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Multi-robot Cooperation through Incremental Plan-Merging*

Rachid ALAMI, Frédéric ROBERT, Félix INGRAND, Sho’ji SUZUKI
LAAS / CNRS
7, Avenue du Colonel Roche
31077 Toulouse - France

Abstract: This paper presents an approach we
have recently developed for multi-robot cooperation.
It is based on a paradigm where robots incrementally
merge their plans into a set of already coordinated
plans. This 1s done through exchange of informa-
tion about their current state and their future actions.
This leads to a generic framework which can be applied
to a variety of tasks and applications. The paradigm,
called Plan-Merging Paradigm is presented and illus-
trated through its application to planning, execution
and control of a large fleet of a autonomous mobile
robots for load transport tasks in a structured envi-
ronment.

1 Introduction

We present, in this paper, an approach we have re-
cently developed for multi-robot cooperation. Tt is
based on a paradigm, called Plan-Merging Paradigm,
where robots incrementally merge their plans into a
set of already coordinated plans. This is done through
exchange of information about their current state and
their future actions. This paradigm leads to a generic
framework which can be applied to a variety of tasks
and applications.

In section 2 we define the framework where multi-
robot cooperation takes place. In section 3 we briefly
present and discuss the proposed paradigm. Section 4
discusses a typical application: a fleet of autonomous
mobile robots navigating in a route network. We then
discuss implementation issues and related work (sec-
tion 5).

2 A framework for cooperation
2.1 Problem statement

Let us assume that we have a set of autonomous
robots and a central system which, from time to time,
assigns and sends goals to robots individually.

Whenever it receives a goal, a robot is assumed to
elaborate and execute a plan which achieves it. Goals
may be sent asynchronously to the robots even if they
are still processing a goal previously sent.

Each robot processes sequentially the goals it re-
ceives, taking as initial state the final state of its cur-

*This paper has been submitted to 1995 IEEE International
Conference on Robotics and Automation, Nagoya, Japan.

rent plan. Doing so, it incrementally appends new
sequences of actions to its current plan.

However, before executing any plan step, a robot
has to ensure that it is valid in the current multi-robot
context, i.e. that it is compatible with all the plans
currently under execution by the other robots. This
will be done without modifying the other robots plans,
in order to allow the other robots to continue execu-
tion.

We call this operation, a Plan-Merging Operation
(PMO) and its result a Coordination Plan (i.e. a plan
valid in the current multi-robot context).

Planning, plan merging and execution may run in
parallel. In fact, considering the time needed for plan-
ning and plan merging operation, and considering the
average range of the obtained coordination plans, ex-
ecution run most often without waiting for a new co-
ordination plan.

2.2 The “global plan” and its properties

Everything works as if there was a global plan pro-
duced and maintained by the set of robots. In fact,
neither the robots nor the central station elaborate,
store and maintain such a global plan'.

At any moment, a robot has its own coordination
plan under execution. Such a coordination plan con-
sists of a sequence of actions and events to be signaled
to other robots as well as events which are planned to
be signaled by other robots. Such events correspond to
state changes in the multi-robot context and represent
temporal constraints (precedence) between actions in-
volved in different individual coordination plans.

At any moment, the “global plan” is the graph rep-
resenting the union of all current robot coordination
plans. Such a global plan is valid (i.e. it does not
contain inconsistent temporal constraint) if it can be
represented by a directed acyclic graph (dag).

The key point here is how to devise a system com-
posed of a set of robots which should, as much as pos-
sible, plan independently to achieve their tasks while
maintaining such property of the global plan.

Note that the central station maintains a higher level de-
scription of the set of missions allocated to the robots. However
it does not need to know the plans elaborated by the robots to
achieve their missions and how these plans are coordinated.



3 The Plan-Merging Paradigm

Let us assume here that:

1. there exists a mean which allows a robot to get the
right to perform a PMO while having the guaran-
tee that it is the only robot doing so. This right
should be thought of as a resource allocation?.

2. there is a mean allowing a robot (which has ob-
tained the right to perform a PMO) to ask for and
obtain all the other robots coordination plans.

3. there exists a mean allowing robots to ask or
inform one another about the occurrence of an
event.

3.1 Performing a Plan Merging Operation

Robots are assumed to plan from time to time
(whenever it is necessary).

When a robot is not planning and even when it 1s
waiting to obtain the right to perform a PMO, it must
be able to send its current coordination plan to an-
other robot (which currently has the right to perform
a PMO).

When a robot has to plan, it uses the following pro-
tocol which we call the Plan Merging Protocol (see
Figure 1):

State0

No PMO
in progress
Plan merging
deadlock detected
(PMO failure)
New coordination
plan required by
execution.

State3 Statel

“ Waiting for the right \\

. Sy

Waiting

planning events / to perform a PMO
_and . and
Monitoring plan merging B Collecting coordination 7
deadlock \ lans /
) N prans -,
Planning events N _ ——
Got the right and
Collecting done

State2

PMO deferred Planning and

Plan merging
operation

Figure 1: The general protocol state graph

1. It asks for the right to perform a PMO and waits
until 1t obtains it together with the coordination
plans of all the other robots.

2. It then builds the dag corresponding to the union
of all coordination plans (including its own coor-
dination plan)

2 A simple way to do it is to maintain a “token” through com-
munication; but this is not always desirable nor even possible
(see section 4.2).

PMO success

3. It then tries to produce a new plan which can be
inserted in the dag, afterits current coordination
plan. The new plan insertion may only add tem-
poral constraints which impose that some of its
actions must be executed after some time-points
from other robots coordination plans.

Besides, the insertion must maintain the fact that
the obtained global plan is still a dag.

4. If it succeeds in producing the desired plan, the
robot appends it to its current coordination plan.

5. And finally, it releases the right to perform a
PMO.

When a robot executes its coordination plan, if it
reaches a step with a temporal constraint linked to
another robot time-point, it asks that robot if it has
passed that time-point or not. Depending on the an-
swer, the robot will wait until the other robot informs
it or will immediately proceed.

3.2 Situations where PMO is deferred or
where deadlock is detected

When a robot tries to perform a PMO, it may fail to
produce a plan which satisfies the properties discussed
earlier.

This may happen in two situations:

1. the goal can never be achieved. This can be de-
tected if the robot cannot produce a plan even
if it were alone in the environment. The robot
informs the station and waits for a new goal.

2. the robot can generate a plan but this plan cannot

be inserted in the global plan. This means that
the final state of another robot forbids it to insert
its own plan.
In such situation, the robot can simply abandon
the PMO and decide to wait until the robots,
that it has identified, have performed a new PMO
which may possibly make them change the states
preventing it to insert its plan.

Hence, we have introduced two types of events:

1. execution events: i.e. events which occur during
plan execution and which allow robots to synchro-
nize their execution.

2. planning events: i.e. events which occur whenever
a robot performs a new PMO. These events can
also be awaited for.

Note that, even when a robot fails in its PMO, it
leaves the global plan in a correct state (it is still a
dag and its execution can continue).

In order to detect deadlocks, a robot which finds 1t-
self in a situation where it has to wait for a planning
event from a particular robot, must inform it. Then,
it becomes possible for a robot to monitor and detect
deadlock situations by propagating and updating, the
list of robots waiting (directly or by transitivity) for



planning events from itself. Indeed, a deadlock is de-
tected when a robot finds itself in the list of robots
waiting for itself.

When a deadlock occurs, it is necessary to take ex-
plicitly into account, in a unique planning operation, a
conjunction of goals (which have been given separately
to several robots).

This simply means that the global mission was
too constrained to be solved using the Plan-Merging
Paradigm. It is then the responsibility of the central
station to produce a multi-robot plan.

Here we must recall that we do not claim that
the Plan-Merging paradigm can solve or help to solve
multi-robot planning problems. The main point here
is that the Plan-Merging paradigm is safe as it includes
the detection of the deadlocks.

Note also that, in the case where only a small num-
ber of robots are involved in a deadlock, one can decide
to allow the robot, which detected the deadlock, to
plan for all the concerned robots . The Plan-Merging
paradigm remains then applicable: the inserted plan
will then concern several robots at a time.

A detailed discussion on the properties of the Plan-
merging paradigm as well as on its ability to cope with
execution failures can be found in [2].

3.3 Discussion

The paradigm and the protocol presented so far
is generic. We believe that it can be used in nu-
merous applications. Several instances of the general
paradigm can be derived, based on different planners:
action planners in the stream of STRIPS, as well as
more specific task planners or motion planners.

One class of applications which seems particularly
well suited is the control of a large number of robots
in a route network.

We present in the sequel an application in the case of
a fleet (dozens) of autonomous mobile robots. The use
of the Plan-Merging paradigm allowed us to deal with
several types of conflicts in a general and systematic
way.

4 A fleet of autonomous mobile robots

We have applied the Plan-Merging Paradigm in
the framework of the MARTHA project® which deals
with the control of a large fleet of autonomous mobile
robots for the transportation of containers in harbors,
airports and railway environments.

In such context, the dynamics of the environment,
the impossibility to correctly estimate the duration of
actions (the robots may be slowed down due to obsta-
cle avoidance, and delays in load and un-load opera-
tions, etc..) prevent a central system from elaborating
efficient and reliable detailed robot plans.

The Plan-Merging paradigm is well suited to such
applications where conflicts are local and involve a lim-
ited number of robots. Indeed, its use allowed us to

3MARTHA: European ESPRIT Project No 6668. “Multiple
Autonomous Robots for Transport and Handling Applications”

Missions

limit the role of the central system to the assignment
of tasks and routes to the robots (without specifying
any synchronization between robots) taking only into
account global traffic constraints.

4.1 Mission processing

In the MARTHA application, the robots are reg-
ularly assigned missions: destination points together
with routes and operations to perform when the des-
tination points are reached (docking, loading..).

The environment is a route network: lanes, cross-
ings, open areas. In order to allow efficient and incre-
mental plan merging, we have decomposed the route
network into smaller entities called “cells” or “spa-
tial resources” which will be used as a basis for deal-
ing with local conflicts. Basically, the robots navigate
through an oriented graph of cells.

When a robot receives a mission, it first refines into
an executable plan: a set of trajectories planned au-
tonomously together with the sequence of resources it
has to allocate.

Plan-merging will essentially consist in synchroniz-
ing the use of such resources by the different robots
through inter-robot communication. It takes place
from time to time, for a limited number of spatial re-
sources ahead in order to not constrain unnecessarily
the other robots.

Mission planning (refinement), plan-merging and
execution may run in parallel (see Figure 2), allow-
ing most often the robots not to stop at all (unless
they have to effectively wait for a resource which is
still occupied by another robot).

. Plan Merging
Refinement Protocol
\
N
~

. . \\ s
Coordination plalr~— _ _ __——
requests

Figure 2: Interactions between mission refinement,
plan-merging and execution

4.2 A Plan-Merging Protocol for multi-
robot navigation in a route network

We have devised a specific Plan-Merging protocol
based on resource allocation. It is an instance of the
general protocol described in §3.1, where State 1 is
decomposed into several sub-states (see Figure 3).

To present the Plan-Merging Protocol in the par-
ticular case of traffic application, let us recall that, in
State_1(see Figure 3), the robot should obtain the right
and the necessary data to perform a Plan-Merging Op-
eration.

As, in this context, Plan-Merging Operation is done
for a limited list of required resources (the cells which
will be traversed during the plan to merge), a robot,
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Figure 3: The statel for traffic application in the pro-
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by broadcasting this list, announces its intention to
start a PMO:

e No response, means that all required resource
queues are empty.

e If another robot is in State 1.1, State 1.2 or
State_2 and if its list of required resources inter-
sect the list contained in the broadcast message, it
sends immediately a message (WAIT-FOR-PMO,
robol-name, resource-interseci-list).

e If several robots enter simultaneously in State_1.0
for common resources, the conflict is solved by
taking into account the robots priority. Doing so,
robots maintain together for each critical resource
a queue, without risk of starvation or deadlock.

Due to place limitations, we will not describe in
more detail this protocol. A full description may be
found in [13].

One of the most interesting attributes of this proto-
col is that 1t allows several PMOs to be performed si-
multaneously if they involve disjunctive resource sets.
This is particularly useful when there are several local
conflicts at the same time .

4.3 When reasoning about cells is not suf-
ficient

While, most of the time, the robots may restrict
their cooperation to cell allocation, there are situations
where this is not enough. This happen when they
have to cross non-structured regions (called “areas”)
or when an unexpected obstacle, encountered in a lane
or in a crossing, forces a set of robot to maneuver
simultaneously in a set of cells.

When this happens, a more detailed cooperation
(using the same protocol but a different planner: the
motion planner) takes place allowing robots to coor-
dinate their actions at trajectory level.

Thus, we have a hierarchy of PMOs

1. first, at the cell level, based on resource (cells)
allocation

2. then | depending on the context, at trajectory
level: motion planning in a set of common cells
determined by the first level

This scheme authorizes a “light” cooperation, when
possible, and a more detailed one, when necessary, ob-
tained by a further refinement of the Global Plan with-
out altering the properties.

4.4 An example of Plan-Merging at a
crossing

We shall now illustrate the plan merging paradigm
and protocol with a concrete example from the
MARTHA application. We have chosen an allocation
strategy which makes the robots allocate one cell (at
least) ahead when they traverse lanes, while they allo-
cate all the cells necessary to cross and leave a crossing.

The example involves several robots at a crossing di-
vided into four cells with entry and exit cells belonging
to four lanes (Figure 4):

(Instant: t0) Robot Ry is entering ¢4 and has a plan
to go through ¢11, ¢12, and enter ¢s. We shall now ex-
amine different steps (Figure 4) and show how other
robots willing to go through this crossing will coordi-
nate their plans together.

t1l: Ry has already merged its plan to traverse the
crossing. Rs needs to go through ¢y, ¢ (ie. a
crossing cell and an exit cell); it cannot produce
and merge a plan compatible with R;’s plan, since
Ry has not yet merged a plan in which it frees
¢s. As a consequence Ry defers its PMO (switch
from State_2 to State_3 ), and asks R; to produce
a “planning-event” as soon as it has elaborated a
new plan (which supposedly will contain a release
operation for ¢g). Rs will remain in State_3 un-
til Ry signals a “planning-event”. Note that R»’s
execution will continue until its current coordina-
tion plan is done 1.e. until the eq,.

t2: R3 and R4 attempt to start a PMO at (almost)
the same time. Let us assume than R4 has a lower
priority than Rs. R4 switches to State_1.2 and
R3 proceeds. It merges a new plan which makes
use of 19, cg and ez without interfering with any
other robot coordination plan.

t3: R, receives a message from R3 which is now done
with its PMO. R4 switches from State_1.2 to
State_1.1, it broadcasts the list of its required re-
sources (11, €12, c10 and ¢z) and gets back coor-
dination plans from R; and R3. It merges a plan
with temporal constraints referring to Ry and R3
plans.

t4: After a while, R3 and R; need again new PMOs.
There is no interference between their respective
required resources. Therefore, they can perform
their PMOs in parallel.
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t5: Ry has now produced a new plan. It sends a
“planning-event” to Ry which can now switch
from State_3 to State_1.0 and proceed.

o

Legend:
R2 — state0
mm Statel.0
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R3 statel.2

R4

causality link

Figure 5: State change chronogram

We can make a number of remarks from this exam-
ple and its associated state change chronogram (see

Figure 5).

e One can see that planning and execution is done
in parallel.

More than one robot can perform a PMO at the
same time for disjunctive lists of resources (e.g.
Ry and Rs at instant t4).

Several robots may use the crossing simultane-
ously (e.g. Ry and Rj3).

The example exhibits the two types of syn-
chronization: synchronization based on ezecution
events (e.g. Ry will wait until Ry leaves ¢11), and
synchronization based on planning events (e.g.
Ry waits R; has produced and merged a new plan,
at instant t5).

Each robot produces and merges its plans itera-
tively, and the global plan for the use of the cross-
ing is incrementally built through several PMOs
performed by various robots.

It is not a first arrived first served execution; for
example R, arrived second, was blocked by Ry,
but did not block the crossing and let R3 and R4
enter the crossing before it.

4.5 The current implementation
We have developed a complete robot control sys-
tem which includes all the features described. Its ar-



chitecture is based on generic control architecture for
autonomous mobile robots developed at LAAS [4, 1].

It is instantiated in this case by adding an inter-
mediate layer for performing Plan-Merging operations
(Figure 2).

The robot supervisor is coded using a C-PRS [7]; it
performs Plan-Merging Operations based on a topo-
logical planner and on a motion planner. Figure 6
illustrates two trajectories planned and synchronized
using a PMO at trajectory level.

Figure 6: The result of a PMO at trajectory level

For testing and demonstration purposes, it has been
linked to a robot simulator.

Experiments have been run successfully on a dozen
of workstations (each workstation running a complete
robot simulator) communicating through Ethernet. A
3-d graphic server has been built in order to visualize
the motions and the load operations performed by all
the robots in a route network environment (Figure 7).
The simulated robots where able to achieve navigation
missions, performing hundreds of PMOs and solving
local conflicts. Motion planning and PMOs were suffi-
ciently efficient to allow most often the robots to elab-
orate and merge their plans without stopping unless
necessary.

The software is currently been installed under a real-
time multi-processor operating system for future ex-
perimentations on real robots.

5 Related work

There are numerous contributions dealing with
multi-robot cooperation. However, the term “cooper-
ation” has been used in several contexts with different
meanings.

GDHE: Graphic Display for HILARE Expe

Figure 7: Several simulated robots at a crossing

We will not consider here contributions to coopera-
tion schemes at servo level (e.g. [10]) nor contributions
which aim at building an “intelligent group” of simple
robots (e.g. [11]). We will limit our analysis to con-
tributions which involve an effective cooperation (at
plan or program level) between several robots.

Several approaches have been proposed, such as gen-
eration of trajectories without collision (e.g. [5, 14]),
traffic rules [6, 8], negotiation for dynamic task alloca-
tion [9, 3], and synchronization by programming [12,
16].

Inter-robot communication allows to exchange var-
ious information, positions, current status, future ac-
tions, ete [3, 16, 15] and to devise effective cooperation
schemes.

Traffic rules have been proposed as a way to allow
several robots to avoid collision and to synchronize
their motion (with limited or even without communi-
cation). However, many aspects should be taken into
account in order to build the set of traffic rules: the
tasks, the environment, the robot features, and so on.
This entails that the generated rules are valid only un-
der the considered assumptions. If some of them are
changed, the rules have to be modified or sometimes
be regenerated completely. Besides, these systems are
generally built heuristically and do not provide any
guarantee such as deadlock detection.

Negotiation have been used for dynamic task [3] or
resource [9] allocation to several robots depending on
the situation. One robot or a station allocates tasks
to negotiators determined through communication.

Most contributions which make use of synchro-
nization through communication are based on a pre-
defined set of situations or on task dependent proper-
ties.

Indeed, most of the methods listed here, deal essen-
tially with collision avoidance or motion coordination
and cannot be directly applied to other contexts or
tasks.

We claim that our Plan-Merging paradigm is a
generic framework which can be applied in different



contexts, using different planners (action planners as
well as motion planners). It has some clean properties
(and clear limitations) which should allow, depending
on the application context, to provide a coherent be-
havior of the global system without having to encode
explicitly all situations that may encoded.

6 Conclusion and future work
The Plan-Merging paradigm we propose has the fol-
lowing properties;

1. Tt makes possible for each robot to produce a co-
ordination plan which is compatible with all plans
executed by other robots.

2. No system 1s required to maintain the global state
and the global plan permanently. Instead, each
robot updates it from time to time by executing
a PMO.

3. The PMO is safe, because 1t is robust to plan
execution failures and allows to detect deadlocks.

We believe that it can be applied to a large variety
if contexts and with different planners (from action
planners to task or motion planners), and at different
granularities.

Such a multi-robot cooperation scheme “fills the
gap” between centralized, very high level planning and
distributed execution by a set of autonomous robots
in a dynamic environment,.

Indeed, it appears to be particularly well suited to
the control of a large number of robots navigating in
a route network. The application that we have imple-
mented clearly exhibits its main features. Tt allowed
us to make a large number of autonomous robots be-
have coherently and efficiently without creating a huge
activity at the central system.

Besides the demonstration of real robots and the in-
vestigation of other classes of applications, our future
work will concentrate on developing new cooperation
schemes by embedding a multi-robot planning activity
inside a PMO.
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