ad. 

Figures 9, 10 and 11 illustrate some results obtained 
for a same polygonal workspace containing 98 edges. 
The black polyline joining the initial and goal regions 
represent the nominal trajectory and the grey regions 
show the areas that may by swept by the robot during 

the execution of the motion commands because of the 
uncertainties. 

The first example (Fig. 9) was run for small values 
of both initial and control uncertainties (A0 = 5deg.) .  
Note that the positional uncertainty is reset at the end 
of the FOLLOWYIOTIL-VERTEX commands (positions p2, 
p4 and p6) because of the vertex based re-localization. 
Only 35 nodes were developed during the search and 
the solution was obtained in half a second after the 
computation of the adjacency regions between the 
edges which required 6 seconds on a Sparc 10 work- 
st at ion. 

I 

a 

Figure 10: Same example with a larger initial uncertainty 

The second example was run with the same value 
of A0 but with a larger radius for the initial disk. In 
this case, the initial uncertainty is too important to 
directly reach the polygon displayed at the center of 
the figure. After a first motion guaranteed to stop on 
the left-down wall of the workspace, and a precise ver- 
tex localization at position p2, this large polygon can 
be reliably reached with the next MOVE-UNTIL-CONTACT 
command (position p3). 

Figure 11 : Same example with a larger control uncertainty 

Finally, the third example was run with A0 set to 10 
degrees. The small obstacles around the goal region 
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cannot be used anymore to localize the robot and a 
completely different motion strategy is required as il- 
lustrated by Fig. 11. Note that the solution produced 
by the planner contains two FOLLOWDISTAIfCE com- 
mands between pz (resp. p6) and p3 (resp. p7). In 
both cases, the edge containing p4 (resp. ps) could 
not be reached directly from position pz (resp. p6) 
and the planner used the adjacency regions between 
the corresponding edges to compute the first position 
at which the next IIOVEYIfTIL-COBTACT command was 
guaranteed to succeed. 

For the two last examples, 46 and 78 nodes were 
respectively developed during the search and the so- 
lution was obtained in both cases after less than one 
second of computation. 

8 Discussion and Extensions 
The main originality of the approach described 

above is its ability to produce robust motion plans 
composed of sensor-based motion commands which 
may accumulate errors, and to determine where the 
robot needs to  re-localize in order to guarantee a suc- 
cessful execution of the trajectory. 

Although the edge-edge adjacency described in 5 5 
captures exactly all the guaranteed motions between 
two given edges of the workspace, the planner de- 
scribed in § 6 is not complete since the number of 
paths explored is a finite set (discrete points (z,8) se- 
lected into the computed adjacency regions). How- 
ever, the planner becomes complete if we restrict 
the class of solutions to strategies where a vertex 
re-localization is systematically performed after the 
HOVE-UHTIL-COITACT commands (the errors do not de- 
pend anymore on the complete past history). Note 
that in this case, and when the error A8 tends to 
zero, the search space of the algorithm degenerates 
to a classical visibility graph. 

The algorithm described in this paper solves a rela- 
tively simple instance of the motion planning problem 
in presence of uncertainty. We are currently investi- 
gating several extensions of the approach. Some of 
them are rather straightforward; the algorithms can 
be easily adapted to  deal with a circular robot and 
to relax the assumption of a perfect proximity sen- 
sor. Another interesting extension would be to con- 
sider the information which can be provided by other 
types of sensors (distance to the obstacle, orientation 
of the edges) and to explore the possibility of produc- 
ing conditional strategies. 

Nevertheless, there are numerous situations where 
it should be enough to use a planner like the one we 
described, which is really able to find in a very reason- 
able time, non-trivial sensor-based motions strategies 
for a mobile robot equipped with proximity sensors. 
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