N
N

N

HAL

open science

Building topological models for navigation in large scale
environments

Dominique van Zwynsvoorde, Thierry Simeon, Rachid Alami

» To cite this version:

Dominique van Zwynsvoorde, Thierry Simeon, Rachid Alami. Building topological models for naviga-
tion in large scale environments. Proceedings 2001 ICRA. IEEE International Conference on Robotics

and Automation, May 2001, Seoul, South Korea. 10.1109/ROBOT.2001.933283 . hal-01979376

HAL Id: hal-01979376
https://laas.hal.science/hal-01979376
Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://laas.hal.science/hal-01979376
https://hal.archives-ouvertes.fr

Building topological models for navigation in large scale
environments

D. Van Zwynsvoorde, T. Siméon, R. Alami
LAAS-CNRS
7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4 - France

Abstract

In mobile robotics, pure geometric representations
may not be well suited for navigation in large scale
environments. New models combine topological and
metrical information to give compact and efficient rep-
resentations.

In this paper, we briefly remind the outlines of the
construction of our Voronoi-like graph and give further
details about its implementation in a real environment.
Several trials made around our lab demonstrate the
ability of our modeling scheme to recognize topological
features of the environment and use them to detect
loops and relocalize the robot position.

1 Introduction

This paper concerns the construction of a model of
an a priort unknown, large scale environment to be
later used in localization and navigation. Both issues
become difficult in large environments with pure geo-
metric models [1, 2]. We have chosen to construct in-
crementally a topological representation from the data
obtained by a laser range finder.

Many topological approaches have already been pro-
posed [7, 9, 10, 11, 12]. Graph-like representations
are more compact than geometric maps and allow fast
route planning. However they have to face the issue of
Place recognition which is likely to be hard in indoor
non-specific large scale environments. Kuipers [9] and
Choset [7] designed exploration algorithms that make
the robot move in the environment until it can decide
it has reached a Distinctive Place or a Meet Point. In
[7] the robot traces the edges of the Voronoi graph and
create a new Meet Point at each Voronoi vertex. In
[10] the system stores a complete metrical representa-
tion of each detected Island of Reliability. Thrun [11]
constructs a topological graph over a metrical map
learnt by the robot to plan paths through adjacent
regions of the environment.

In our work, we construct the graph directly from
sensor data but the model is not strongly linked to
the movements of the robot. The aim of the model
is to capture the stable topological structures of the
environment so that the robot can identify them in
navigation tasks to localize itself or even plan motion
strategies [3, 4]. The paper first gives an overview of
the approach and then focuses on the validation of the
algorithms with real data.

2 A Voronoi-like graph model

The main idea of our approach is to construct a
topological model of an indoor environment from some
range sensor data using an incremental algorithm that
first computes a local topological model of the region
perceived by the sensor! and then updates the global
model by merging local and global graphs. This two-
step scheme is repeated at each successive position
of the robot while it moves around the environment.
This approach is summarized in figure 1.

2.1 Local step

The basic structure is a graph obtained from sen-
sor data by computing the Voronoi diagram of a star-
shaped visibility generalized polygon formed by the
segmented laser data along with artificial segments
(escape-lines) modeling visibility constraints. Figure
2-a- shows a typical example of such a graph in a sim-
ulated environment. The algorithm presented in [5]
traces incrementally the edges of the graph by analyz-
ing the geometry of the polygon in the vicinity of the
current position of a virtual tracing point.

Because of the limited angular range of the sensor,
the graph may be splitted into several subgraphs as
in fig 2-b. From this rough voronoi-based graph we

IThis is possible because data provided by the LRF are
dense, relatively accurate and have a large range (> 10m) com-
pared to ultrasonic sensors.
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Figure 1: Overview of the Approach

keep useful features that model navigable parts of the
environment.

2.2 Incremental construction

The principle of our model learning is an incremen-
tal scheme in which we try to connect each local graph
to the current state of the global model. The first
point is to identify to which part of the global model,
each of the subgraphs of the local one will be con-
nected. Then, departing from the selected position,
identify what is common, “better” or new in the local
model. “Better” means that every node in both lo-
cal end global graphs may have temporary edges con-
structed based on escape-lines. Thus, as the robot
moves, one node is likely to move inside an area ac-
cording to the evolution of the escape-lines (see [6]
for details) and evolves from temporary to definitive

_a- _b-

Figure 2: local graphs: -a- simple, -b- splitted one

(constructed over real segments only). Figure 3 gives
an example of the global step of the approach. From
sub-figures -a- to -b all nodes are updated and node 9
turns from temporary to definitive. In sub-figure -c-,
node 11 is inserted between nodes 9 and 10. Finally,
node 12 is appended to the graph.

Figure 3: Short scenario of incremental construction

3 Adaptation to real environments
3.1 Connection of the local graph

As seen before, the local graph consists in several
subgraphs each of which we try to connect to one edge
of the global model. But even in an error-free simu-
lated environment, simply “retracting ” the extremity
point of the local subgraph L; onto the global graph
may lead to misleading solutions because of visibility
limitations, as illustrated by figure 4.

We proposed a score-based connection to verify if
the local edge and the candidate of the global model
ensure an acceptable continuity. The scores evaluate
the collinearity between vectors V;, Vi, and V, (which
connects local and global extremities) denoted in fig-
ure 4-a-. In the part -b- of the figure we see that a
simple retraction of extremity D onto the global graph
leads to an erroneous connection. Instead, we only
process the connection if the total score is above a
configurable threshold.

As a result of this procedure, the system could
fail to connect any of the following subgraphs. The
adopted solution is to initiate a new subgraph of the
global model as soon as:

e the robot has covered a limit distance (config-
urable) without connection, or



Figure 4: Connection between local and global graphs

e no match has succeeded for the past MaxFailed
local graphs (also configurable)

3.2 Connecting global subgraphs

With the goal to use the constructed model to nav-
igate, we expect to have a connected graph. Conse-
quently we will add a virtual link connecting edges of
global subgraphs which have been sequentially reached
by the robot. This virtual link means that the system
could not model the environment with sufficient cer-
tainty but the region between the two so connected
subgraphs is navigable by the robot. This may hap-
pen when the robot traverses large or poorly struc-
tured spaces like in fig 5.

Figure 5: Virtual Link: One virtual link connects two sub-

graphs separated by a poorly structured region

3.3 Discarding weak subgraphs

To limit the number of global subgraphs we discard
local subgraphs that do not seem relevant enough.
This concerns local subgraphs formed of one single
short edge that cannot be connected to the edge be-
ing traced by the robot, but also subgraphs that only

contain very “temporary” nodes located almost at the
range limit of the sensor.

3.4 Robustness of the model

Figure 7 shows several trials made by manually
moving the robot around the corridors of the lab (see
a map in figure 6). It shows that well structured parts
of the environment can be reliably modeled and pro-
duce very similar graphs over the different trials, even
when paths are different around the environment, as
can be noted comparing subfigure -a- with the others.
This means that once one graph has been learnt, it can
be used by the robot for localization or navigation, be-
cause strong topological nodes will be recognized, such
as those enclosed in rectangular and elliptic windows
in fig 7. In sub-figure 7-b, the loop has not been con-
nected and we can see that the graphs inside the two
rectangular windows are very similar. See also figure
13 that situates the graph in the real environment.

One should notice that these trials have been re-
alized without using any “intelligent” exploration al-
gorithm that could increase the quality of the graph
construction.

Figure 6: The real environment: -a- as perceived by the

robot, -b- the real map. Dimensions are about 50 X 30m
4 Loop detection

So far, we have described our approach for incre-
mentally constructing a global model of a real envi-
ronment. One difficult issue of topological modeling
arises when dealing with cyclic environments. Detect-
ing loops in a topological graph requires some Place
Recognition capability to allow the system to decide
whenever the robot is re-traversing an area that has
already been modeled.

Our loop detection scheme manages hypotheses for-
mulated from candidate nodes isolated from the whole
set of already created nodes. Although it is not a



novel technique, its use in the context of local topo-
logical graphs allows making hypotheses without the
need for the robot to be located on the node, as for the
rehearsal procedure of Kuipers’s work [9], also found in
Choset’s approach [7].

Figure 7: Graphs of different trials

4.1 Formalization of a hypothesis

In the following, newly discovered nodes will be
called local, whereas nodes previously modeled are re-
ferred to as global.

For each newly discovered node N! during the in-
cremental step of the construction, we generate a list
of candidate nodes Cand(Nl) = {Ng;} selected from
the nodes of the global graph such that each Ng; topo-
logically “looks like” Nl. The description in terms of
qualitative and quantitative features of the nodes (see
[5]), along with neighboring topology comparison is
used to generate such a list.

For ecach element of Cand(N!(;) we search all the
Cand(Nl;) where ¢ # i, for a possible sequence con-
necting both candidates by a path similar to the one
connecting Nl; to NI;.

4.2 Insertion of a new node

A hypothesis thus results in a “local” part and a
“global” one. The local part connects at least two
recently discovered nodes whereas the global one con-
nects the corresponding candidates in the global graph.

When considering the candidates of a new local node
NI, we examine each of the existing hypotheses to
detect if the candidate node Ng; corresponds to one
node in the path of the hypothesis that was not yet
participating to it (for which no candidate had been
found so far). If the considered candidate does not be-
long to the path of the hypothesis, it may connect to
it, increasing the length of the hypothesis. In each of
these situations, the hypothesis is further confirmed
and the couple (NI, Ng;) is set to form part of the
hypothesis as a detected node (this is denoted by an
arrow connecting the candidate nodes in figure 8).

Figure 8: Valid hypothesis: A three-nodelength hypothesis
could be generated: Nodes 4-5-6 may correspond to nodes 2-3-4

4.3 Invalidating a hypothesis

On the contrary, further exploration may allow in-
validating a hypothesis. Comparing the local and the
global paths we can detect wrong hypotheses in which
the last detected node of the hypothesis cannot be con-
nected to a node such as the newly modeled node NI.

4.4 Closing the loop

As identical (or very similar) topological structures
may be present in an indoor environment, we must
capture a significant part of them to be able to decide
whether one loop has been detected or not. However,
it does not exist any terminating condition that al-
lows detecting loop in any indoor environment, unless
we incorporate more information into the graph de-
scription, such as the presence of posters or plants in
the vicinity of a node,or elementary rules of building
constriction for example.

If more than a limited number of nodes are detected
in an hypothesis, we decide to close the loop. To do so,



the algorithm (but not the robot) traces back the lo-
cal and global parts of the hypothesis simultaneously
until the end of one of the paths or any topological
difference is found. There, the local part of the hy-
pothesis is erased and the pending edge is connected
to the correspondent global edge. Compare figures 8,
9. In figure 8 nodes numbered 4, 5, 6 are recognized
to be nodes 2, 3, 4. After closing the loop we obtain
the graph of figure 9.

Figure 9: Loop example

5 Using the graph to limit pose esti-
mation errors

We have shown that our learning scheme allows
modeling cyclic environments. However, the displays
illustrate well that the graph appears quite distorted
because of odometric errors. Although it is not dra-
matic for forward movements, a problem of topologi-
cal consistency arises when the robot intentionally re-
traces a previously modeled region. Figure 10 shows
an example where the robot turns back to its initial
point. The strong odometric error accumulated during
the manoeuver causes a loss of connection and gener-
ates a new subgraph modeling the back-way part of
the exploration.

To avoid this phenomenon, we use the graph to
limit pose estimation errors. Two situations can be
outlined: 1) in forward motions, ii) re-discovering a
node:

“Continuous” relocalization

We can use the geometric description of edges to de-
tect an important orientation discrepancy between the
local edge and the corresponding one in the global
model. Comparing their respective averaged direction,

we get a value é = #; — 6, that we can use to relocalize
the robot and correct the local graph, before using it
for the global update.

If the local graph contains one definitive node that
is already present in the global graph, then we can esti-
mate a value for ¢ by comparing the departing angles
of the edges emanating from each of the two nodes.
Again, we must consider values for é over a lower limit
conditioned by segmentation errors. Indeed, definitive
nodes are not present in many successive local models
because of visibility constraints. Hence, as odometry
does not drift so much along a short trajectory, values
of é could be rather small and not due to odometric
error.
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Figure 10: Effect of Relocalization

Re-discovering a node

The second situation is when closing a loop or inten-
tionally turning back-way. Once we have estimated
the orientation error é, we must compute position er-
rors (Dg, Dy), related to a local node NI and the
global one Ng: to the model:

(Real) Xni = X, + Dy +1xcos(b +0n)
Ynie = Y.+ Dy + 1% sin(ﬁ + QN)
. XNg = Xth+l*cos(€l—é—|—€N)
(Theorical) { Yg = Yin+l#sin(0 —é+0y)

Il =l | =

Figure 11: Pose estimation error
Which leads, given § = 6; + 6y, to:

D, = Xwn —Xng+!x(cos(d) —cos(d —&))
Dy = Yni—Yng+1x(sin(d) — sin(d —é))

Figure 12 shows a graph from the same environment
obtained with continuous relocalization. One can ob-



serve that the graph is less distorted than the rough
sensor data but still is not completely corrected. This
1s not the principal aim of our work, but it can help
reducing the number of candidate nodes.

Figure 12: Continuous relocalization

6 Future work

Obviously, this model does not provide any exact
geometric representation of the environment. However
it can certainly be used to give a qualitative informa-
tion about where the robot is. In particular it could
give a way of answering the question of initial local-
ization of the robot. Letting the robot somewhere in
the environment, the same hypotheses generation pro-
cedure as used for loop detection could be deployed to
recognize part of the previously learnt graph and so
give one or more possible location.

One other promising use of the graph concerns the
generation of sensor-based motion plan. Given two
specified points on the graph (typically hand-supplied
by the user), it is straight-forward to find a topological
path that link the two points. One step toward sensor-
based motions is to analyze the information contained
in the model along the topological found path to pro-
duce a sequence of semantic portions such as CORRI-
DOR, HALL, CORNER OR BLIND-MOTION. The next
step would be to assign to each type of portion one
or several possible sensor-based motion strategy like
WALL-FOLLOWING, TURN-CORNER, GO-TO-POINT, OR
GO-UNTIL-SEE-NODE,... or even use the Voronoi itself
to navigate [13], then find terminating conditions that
ensure the feasibility of the plan.
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Figure 13: Graphs of real environments



