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Abstract

This paper presents the Global Nearness Diagram (GND)
navigation system for mobile robots. The GND generates
motion commands to drive a robot safely between location-
s, whilst avoiding collisions. This system has all the ad-
vantages of using the reactive scheme Nearness Diagram
(ND), while having the ability to reason and plan global-
ly (reaching global convergence to the navigation problem).
This framework has been extensively tested using an holo-
nomic mobile base equipped with a laser range-finder. FEx-
periments in unknown, unstructured, dynamic and complex
environments are reported to validate the system.

1 Introduction

The development of a robust navigation system, which
can work in different environments, and can adapt to ev-
eryday situations, is still an open research area in the field
of robotics.

The construction of environmental models is highly cou-
pled to navigation. This task is dependent on the natural
and environmental conditions.

Focusing our attention on motion generation, we can di-
vide navigation systems into three categories [22]: Model-
based navigation systems, Hybrid systems and Reactive
schemes.

o The Model-based navigation systems construct a mod-
el of the environment used directly to extract the motion
commands. This model is based on the specific character-
istics of the world (indoor/outdoor, static/dynamic, struc-
tured /unstructured. . . ).

o The Reactive navigation schemes are restricted to the
iteration between perception (usually the system inputs),
and action (usually the system outputs). This constrains
their solutions to a local section of the environment, and
non optimal solutions are obtained. On the other hand,
these reactive schemes have been demonstrated to be ex-
tremely well-adapted to very complex and dynamic envi-
ronments, which model-based navigation systems cannot
cope with.

o The Hybrid systems integrate both schemes in the sense
that each one works independently, but they interact to
perform the navigation task.

The difference between reactive systems and hybrid sys-
tems is that reactive schemes deal directly with percep-
tions, in order to generate motion commands, while hy-
brid systems build a model that interacts with the reactive
scheme.
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The main difference between model-based systems and
hybrid systems, is the motion commands generation pro-
cess. The former builds a model which is directly used to
generate the motion commands. On the other hand, hybrid
systems have two very well distinguished tasks: the mod-
el builder and the reactive navigation scheme, the latter
generating the motion commands.

We focus our attention on reactive schemes, and their
evolution over the last years. Early reactive navigation
methods, firstly attempted to solve problems related to
their internal behavior and drawbacks. Secondly, reactive
methods evolved in order to deal with their lack of glob-
al reasoning and planning (towards hybrid methods), see
Section 2 for an extended discussion on this topic.

In this paper, we present the evolution of the reactive
method Nearness Diagram Navigation (ND) [1], towards
the Global Nearness Diagram (GND). The GND is a navi-
gation scheme that assures global convergence to the reac-
tive navigation problem, inside the physical limits imposed
by a model dynamically built. The GND is shown to be a
very powerful navigation system, because it has all of the
advantages of the reactive method ND, while incorporating
global reasoning, which allows it to avoid trap situations.

The paper is organized as follows: Section 2 presents the
related work, and the system requirements is introduced in
Section 3. Sections 4 and 5 present two navigation systems
(mND and mpND), and Section 6 shows how they coop-
erate to form the complete navigation system (GND). In
Section 7 a comparison with other methods is presented,
and in Section 8 we draw our conclusions.

2 Related Work

A reactive navigation scheme (also known as collision
avoidance approach), is an algorithm that takes as input
perceptions of the environment. The outputs are the mo-
tion commands that drive the robot towards the final loca-
tion, while avoiding collisions. The reader is directed to [1]
for an extended discussion and taxonomy of these methods.

The evolution in time followed by the common reactive
navigation methods can be divided into two steps. In the
first one, the methods evolved to cope with their inter-
nal drawbacks and limitations (eliminate oscillations, local
trap situations, unstable motion, non-holonomicity, robot
geometry...). In the second step, the methods evolved to
deal with their lack of global reasoning, trying to increase
its local nature (in the direction of hybrid methods).

The methods as they evolved cannot be considered to be
purely reactive, because they go farther than only dealing
with perceptions. On the other hand, they cannot be con-
sidered exclusively hybrid, because the devices introduced
to increase the local nature, do not make complete sense
outside of the navigation field, and are completely oriented



to improve the reactive method behavior.

We will discuss the evolution of five techniques (see
Fig. 1): Potential Field Methods (PFM [2]), Vector Field
Histogram (VFH [8]), Dynamic Window Approach (DWA
[13]), Elastic Band (EB [15])) and Nearness Diagram (ND
[1]).

Potential Field Methods (PFM)

The PFM [2] are obstacle avoidance methods that make
a physical analogy to generate collision free motion. The
obstacles and goal generate forces that are respectively re-
pulsive and attractive. The motion commands are comput-
ed from these forces. The PFM technique has been widely
used and studied by a large number of researchers [3], [4],
[5], [17], [23], among others. These methods are in the first
step of the evolution, because some inherent limitations
settle in [6], are still a subject of research.

Vector Field Histogram (VFH)

The VFH [8] is an obstacle avoidance method, that se-
lects the motion direction from a precalculated set of solu-
tions (valleys), switching among three different laws. Lat-
er VFH+ [9] was presented, where internal problems and
drawbacks of the original VFH were overcame. VFH+ took
into account the width of the robot and the robot trajec-
tory. Less oscillatory results were obtained, and it was
possible to commit to a direction due to improved motion
selection. Recently, the VFH* [10] was presented which
basically deals with the local nature of the VFH+. VFH*
uses a look-ahead verification to analyze the consequences
of heading towards the candidate directions. The conse-
quences are quantified by cost functions, allowing for the
selection of the one which minimize some criteria. Trap
situations are avoided by calculating a number of steps in
advance of the algorithm’s execution.

Elastic Band EB

The Elastic Band [15] and [16] is a framework that pro-
vides many of the benefits of reactive systems without sac-
rificing global planning. A path is provided by a global
planner. Incremental adjustments to the path are based
on the sensory data while maintaining the path in the free
space. The concept of bubble is introduced to implement
the elastic band efficiently. Later, [17] introduced a new
formalism of this concept in a Reed and Shepp metric sys-
tem, taking into account the kinematic constraints of the
robot. Recently, the elastic strip (ES) framework has been
presented [18] and [19]. Here, several local replanning op-
erations are integrated in this framework to deal with mov-
ing obstacles, to improve the behavior in dynamic environ-
ments. While the elastic strips can be used to obstacle
avoidance for mobile robots, it has been shown to work
extremely well in high-dimensional configuration spaces.

Dynamic Window Approach (DWA)

In the mid-90’s, some researches made an effort to incor-
porate vehicle dynamics into the collision avoidance prob-
lem, choosing motion commands rather than a travel direc-
tion (SAFA [11] and CVM [12]). But it was the DWA [13],
the method that won more popularity in the scientific com-
munity. The DWA formulates the problem as a constrained
optimization in the velocity space. Constraints are derived
from physical limitations of the robot’s velocities and from
the sensor data (that indicates the presence of obstacles).
The original DWA was formulated to synchro-drive robots.
Recently, the GDWA [14] was presented, where the orig-
inal DWA was reformulated to holonomic mobile robots,
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Fig. 1. a) Reactive schemes evolution. b) Nomad XR4000 platform.

and the cost function was slightly modified to improve the
robot behavior [18]. Moreover, connectivity of the space
was explored, allowing trap situations to be avoided.

Nearness Diagram (ND)

The ND [1] performs a high level information extraction
and interpretation of the environment. Subsequently, this
information is used to generate the motion commands. In a
first step, the ND extracts a description of regions which are
free of obstacles, selects one of them, evaluates the robot
security and chooses one of the five general situations de-
fined. Secondly, it generates the motion commands with
one of the five laws adapted to the general situations. The
contribution of the ND scheme among other reactive meth-
ods can be seen in [1]. This paper describes the evolution
from the ND towards the GND.

3 System Requirements

The aim of this work is to create a navigation system
that drives the robot robustly among locations. We have
identified three requirements, that have to be accomplished
when designing a navigation system that executes motion
tasks in an autonomous way:

1. Information integration: it is necessarily to integrate
information from different perceptions into a model of the
environment. Two reasons motivate this: firstly, it gives a
framework to have an incremental global reasoning. Sec-
ondly, past perceptions may be used to avoid obstacles not
perceived at the current moment (sensor constraints).

2. Dynamic environments reaction: when the envi-
ronment changes dynamically, the description of the envi-
ronment has to model instantaneously this change. If not,
the robot will avoid parts of the space known to be free of
obstacles, or will not avoid perceived obstacles.

3. Trap situations solution: There are a lot of obstacle
configurations that produce trap situations. The most typ-
ical is the U-shape obstacles and they are common for all
the reactive methods. Moreover, there are some symmet-
ric environments where the reactive methods can produce
alternate solutions. These environments create cyclic be-
haviors in the robot motion.

The evolution from the purely reactive navigation system
ND, through to the final navigation system GND, has gone
a way to accomplish these three requirements.

4 Mapping ND (mND)

In Section 3, three requirements were outlined in order
to design an effective navigation system. We now go on to
present the mND. It consists of a navigation system that



uses a dynamically built model of the environment, and a
reactive scheme to generate the motion commands. With
this method we want to fulfill the first two requirements,
related to information integration and the dynamic envi-
ronments reaction.

No assumptions about the environment are made (stat-
ic/dynamic, structured /unstructured... ). The sensor used
to perceive the environment is a laser range-finder.

The model of the environment is constructed by merging
the information in an occupancy-grid that represents the
working space. The laser sensory data is introduced direct-
ly into the grid model without any pre-processing, and is
updated at each servo tic.

The grid has three types of cells: occupied, free and
unknown. A point measured by the laser gives an occupied
cell in the grid. Lines between the sensor and the measured
points are projected to the map as free cells. Initially, all
the cells of the map are set to unknown (never perceived).
The Bresenham algorithm [20] is used to optimally update
the map, in order to achieve real-time performance.

The occupancy-grid represents a finite subsection of the
environment centered around the robot. A local region is
defined in the center of the grid. When the robot escapes
from this local region, the entire grid moves to encompass
the robot within the local region. This allows the robot to
move within the local region without having to move the
complete grid. Grid displacements are always multiples to
the cell’s dimension, and rotation is not needed. Thus,
error propagation associated to the measures in the cells is
avoided.

Once the model has been built, it is used as input by
the reactive navigation method, instead of directly using
perception (see Fig. 4). For robust navigation, the ap-
proach relies on the fact that the robot’s surroundings are
constantly sensed, and that the map is updated at high
rate.

It is important to remark that the last perception intro-
duced in the map has no odometric errors with respect to
the robot’s location, and only sections not perceived accu-
mulate them. Moreover, spurious measures are eliminated
from map while introducing the new perceptions. Assum-
ing that the robot performs instantaneous forward motions
(that usually coincides with the main visibility sensor direc-
tion), and little slippage occurs during motion, this frame-
work results in a very adequate method of integrating
the information at different times (always in the obsta-
cle avoidance context).

Moreover, the the environment’s dynamic is reflected
in the model as it is perceived, which is a consequence of
updating the entire area covered by the last perception.

4.1 Experimental Results

We have extensively tested this navigation system on the
XR4000 platform in LAAS (CNRS) shown in Fig. 1b. This
base moves with an omnidirectional translational velocities
of up to 1.2_7, and accelerations of up to 1.5_7%. It is
equipped with a SICK laser range-finder with a field of
view of 180°, a range of 32 meters, and an accuracy of up
to 3cm.

To perform the experiments, the dimensions of the map
are 10 by 10 meters, and cell dimensions are 5 by 5 centime-
ters, which gives a grid of 200 by 200 cells. The process
of updating the map with a laser measure (360 points),

and moving the grid when necessary, takes approximately
100ms. The ND takes less than 50ms which gives a cycle-
time of 150ms. These times are well suited to real-time
collision avoidance. The maximum translational velocity

set for the experiments was vyqz = 0.57%, and the maxi-

mum rotational one was w,,q; = 1.57%1.

Fig. 2a presents a real experiment where a human walked
between the robot and the selected passage. In this case,
the environment’s dynamic has to be automatically intro-
duced because:

o If the human is not automatically integrated into the
model, the reactive method will not have time to react.

o If the last of the robot’s perceptions of the human are not
eliminated from the model, the passage will remain closed,
and the reactive method will avoid the free space.

From left to right, in Fig. 2b the robot moves towards the
center of the passage. In Figs. 2c,d,e the human appears in
the scene. In Fig. 2f the human enters in the security zone
and the robot starts an avoidance manoeuvre, while moving
towards the passage. In Fig. 2g, the human completely
blocks the passage and the robot continues to avoid him. In
Fig. 2h, the human has moved passed the passage, which
appears now open for the robot to enter. It now turns
towards the passage while continuing to avoid the human.
In Fig. 2i the human has finally left the security zone, and
so the robot recovers its motion towards the center of the
passage.

The experiment shows that the human is automatically
integrated into the model, so the reactive scheme avoids it
instantaneously. Moreover, past human’s perceptions are
automatically eliminated, and the passage remains open
after the person moved passed it. As consequence, the
reactive scheme instantaneously directs the robot through
the passage.

5 Mapping-Planning ND (mpND)

The mND is a framework which integrates the informa-
tion in a model of the environment. The reactive scheme
generates the motion commands to avoid collisions. Two
advantageous properties are extracted from this coupling:
1. The model integrates past perceptions, thus the reac-
tive method is able to avoid obstacles not perceived at the
current moment.

2. The model reflects the environment’s dynamics when it
is perceived, so the reactive method reacts instantaneously
to change.

However, due to the lack of global reasoning in the system,
it still has limitations when dealing with trap situations.

The mpND is a navigation system that uses the mND
scheme, but exploits the information of the connectivity of
the space with a planning algorithm. With this method, we
want to fulfill the third requirement, as stated in Section 3
(trap situations).

A minima-free navigation function NF1 [21] is built, us-
ing a wave propagation technique, over the configuration
space calculated from the grid model. Finally, a path free
of collisions, that connects the initial and final configura-
tions, is obtained by a gradient-search technique. The main
reasons for the use of this planning algorithm are: its grid-
based navigation function (adapted to the grid-model); and
its simplicity and efficiency, which allows for the computa-
tion of this navigation function at each servo-tic during the
robot control loop.



Fig. 2. mND real experiment

The path solution gives two important pieces of informa-
tion:

1. If it is or not possible to reach the final configuration
from the actual robot configuration (global reasoning).

2. The instantaneous path direction in order to reach
the final configuration (global reasoning). The instanta-
neous path direction is the main direction of the first part
of the path (in our current implementation the first meter
is used to calculate it).

The case of unavailable trajectories will be discussed in
next section. Once the path is calculated, it has to be linked
to the reactive navigation method. The ND is modified to
drive the robot towards the instantaneous path direction
(when repeated at each servo tic assures convergence to the
goal location), instead of directing the robot towards the
goal location. See in Fig. 4 the complete mpND navigation
scheme.

There are no obstacle configurations that produces trap
situations (when a solution exists inside the grid-model),
because the instantaneous path direction has the informa-
tion needed to get the robot out of these situations. The
reactive method only has to direct the robot towards this
instantaneous direction to avoid trap situations. Moreover,
the symmetries of the environment do not produce cyclic
behaviors, because the possible alternate solutions are dis-
criminated by the instantaneous path direction.

5.1 Experimental Results

The same platform and settings of the mND (Subsection
5.1) are used here. From mND to mpND, only the NF1
module is added, which introduces a time penalty of 100
ms. The complete servo-tic is then 250 ms, which is well-
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Fig. 3. mpND real experiment.

suited to achieve real-time performance.

Fig. 3 shows a real experiment where the robot is forced
to fall into a trap situation. The navigation system has to
react automatically to this situation and drive the robot
out of it.

In Fig. 3a can be seen that the robot had to cross a pas-
sage to reach the final location. While the robot was travel-
ing through the passage (Figs. 3b,c,d,e), a human blocked
it. The robot was then inside of a big U-shape obstacle,
what produced a trap situation, see Fig. 3f. Automati-
cally, the new path calculated (and thus the instantaneous
path direction) pointed out of the U-shape configuration.
The ND generates the motion commands to follow this di-
rection, see Fig. 3g,h,i. The result was that the robot was
able to get out of the trap situation.

6 Global Nearness Diagram Navigation
(GND)

Some researchers have signalled that it is possible to gen-
erate motion with a classical planner. But other researchers
have used this result to generate reactive motion, using the
planner in an iterative way. From our point of view this
reasoning is not always valid. There exist two situations,
where a planning algorithm does not find a solution, in or-
der to connect the initial and final robot’s configurations.
If these situations appears, it is not possible to close the
motion control loop, because it is not possible to generate
the motion commands to follow the path.

Two situations produces this case:

1. The final configuration is not in free space Cyre. [21]
(final location in collision with an obstacle). This is a very
typical situation in unknown environments, where goals are
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iteratively placed for exploration. When the environment
is incrementally discovered, the goal can be within an ob-
stacle. In dynamic environments a mobile object can move,
or even stop, at the goal location. Even in static and com-
pletely known environments, this situation appears when
the goal moves to within an obstacle due to the robot drift.
2. The robot or the goal are completely surrounded by an
obstacle.

One could think that these situations could be avoided
by replacing the goal location. From our point of view,
it is not the task of the navigation system to modify a
final location imposed by an external agent, because the
consequences can drastically determine the success of the
global task.

Due to this shortcoming, we realize that when these sit-
uations occurs, the system should be able to continue its
navigation task (close the motion control loop). To cope
with this limitation, we developed the Global Nearness Di-
agram Navigation (GND). It combines the two schemes
presented (mND and mpND) to achieve the complete nav-
igation task, see Fig. 4 for the complete GND system.

The GND works as follows. First the mpND is used un-
til a failure flag is produced in the NF1 module (a path
connecting the initial and final configurations of the robot
does not exist). Then the mND takes control and generates
the motion commands. Now there are two possibilities: 1)
the path is available (the control is passed to the mpND);
2) There is a ND failure. This last situation happens when
there is no free walking area to move (the robot is com-
pletely surrounded by obstacles). The motion commands
stop and rotates the robot about its center. This behavior
updates the map in all directions. This continues until the
environment changes, and the control can be transmitted
to the mND or mpND.

The GND inherits the properties of the mND related
to the information integration and the dynamic en-
vironment reaction. Moreover, the mpND is used when
possible, thus avoiding the problem of trap situation-
s. The motion commands in the GND are generated by
the ND, which avoids many of the problems of other reac-
tive schemes. These properties together make the GND a
navigation system which is very well adapted to deal with
unknown, dynamic, unstructured, dense and very complex
environments.

6.1 Experimental Results

The GND system has been extensively tested with the
XR4000 platform in LAAS (CNRS). In all the experiments
the environment was unknown, and was incrementally ex-
plored. We have chosen two illustrative experiments to
show the system behaving in dynamic, unstructured and
complex environments (see Fig. 5). Due to the difficulty in
reflecting the environment’s dynamics, we decided to show
the complete robot path and some snapshots of the exper-
iment, rather than directly showing the sensory data and
blurring thus the graphics.

Experiment 1: This experiment was designed to show
the robot getting out consecutively of three trap situations,
produced by changes in the environment’s structure. The
first snapshot shows the initial state of the robot and the
environment, where the robot had to cross a passage to
reach the goal location. When the robot arrived at the end
of the passage, the right passage was opened (the robot
could not see it), and the main passage was closed. Auto-
matically the robot turned to get out of this trap situation.
This part of the experiment can be seen step by step al-
so in Fig. 3. When the robot was leaving the passage, it
perceived the right passage and reacted to move the robot
inside. Then the human closed this passage. The robot
automatically reacted to get out of this new trap situation,
and ended getting out of the global trap situation. Sub-
sequently the robot resumed the motion towards the goal
location.

Experiment 2: This experiment shows the robot in a
typical populated environment. The first snapshot shows
the initial state of the robot and the environment, where
the robot had to cross a room to reach the final location.
Humans were walking, building and modifying the envi-
ronment randomly to disturb the robot’s motion. During
the experiment, the robot got trapped and had to move
back to find the solution. The snapshots shows the highly
dynamic nature of the environment.

7 Comparison with other methods

We next discuss the improvements of the GND over oth-
er navigation systems. We have chosen the more recent
methods of the four techniques introduced in Section 2:
Potential Field Methods (in a general fashion), the Vector
Field Histogram (VFH* [10]), the Elastic Strip [19] and the
Global Dynamic Window Approach (GDWA [14]).

The reader is directed to [1] for a comparison in pure-
ly reactive terms. The discussion here is oriented towards
the three requirements introduced in Section 3: informa-
tion integration, dynamic environments reaction and trap
situations solution.

Potential Field Methods PFM

Many special solutions to the inherent limitations of
PFM [6] still appear in the literature [23]. We have de-
cided to orient the discussion with the PFM in a general
fashion. In reactive terms, the ND (and thus the GND)
solves all the inherent limitations of PFM except the trap
situations (see [1] for a detailed discussion). Moreover, the
GND avoids the trap situations when possible, solving also
these last undesirable situations.

Vector Field Histogram VFH*

The VFH* uses a grid map of the environment [7] to in-
tegrate information. To discuss the drawbacks and advan-



tages of each approach, in terms of information integration
and dynamic environments reaction, is out of place, mainly
due to the different nature of the sensors used (ultrasonic
sensor in [7] and laser in GND). In terms of trap situation-
s, the VFH* uses a look-ahead verification to analyze the
consequences of heading towards a candidate direction. As
far as we understand, when using a look-ahead verification
to increment the local nature of the method, it is necessari-
ly to fix a maximum number of steps (named goal depth in
VFH*), which translates in a maximum distance inspected
(named total projected distance in VFH*). To select this
distance could be a trade off between the speed and the
validity of the method, because it represents the maximum
reach of the local nature of the method (measured in robot
distance traveled). On the other hand, the GND assures
global convergence inside of the map grid used.

The main advantage of a look-ahead verification is when
dealing with platforms with low computational capabilities.
The look-ahead then is well adapted because even by reduc-
ing the projected distance, good results can be obtained.
Running the GND in real time requires high computation-
al capacity, otherwise one can reduce the size of the grid,
which drastically affects the reach of the solution.

Elastic Strip ES

The elastic strip framework [19] has been shown to work
very well in high-dimensional configuration spaces. The
discussion here is focused in low-dimensional configuration
spaces, that is the case of this paper. Two strategies were
introduced in [18] and [19] to deal with dynamic environ-
ments. The former is to impose constraints on the internal
forces acting on two adjacent configurations, to allow a mo-
bile obstacle to pop through the elastic strip. The second
one is to maintain a set of alternative routes to chose when
the elastic becomes invalid.

The elastic framework is based in the existence of a path
that is not always available (see Section 6). As shown in
[18], the elastic strip framework could fail in very tight
or cluttered environments, where the GND is well-adapted
due to the properties of the reactive method ND.

Global Dynamic Window Approach GDWA

The evolution of the GND has been inspired by the
GDWA [14], [18]. We direct the comparison to the ad-
vantages/disadvantages of the model used, and to some
implementation details.

e Model: The GDWA uses an occupancy-grid that rep-
resents the configuration space of the robot, and remains
fixed in a global reference. We understand that the moti-
vation to represent the configuration space is to not com-
pletely rebuild it at each step of the algorithm. While
keeping the occupancy grid fixed in space, the same navi-
gation function can be reused for every robot location, as
long as the environment does not change. The GND uses
an occupancy-grid to represent directly the working space,
which moves centered around the robot’s position.

To use a model that moves with the robot means that the
dimension of the model does not depend on the distance
traveled (the robot was at all times surrounded by the grid).
Moreover, it ensures that the instantaneous surroundings of
the robot are directly represented by the model. We would
like to signal that the operation to displace a complete grid
can be very efficiently implemented in terms of memory
(in our current implementation takes about 10ms a 200 by
200 cells, i.e. 10m by 10m grid). On the other hand, the

solution has to be found inside of the grid.

In GDWA the data measured by the laser is translated into
configuration space obstacles [21], that are represented in
an occupancy grid. From our point of view, this framework
does not represent fully the environment’s dynamics. The
reason is that in a laser measure, the obstacle point can be
translated into the configuration space. But the line joining
this point to the sensor, that has free space information,
cannot be used to update the configuration space. So, only
configuration space obstacles is updated, but not the free
space. The consequence is that the robot avoids parts of the
space that are free of obstacles (see experiment in Section 4,
where the passage will remain blocked to the GDWA after
the person crosses it). This information of the free space
is lost in the GDWA while it is exploited by the GND.

o Implementation details: The GDWA computes the navi-
gation function for a subsection of the configuration space,
referred to as localized navigation function (localized N-
F1). The subsection of the configuration space is increased
while looking for a solution. This heuristic saves a lot of
computational time currently lost by the GND (that com-
putes the NF1 for the complete grid), and should be added
to the GND. The multi-resolution GDWA is also presented
[18], to deal with the impact of computational complexity
of the size of the occupancy grid used.

The GDWA extracts information from the NF1 by examin-
ing the neighborhood of the grid cells that corresponds to
the robot location. As shown in [18] and [14] some unnatu-
ral behaviors were found, because the border effects of the
NF1, and because the solution can only be multiple of 45°.
The GND calculates the complete path using a gradient-
search technique. Subsequently, the path is tightened using
a recursive algorithm and the instantaneous path direc-
tion is calculated. Using the instantaneous path direction,
avoids the border effects of the NF1 and the constrained
solutions, and thus no unnatural behaviors were found.

8 Conclusions

This paper presents a new navigation system that links
global information with a local reactive scheme to generate
motion. The GND uses the sensory information to build a
grid representation of the environment. A planning algo-
rithm is used to extract global information from the model.
Finally, the reactive scheme ND uses the computed path
and the model to generate collision free motion while di-
recting the robot towards the final location.

We also present how some reactive techniques evolved in
the last years, to discuss the advantages/disadvantages of
this system among other existing methods. Experimental
results in unknown, unstructured, dynamic and complex
environments are also shown.
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Fig. 5. a) Experiment 1. b) Experiment 2.




