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Abstract 

In the MARTHA project, a large number of robots in a 
harbour are given the global task of transporting contain- 
ers from one area to anothel: The global decision-making 
process of allocating robots to those predejined tasks can 
be viewed as a scheduling and resource allocation prob- 
lem, which is addressed here in a centralised way. 

Imprecision of temporal constraints make it meaningless 
to search for  a strict optimal schedule. Our approach in- 
terleaves task allocation and execution, scheduling in a 
sliding short-term horizon, as the execution process runs, 
and providing near-optimal solutions. 

For largeapplications as our, the complexity of temporal 
management is a crucial issue. We present here a graph 
decomposition technique, leading to nearly-constant time 
temporal propagation, without any loss of information. 

1 . Introduction and Related Work 

We consider the task where a large number of robots have 
to carry containers from place to place (boats, trains, 
planes, stocking areas) in a harbour or an airport. The 
planning and execution of routes are distributed along the 
robots, with resource sharing techniques (crossroads, 
parking areas, ...) through a plan merging operation para- 
digm (see [ 13 for details). But this process has to rely on a 
global mission allocation system, whose description is the 
purpose of this paper. 

Deciding which container will have to be managed next, 
and which robot will carry it, which is a classical schedul- 
ing and resource allocation process, is constrained by tem- 
poral optimality criteria (containers have to be unloaded 
from boats and trains before their departure times), which 
requires the use of heuristic functions along a greedy 
search approach. Moreover, in our application context, we 
are mainly concerned with the imprecision of temporal 
constraints on expected events and goals. For example the 
actual duration of an action depends upon the execution 
level and the actual state of the environment. Short term 
predictions and objectives are then usually quite reliable 
whereas long term ones are not (what [2] calls the cached- 
uling uncertainty,,). This lead us to adopt a dynamic ap- 
proach, interleaving mission allocation and execution, as 

in [ 5 ] ,  or in [6] .  So, we will make local decisions, in order 
to incrementally build the solution along with its execution, 
taking into account the current results of the process going 
on. 

Therefore, the efficiency of the allocation process becomes 
a crucial issue. Like in [7] or in [4], the temporal con- 
straints propagation process is at the heart of the problem, 
making explicit new constraints that will help guide the 
scheduling choices, which will in turn add new constraints 
that will need to be propagated. But [7] as most authors use 
costly global propagation algorithms, whereas [4] uses fo- 
cusing techniques that, although enhancing the propagation 
efficiency, do not assure its completeness any longer, and 
then leads to <<deviations), in the decision process. 

Our proposal is to decompose the global temporal graph 
into sub-parts (or clusters) in which complete propagation 
can be confined. Our decomposition scheme relies upon the 
application-dependent structure of the graph, whereas for 
example [6] proposes a temporal decomposition based 
upon complex problem characterisation techniques. We 
then get a propagation process that is fast (nearly constant 
time), complete and gives sound answers to the queries 
made by the decision-making loop. Such a temporal system 
combining expressiveness, robustness, and efficiency, dedi- 
cated to large real problems, constitutes our major contribu- 
tion. 

Moreover, [SI and [2]  tell us that dynamic systems cannot 
guarantee the quality of the final solution, regarding some 
global criteria, and that only near-optimal solutions can be 
reached. We show that in most of the cases we had to study, 
the proposed system found solutions of high-quality. 

Part 2 will present the robotic application context and the 
type of problem addressed, part 3 will focus on the tempo- 
ral management aspects, then the allocation process will be 
depicted in part 4 and the execution process, together with 
the overall interleaving process, in part 5 .  We will conclude 
following experimental results given in part 6. 

2 .  Application Context and 'Qpe of Problem 
The application context, inspired by the MARTHA project 
described in [l], is depicted in Figure 1. In a high-level 
view, the envrionment (let's say a harbour) is decomposed 
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into virtual areas. We only know the imprecise duration 
needed to go from one area to another. Containers (a few 
hundreds per mission) arrive in boats or trains (we will use 
the generic term of <<conveyor>>), which dates of arrival and 
departure are also imprecise. They are to be lbrought to 
some other place: stockage areas, or conveyor areas, which 
defines a set of cccontainers-shiftingn missions that are to 
be carried out by a crew of robots (about 50). 

The generic mission performed by a robot is a sequence of 
the four actions : 

- Moving from the robot current position to the: container 
loading area (GOTO action). 
- Picking up the assigned container by use of a cirane locat- 
ed in this area (PICKUP). 
- Moving to the unloading area (GOTO). 
- Putting down the container (PUTDOWN). 

FIGURE 1. Illustration of the application context 

Moreover, the PICKUP and PUTDOWN acti0n.s have to 
be made during the availability of the corresponding con- 
veyor in the area, i.e. between its arrival time and its depar- 
ture time. This defines an initial temporal window during 
which the PICKUP and PUTDOWN actions h,ave to be 
conducted. 

The containers are attainable in a conveyor in a given par- 
tial order (which is represented through ccvirtual stacks>> of 
containers in each conveyor area). This defines an initial 

partial ordering of PICKUP actions. On the opposite, the 
ordering of PUTDOWN actions is not constrained in any 
way. There is just one crane per area, which is implicitly 
managed throughout the strict ordering of PICKUP/ 
PUTDOWN actions in each area. 

As far as the type of problem is concerned, we can see that 
we have to face what [ 111 calls a joint problem, mixing 
scheduling and resource allocation. The first step (see part 
4) consists of iteratively choosing a mission (i.e. a contain- 
er) and the resource (i.e. the robot) that will be allocated to 
it. This is a simpler resource allocation problem than in [2] 
as for us the eaobob resources are all equivalent and can be 
equally allocated to any mission. 

The second step addresses addition of strict ordering con- 
straints 
- between successive missions for each robot, 
- between PICKUP/PUTDOWN actions on each area. 

3 .  Temporal Management Issues 

Incrementally adding new temporal constraints needs ug- 
dating and consistency checking capabilities. For this pur- 
pose, our system relies on a complete and separated 
temporal constraint management system, which can be 
compared to [3] system relying on the Deans's TMM, and 
also to [7] in which resource constraints are used to add 
new temporal constraints. 

3.1 Basic Representation Issues 

IN-AREA (boat) 

11 time-point - action - conveyor availability temporal window 
simple precedence constraint sequencing actions 

[O:lO'] numerical temporal constraint 

FIGURE 2. Representation of a mission-graph 

The representation of time within our temporal system 
IxTeT relies upon a graph-based structure with time-points 
(the nodes in the graph) that are constrained by precedence 
constraints (directed edges in the graph), and also by im- 
precise numerical constraints (durations and dates) given as 
intervals of possible durations labelling the precedence 
edges (see details in [SI). This leads to represent the above 
generic mission through what will be called a ccmission- 
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graph>> in Figure 2, with the four elementary actions and 
the initial conveyors availability temporal windows. 

At the beginning of the allocation loop, the global graph is 
expanded, with all the mission-graphs in parallel, not yet 
connected one to another. In Figure 3, one can see that 
each time a robot is allocated, precedence constraints cor- 
responding to the interactions with other mission-graphs 
are added (doted arrows). Thus, the global graph evolves 
from a highly parallel one to a more sequencial one, where, 
as usually in scheduling problems, missions for a robot are 
incrementally ordered, and constraints between those robot 
sequences of missions appear because of the ordering of 
the PICKUPrPUTDOWN actions. 

X time-point 

0 mission-graph 

FIGURE 3. The decomposition scheme 

As our application involves large number of robots and 
containers, we have to manage big dimension graphs, in 
the order of a few thousands time-points, and so classical 
global propagation algorithms are too expensive in our al- 
locatiodexecution interleaving approach. 

3.2 The Clustertsed Propagation Technique 

In order to improve the propagation complexity, we have 
put forward the following techniques. 

Figure 3 reveals that each time a mission-graph is ecinstan- 
tiated, with a robot, a new time-point is also added to it: 
the one corresponding to the end of the previous mission 
allocated to the robot (the ccavailability time-point>> of the 
robot). And the new PICKUPPUTDOWN ordering con- 
straints leads to the updating of the temporal windows for 
the PICKUPRUTDOWN actions, which is represented in 
Figure 4. 

This definition of the evolution of the mission-graphs dur- 
ing the incremental allocation process leads to the follow- 
ing property: 

The decomposition of the global graph into individual 
mission-graphs defines a complete partition, i.e. 

- any time-point belongs to at least one cluster, 
- any input constraint belongs to at least one cluster. 

This basic property allows us to put forward the following 
recursive propagation process. Let us call C, the mission- 
graph (or cccluster>>) corresponding to the transportation of 
the container Conf. 

- PICKUP action 
simple precedence 

PICKUP ordering constraint 
new temporal window for PU2 

L_ conveyor availability temporal window . _ _ _ _ _  I I - 
. \ \ \ \ 

FIGURE 4. PICKUP temporal window updating 

cClusterisedB propagation process 
If (ij) is a temporal constraint being modified, we easil 

C, such that i E C, and j E C,. Then we execute PROP- 
AG(i,j, C,) which is composed of the following steps: 
(1) propagate (ij? only within C,, 
(2)  for each modified constraint (k,l)  belonging to another 
cluster C, execute PROPAG(k,l, C,,). 

From this definition, we prove that: 

(1) The clusterised Propagation is complete: it always de- 
tects an inconsistency ifthere is one. 

conclude from the previous definitions that necessarily 3 

Moreover, the only temporal constraints that are useful for 
the global decision-making process, as we will see in next 
part, are: 
- the ccavailability date,, of a robot, i.e. the imprecise date of 
the cravailability time-point*. 
- the temporal windows for the PICKUPPUTDOWN ac- 
tions. 

Thanks again to the definition of the mission-graphs and of 
the clusterised propagation process, we prove that: 
(2)  We get complete and accurate answers to queries made 
on the above mentioned temporal constraints. 

Thus we can say that our clusterised propagation process 
behaves in the same way as a global propagation would do, 
regarding the global decision-making process we have to 
address. 

Concerning the efficiency, the decomposition leads to the 
definition of sub-graphs each containing 14 time-points. 
We thus get a complexity of O(1t.14~) at each constraint ad- 
dition, with k being the number of sub-graphs that will have 
to be propagated in a recursive way. 
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So we have put forward a much powerful, though com- 
plete, propagation algorithm, taking advantage of the par- 
ticular structure of the temporal network in our application. 

4 . The Allocation Decision-Making Loop 

The decision-making loop is made of iterative s8teps of al- 
location of one robot to one container, with the aim of not 
backtracking on these decisions (in a dynamic behaviour 
perspective). At each of these steps, we get as input: 
(a)- the current overall graph, with mission-graphs already 
ordered (corresponding to missions already allocated) and 
unconnected mission-graphs (corresponding to the mis- 
sions not yet allocated), 
(b)- the current position and <<availability date,) of each ro- 
bot (i.e. the resource availability), 
(c)- the current virtual stacks of containers remaining on 
each conveyor, and the unloading area for each container 
(i.e. the set of missions requiring sequencing and resource 
allocation). 

Then we have to run the two decision steps that are usually 
addressed in search techniques ([2]), especially when 
backtrack-free search is required: 

1) <<variable orderingv: which mission to scheldule next, 
i.e. in our case which container to take next. 
2) <<value ordering>>: which resource and temporal place- 
ment to choose for this mission, i.e. in our case which ro- 
bot will take care of the container. 

These choices will be made through heuristic functions de- 
picted in section 4. l ~ This will lead into updating opera- 
tions concerning data (a), (b) and (c), mainly adding 
temporal constraint (described in section 4.2), ending into 
a new situation. 

4.1 Choice Strategies 

As it is discussed in [2], <<there is no such thing as an opti- 
mal schedule>>, because optimality criteria are usually mul- 
tiple, fuzzy and conflictual. In our application domain, one 
temporal criteria (as in [IO]) appeared to be pre-eminent: 
trying to process all the loadinglunloading actions with a 
minimal loss of time, in order to get the best chances of 
having unloadedlloaded all the containers in a conveyor 
before its departure. 

We thus want to get some near-optimal (or ccgood quality,,) 
solution according to this criteria. First, in an off-line ini- 
tial process, we can check if the problem is g1ob:illy feasi- 
ble, simply checking if the sum of the durations of the 
loadinghnloading actions on each conveyor is lower than 
the total duration time of availability of this conveyor. 

Then, at each step of the allocation process, the two follow- 
ing heuristic functions are processed. 

Find the *most critical* container. 

This requires knowing which are the <<reachable)) contain- 
ers, i.e. the ones that are on top of the stacks. This is easily 
done thanks to a graph-based structure of these stacks. 

To meet the global criteria defined above, we will have to 
look for the most urgent container, i.e. the one for which 
there is the less time remaining for catching it. This leads to 
search for the container whose latest possible date of load- 
ing it is minimal (i.e. search for Cont, that minimizes the 
upper-bound of the numerical constraint on the date of the 
starting time-point of the PICKUP action). This defines a 
first <<criticality dimension, for each container. 

From this definition, two containers loaded from the same 
conveyor will be equivalent. Thus we will need another 
choice function, reasoning ‘on the unloading area: we will 
choose the container for which we won’t need to wait be- 
fore putting it down (e.g., if the container has to be unload- 
ed on a train that arrives in 3 hours, it is not necessary 
catching it now as it will unnecessarily bring a robot to a 
standstill). 

Of course, these functions might be improved in order to 
get better solutions in more complex situations. But this has 
been found to be satisfactory enough in practice, when ad- 
dressing current situations in the harbour (see part 6) .  

The time complexity of this function, since numerical re- 
quests are made in constant time in the mission-graphs, is 
only linear in the number of reachable containers, which 
are generally few, as far as the containers are <<highly 
stackedu in the conveyors. 

Find the best robot. 

The best robot, again following the same global criteria, 
will obviously be the nearest to the loading area, i.e. the 
one that will arrive first. We then only need to compute the 
expected arrival of the robot ExpArr as the sum of the cur- 
rent availability date AvD of the robot and the goto duration 
for reaching the area, and choose the robot RoboG that min- 
imizes this dimension. 

Again, the function takes advantage of the propagated tem- 
poral constraints and its complexity is only linear on the 
number of robots. 

4.2 Adding new Temporal Constraints 

Once the choices have been made, temporal precedence 
constraints will be added (and propagated) 
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- between the last availability time-point of the robot and 
the beginning of its new mission, 
- and between the PICKUPPUTDOWN actions that have 
to be strictly ordered. 

Those last ones are added in a least-commitment approach. 
Because of the choice criteria, (the container which has to 
be picked up first will be allocated first), there is no partic- 
ular problem about the PICKUP actions: they are ordered 
as soon as they are allocated. 

For the PUTDOWN actions, it is not as easy. Let us see the 
following situation of Figure 5,  in which robot Robl, in 
area A, is allocated to the most critical container Contl, to 
convey it from area A to area C, which takes about 20 min- 
utes. Then Rob2, in area B, is allocated to ConQ, which 
has to be taken from area B to area C, which takes about 5 
minutes. Thus, Cont2, which has been allocated after 
Contl, will arrive before ! The PUTDOWN of Cont2 
should then be inserted before the PUTDOWN of Contl 
(as a need for optimality), which may delay it, and then 
change the current availability date of Robl. In a back- 
track-free search approach, we cannot allow to change it at 
any time. 

FIGURE 5. Conflictual example 

Fortunately, we can: 
1. observe that we only need to know the availability date 
of a robot when we allocate it to a new mission, 
2. and then easily prove that we can delay the PUTDOWN 
action ordering until the robot is reallocated. 

Let us see it in the previous example. If Robl is reallocated 
to a new mission, and if afterwards the situation in Figure 5 
arises, we then get a contradiction: Rob2 would have been 
chosen for carrying Contl. 

The last situation is when a PICKUP and a PUTDOWN 
possibly overlap in a same area. Here, the ordering deci- 
sion is made by a heuristic comparison of the criticality of 
the involved containers (see last section). 

Thus, we have put forward a least-commitment approach, 
mixed with some heuristic choice when needed, to assume 
a backtrack-free near-optimal ordering of the loadinghn- 
loading actions throughout the global process. 

5 . The Execution Process and the Global 
Control Loop 

As we have sketched out in the introduction, one cannot al- 
locate the robots to all the missions, because of absence of 
precision in the numerical constraints given in input. The 
more missions we give to a robot, the more imprecision we 
get in its new availability date, because of imprecision 
growing within successive propagation processes. A point 
is reached when it is no more possible to choose between 
two robots in a sufficiently deterministic way: the availabil- 
ity dates of two robots being intervals of possible values, 
we are sure that one will arrive first if those two intervals 
are non overlapping. If there are overlapping, we measure 
the <<overlapping ratio>> OvP 

OvP = length (overlapping) I length (union of the two in- 
tervals) 

When OvP exceeds some threshold T given as input, then 
this overlapping becomes a dead-lock as we can only make 
an unreliable choice that could lead to a future need to 
backtrack. We then decide to stop the allocation loop and 
wait until the execution process gives account of more pre- 
cise values that will reduce the dimension OvP: each exe- 
cuted action brings some real duration value that is 
propagated to the following expected actions, thanks to a 
directed arc-consistency algorithm that runs in O(m.r) in 
worst case, where m is the number of time-points in the 
graph managed by the execution process, and r the number 
of robots. 

The question is now: how will we fix the dimension T ?  Ob- 
viously, if we have a lot of imprecision, we cannot require a 
tight discrimination criteria between two robots (formally a 
short overlapping ratio), because we may not be able to 
make choices and the robots could remain unallocated. 
Then the global system would stop. So, we need to build a 
function that computes the correct threshold T depending 
upon the imprecision of the temporal numerical constraints 
given in input, such that each robot is given at each time an 
horizon of one up to two missions. 

FIGURE 6 .  Global architecture 
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As we only allocate within a short-term horizon, the total 
number of mission-graphs corresponding to the missions 
being already allocated, but not yet executed (the dimen- 
sion k in part 3), is strictly bounded, which leads to nearly 
constant time propagation process. The describeld approach 
leads to the global architecture of our system, represented 
in Figure 6. 

6 . Complexity and Experimental Results 

Our method was implemented in CommonLisp in a Sun- 
Spark environment. We have first tested on a huge set of 
problem instances involving 10 robots and about 50 con- 
tainers, with variations upon the amount of imprecision, 
and thus upon the threshold T. 

Theoretical study of the complexity shows that the alloca- 
tion process runtime is stricly bounded, and does only de- 
pend upon the mount  of imprecision and the number of 
robots. Experimental results give account of running times 
between 1 to 10 seconds for the allocation steps, and in the 
order of a millisecond for the temporal propagations during 
execution, which has to be compared to durations of ac- 
tions in the order of a minute at the less. So it appexs to be 
negligible, as far as a sufficient time-lag is maintained be- 
tween allocation and execution, especially thanks to the 
tuning of dimension T. 

Afterwards, we have experimented with more robots and 
containers, up to 50 robots. It has been observe:d that the 
initial off-line process of expanding the graph, with initial 
propagations became really costly: in the order of a minute 
as far as the number of containers exceeds 80, and about 10 
minutes for 200 containers. The use of dynamic memory to 
store this graph structure became also quickly overwhelm- 
ing. But the global in-line allocatiodexecution process be- 
haves with nearly the same experimental complexity, in the 
order of a few seconds, thus paying off for the initial pre- 
processing. 

7 e Conclusion 

The approach presented throughout this paper describes 
techniques for allocating predefined missions to a large 
team of robots. The imprecise nature of temporal informa- 
tion led us to adopt an interleaved allocationhexecution 
process, which gave birth to the necessity of finding highly 
efficient temporal management techniques. This was made 
possible thanks to an application-dependent graph decom- 
position technique, allowing to take into account complex 
temporal constraints. 

We finally built a robust complete system, with the quality 
of the solution produced depending upon the amount of 

imprecision characterising the instance of the application. 
However, this technique is incomplete in the sense that in 
complex situations, it may not find a solution when there is 
one. Nevertheless, thanks to our temporal propagation tech- 
nique, failing to reach a solution can be discovered early in 
the global process, and thus constraint relaxation tech- 
niques (like for example requesting a delayed departure of 
a boat) can be activated in advance. Moreover, thanks to 
our modular architecture, we can improve our heuristic 
functions in order to be able to take into account those more 
complex situations. 

These encouraging results made it possible to consider the 
integration of this process into a real application, mixing 
the high-level global allocation system together with the 
low-level distributed route‘ planning and execution archi- 
tecture (such as in [lo] for example). 
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