
HAL Id: hal-01979700
https://laas.hal.science/hal-01979700

Submitted on 13 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Mission Allocation to a Large Team of
Robots

Thierry Vidal, Malik Ghallab, Rachid Alami

To cite this version:
Thierry Vidal, Malik Ghallab, Rachid Alami. Incremental Mission Allocation to a Large Team of
Robots. Proceedings of IEEE International Conference on Robotics and Automation, Apr 1996,
Minneapolis, United States. �hal-01979700�

https://laas.hal.science/hal-01979700
https://hal.archives-ouvertes.fr

Proceedings of the 1996 IEEE
International Conference on Robotics and Automation

Minneapolis, Minnesota - April 1996
Incremental Mission Allocation to a Large Team of Robots

Thierry Vidal Malik Ghallab Rachid Alami
LAAS-CNRS - 7, av du Colonel-Roche - 3 1077 TOULOUSE - FRANCE

e-mail: [thierry, malik, rachid] @laas.fr

Abstract

In the MARTHA project, a large number of robots in a
harbour are given the global task of transporting contain-
ers from one area to anothel: The global decision-making
process of allocating robots to those predejined tasks can
be viewed as a scheduling and resource allocation prob-
lem, which is addressed here in a centralised way.

Imprecision of temporal constraints make it meaningless
to search for a strict optimal schedule. Our approach in-
terleaves task allocation and execution, scheduling in a
sliding short-term horizon, as the execution process runs,
and providing near-optimal solutions.

For largeapplications as our, the complexity of temporal
management is a crucial issue. We present here a graph
decomposition technique, leading to nearly-constant time
temporal propagation, without any loss of information.

1 . Introduction and Related Work

We consider the task where a large number of robots have
to carry containers from place to place (boats, trains,
planes, stocking areas) in a harbour or an airport. The
planning and execution of routes are distributed along the
robots, with resource sharing techniques (crossroads,
parking areas, ...) through a plan merging operation para-
digm (see [13 for details). But this process has to rely on a
global mission allocation system, whose description is the
purpose of this paper.

Deciding which container will have to be managed next,
and which robot will carry it, which is a classical schedul-
ing and resource allocation process, is constrained by tem-
poral optimality criteria (containers have to be unloaded
from boats and trains before their departure times), which
requires the use of heuristic functions along a greedy
search approach. Moreover, in our application context, we
are mainly concerned with the imprecision of temporal
constraints on expected events and goals. For example the
actual duration of an action depends upon the execution
level and the actual state of the environment. Short term
predictions and objectives are then usually quite reliable
whereas long term ones are not (what [2] calls the cached-
uling uncertainty,,). This lead us to adopt a dynamic ap-
proach, interleaving mission allocation and execution, as

in [5] , or in [6] . So, we will make local decisions, in order
to incrementally build the solution along with its execution,
taking into account the current results of the process going
on.

Therefore, the efficiency of the allocation process becomes
a crucial issue. Like in [7] or in [4], the temporal con-
straints propagation process is at the heart of the problem,
making explicit new constraints that will help guide the
scheduling choices, which will in turn add new constraints
that will need to be propagated. But [7] as most authors use
costly global propagation algorithms, whereas [4] uses fo-
cusing techniques that, although enhancing the propagation
efficiency, do not assure its completeness any longer, and
then leads to <<deviations), in the decision process.

Our proposal is to decompose the global temporal graph
into sub-parts (or clusters) in which complete propagation
can be confined. Our decomposition scheme relies upon the
application-dependent structure of the graph, whereas for
example [6] proposes a temporal decomposition based
upon complex problem characterisation techniques. We
then get a propagation process that is fast (nearly constant
time), complete and gives sound answers to the queries
made by the decision-making loop. Such a temporal system
combining expressiveness, robustness, and efficiency, dedi-
cated to large real problems, constitutes our major contribu-
tion.

Moreover, [SI and [2] tell us that dynamic systems cannot
guarantee the quality of the final solution, regarding some
global criteria, and that only near-optimal solutions can be
reached. We show that in most of the cases we had to study,
the proposed system found solutions of high-quality.

Part 2 will present the robotic application context and the
type of problem addressed, part 3 will focus on the tempo-
ral management aspects, then the allocation process will be
depicted in part 4 and the execution process, together with
the overall interleaving process, in part 5 . We will conclude
following experimental results given in part 6.

2 . Application Context and 'Qpe of Problem
The application context, inspired by the MARTHA project
described in [l], is depicted in Figure 1. In a high-level
view, the envrionment (let's say a harbour) is decomposed

0-7803-2988-4196 $4.00 0 1996 IEEE 1620

into virtual areas. We only know the imprecise duration
needed to go from one area to another. Containers (a few
hundreds per mission) arrive in boats or trains (we will use
the generic term of <<conveyor>>), which dates of arrival and
departure are also imprecise. They are to be lbrought to
some other place: stockage areas, or conveyor areas, which
defines a set of cccontainers-shiftingn missions that are to
be carried out by a crew of robots (about 50).

The generic mission performed by a robot is a sequence of
the four actions :

- Moving from the robot current position to the: container
loading area (GOTO action).
- Picking up the assigned container by use of a cirane locat-
ed in this area (PICKUP).
- Moving to the unloading area (GOTO).
- Putting down the container (PUTDOWN).

FIGURE 1. Illustration of the application context

Moreover, the PICKUP and PUTDOWN acti0n.s have to
be made during the availability of the corresponding con-
veyor in the area, i.e. between its arrival time and its depar-
ture time. This defines an initial temporal window during
which the PICKUP and PUTDOWN actions h,ave to be
conducted.

The containers are attainable in a conveyor in a given par-
tial order (which is represented through ccvirtual stacks>> of
containers in each conveyor area). This defines an initial

partial ordering of PICKUP actions. On the opposite, the
ordering of PUTDOWN actions is not constrained in any
way. There is just one crane per area, which is implicitly
managed throughout the strict ordering of PICKUP/
PUTDOWN actions in each area.

As far as the type of problem is concerned, we can see that
we have to face what [111 calls a joint problem, mixing
scheduling and resource allocation. The first step (see part
4) consists of iteratively choosing a mission (i.e. a contain-
er) and the resource (i.e. the robot) that will be allocated to
it. This is a simpler resource allocation problem than in [2]
as for us the eaobob resources are all equivalent and can be
equally allocated to any mission.

The second step addresses addition of strict ordering con-
straints
- between successive missions for each robot,
- between PICKUP/PUTDOWN actions on each area.

3 . Temporal Management Issues

Incrementally adding new temporal constraints needs ug-
dating and consistency checking capabilities. For this pur-
pose, our system relies on a complete and separated
temporal constraint management system, which can be
compared to [3] system relying on the Deans's TMM, and
also to [7] in which resource constraints are used to add
new temporal constraints.

3.1 Basic Representation Issues

IN-AREA (boat)

11 time-point - action - conveyor availability temporal window
simple precedence constraint sequencing actions

[O:lO'] numerical temporal constraint

FIGURE 2. Representation of a mission-graph

The representation of time within our temporal system
IxTeT relies upon a graph-based structure with time-points
(the nodes in the graph) that are constrained by precedence
constraints (directed edges in the graph), and also by im-
precise numerical constraints (durations and dates) given as
intervals of possible durations labelling the precedence
edges (see details in [SI). This leads to represent the above
generic mission through what will be called a ccmission-

1621

graph>> in Figure 2, with the four elementary actions and
the initial conveyors availability temporal windows.

At the beginning of the allocation loop, the global graph is
expanded, with all the mission-graphs in parallel, not yet
connected one to another. In Figure 3, one can see that
each time a robot is allocated, precedence constraints cor-
responding to the interactions with other mission-graphs
are added (doted arrows). Thus, the global graph evolves
from a highly parallel one to a more sequencial one, where,
as usually in scheduling problems, missions for a robot are
incrementally ordered, and constraints between those robot
sequences of missions appear because of the ordering of
the PICKUPrPUTDOWN actions.

X time-point

0 mission-graph

FIGURE 3. The decomposition scheme

As our application involves large number of robots and
containers, we have to manage big dimension graphs, in
the order of a few thousands time-points, and so classical
global propagation algorithms are too expensive in our al-
locatiodexecution interleaving approach.

3.2 The Clustertsed Propagation Technique

In order to improve the propagation complexity, we have
put forward the following techniques.

Figure 3 reveals that each time a mission-graph is ecinstan-
tiated, with a robot, a new time-point is also added to it:
the one corresponding to the end of the previous mission
allocated to the robot (the ccavailability time-point>> of the
robot). And the new PICKUPPUTDOWN ordering con-
straints leads to the updating of the temporal windows for
the PICKUPRUTDOWN actions, which is represented in
Figure 4.

This definition of the evolution of the mission-graphs dur-
ing the incremental allocation process leads to the follow-
ing property:

The decomposition of the global graph into individual
mission-graphs defines a complete partition, i.e.

- any time-point belongs to at least one cluster,
- any input constraint belongs to at least one cluster.

This basic property allows us to put forward the following
recursive propagation process. Let us call C, the mission-
graph (or cccluster>>) corresponding to the transportation of
the container Conf.

- PICKUP action
simple precedence

PICKUP ordering constraint
new temporal window for PU2

L_ conveyor availability temporal window . _ _ _ _ _ I I -
. \ \ \ \

FIGURE 4. PICKUP temporal window updating

cClusterisedB propagation process
If (ij) is a temporal constraint being modified, we easil

C, such that i E C, and j E C,. Then we execute PROP-
AG(i,j, C,) which is composed of the following steps:
(1) propagate (ij? only within C,,
(2) for each modified constraint (k,l) belonging to another
cluster C, execute PROPAG(k,l, C,,).

From this definition, we prove that:

(1) The clusterised Propagation is complete: it always de-
tects an inconsistency ifthere is one.

conclude from the previous definitions that necessarily 3

Moreover, the only temporal constraints that are useful for
the global decision-making process, as we will see in next
part, are:
- the ccavailability date,, of a robot, i.e. the imprecise date of
the cravailability time-point*.
- the temporal windows for the PICKUPPUTDOWN ac-
tions.

Thanks again to the definition of the mission-graphs and of
the clusterised propagation process, we prove that:
(2) We get complete and accurate answers to queries made
on the above mentioned temporal constraints.

Thus we can say that our clusterised propagation process
behaves in the same way as a global propagation would do,
regarding the global decision-making process we have to
address.

Concerning the efficiency, the decomposition leads to the
definition of sub-graphs each containing 14 time-points.
We thus get a complexity of O(1t.14~) at each constraint ad-
dition, with k being the number of sub-graphs that will have
to be propagated in a recursive way.

1622

So we have put forward a much powerful, though com-
plete, propagation algorithm, taking advantage of the par-
ticular structure of the temporal network in our application.

4 . The Allocation Decision-Making Loop

The decision-making loop is made of iterative s8teps of al-
location of one robot to one container, with the aim of not
backtracking on these decisions (in a dynamic behaviour
perspective). At each of these steps, we get as input:
(a)- the current overall graph, with mission-graphs already
ordered (corresponding to missions already allocated) and
unconnected mission-graphs (corresponding to the mis-
sions not yet allocated),
(b)- the current position and <<availability date,) of each ro-
bot (i.e. the resource availability),
(c)- the current virtual stacks of containers remaining on
each conveyor, and the unloading area for each container
(i.e. the set of missions requiring sequencing and resource
allocation).

Then we have to run the two decision steps that are usually
addressed in search techniques ([2]), especially when
backtrack-free search is required:

1) <<variable orderingv: which mission to scheldule next,
i.e. in our case which container to take next.
2) <<value ordering>>: which resource and temporal place-
ment to choose for this mission, i.e. in our case which ro-
bot will take care of the container.

These choices will be made through heuristic functions de-
picted in section 4. l ~ This will lead into updating opera-
tions concerning data (a), (b) and (c), mainly adding
temporal constraint (described in section 4.2), ending into
a new situation.

4.1 Choice Strategies

As it is discussed in [2], <<there is no such thing as an opti-
mal schedule>>, because optimality criteria are usually mul-
tiple, fuzzy and conflictual. In our application domain, one
temporal criteria (as in [IO]) appeared to be pre-eminent:
trying to process all the loadinglunloading actions with a
minimal loss of time, in order to get the best chances of
having unloadedlloaded all the containers in a conveyor
before its departure.

We thus want to get some near-optimal (or ccgood quality,,)
solution according to this criteria. First, in an off-line ini-
tial process, we can check if the problem is g1ob:illy feasi-
ble, simply checking if the sum of the durations of the
loadinghnloading actions on each conveyor is lower than
the total duration time of availability of this conveyor.

Then, at each step of the allocation process, the two follow-
ing heuristic functions are processed.

Find the *most critical* container.

This requires knowing which are the <<reachable)) contain-
ers, i.e. the ones that are on top of the stacks. This is easily
done thanks to a graph-based structure of these stacks.

To meet the global criteria defined above, we will have to
look for the most urgent container, i.e. the one for which
there is the less time remaining for catching it. This leads to
search for the container whose latest possible date of load-
ing it is minimal (i.e. search for Cont, that minimizes the
upper-bound of the numerical constraint on the date of the
starting time-point of the PICKUP action). This defines a
first <<criticality dimension, for each container.

From this definition, two containers loaded from the same
conveyor will be equivalent. Thus we will need another
choice function, reasoning ‘on the unloading area: we will
choose the container for which we won’t need to wait be-
fore putting it down (e.g., if the container has to be unload-
ed on a train that arrives in 3 hours, it is not necessary
catching it now as it will unnecessarily bring a robot to a
standstill).

Of course, these functions might be improved in order to
get better solutions in more complex situations. But this has
been found to be satisfactory enough in practice, when ad-
dressing current situations in the harbour (see part 6) .

The time complexity of this function, since numerical re-
quests are made in constant time in the mission-graphs, is
only linear in the number of reachable containers, which
are generally few, as far as the containers are <<highly
stackedu in the conveyors.

Find the best robot.

The best robot, again following the same global criteria,
will obviously be the nearest to the loading area, i.e. the
one that will arrive first. We then only need to compute the
expected arrival of the robot ExpArr as the sum of the cur-
rent availability date AvD of the robot and the goto duration
for reaching the area, and choose the robot RoboG that min-
imizes this dimension.

Again, the function takes advantage of the propagated tem-
poral constraints and its complexity is only linear on the
number of robots.

4.2 Adding new Temporal Constraints

Once the choices have been made, temporal precedence
constraints will be added (and propagated)

1623

- between the last availability time-point of the robot and
the beginning of its new mission,
- and between the PICKUPPUTDOWN actions that have
to be strictly ordered.

Those last ones are added in a least-commitment approach.
Because of the choice criteria, (the container which has to
be picked up first will be allocated first), there is no partic-
ular problem about the PICKUP actions: they are ordered
as soon as they are allocated.

For the PUTDOWN actions, it is not as easy. Let us see the
following situation of Figure 5, in which robot Robl, in
area A, is allocated to the most critical container Contl, to
convey it from area A to area C, which takes about 20 min-
utes. Then Rob2, in area B, is allocated to ConQ, which
has to be taken from area B to area C, which takes about 5
minutes. Thus, Cont2, which has been allocated after
Contl, will arrive before ! The PUTDOWN of Cont2
should then be inserted before the PUTDOWN of Contl
(as a need for optimality), which may delay it, and then
change the current availability date of Robl. In a back-
track-free search approach, we cannot allow to change it at
any time.

FIGURE 5. Conflictual example

Fortunately, we can:
1. observe that we only need to know the availability date
of a robot when we allocate it to a new mission,
2. and then easily prove that we can delay the PUTDOWN
action ordering until the robot is reallocated.

Let us see it in the previous example. If Robl is reallocated
to a new mission, and if afterwards the situation in Figure 5
arises, we then get a contradiction: Rob2 would have been
chosen for carrying Contl.

The last situation is when a PICKUP and a PUTDOWN
possibly overlap in a same area. Here, the ordering deci-
sion is made by a heuristic comparison of the criticality of
the involved containers (see last section).

Thus, we have put forward a least-commitment approach,
mixed with some heuristic choice when needed, to assume
a backtrack-free near-optimal ordering of the loadinghn-
loading actions throughout the global process.

5 . The Execution Process and the Global
Control Loop

As we have sketched out in the introduction, one cannot al-
locate the robots to all the missions, because of absence of
precision in the numerical constraints given in input. The
more missions we give to a robot, the more imprecision we
get in its new availability date, because of imprecision
growing within successive propagation processes. A point
is reached when it is no more possible to choose between
two robots in a sufficiently deterministic way: the availabil-
ity dates of two robots being intervals of possible values,
we are sure that one will arrive first if those two intervals
are non overlapping. If there are overlapping, we measure
the <<overlapping ratio>> OvP

OvP = length (overlapping) I length (union of the two in-
tervals)

When OvP exceeds some threshold T given as input, then
this overlapping becomes a dead-lock as we can only make
an unreliable choice that could lead to a future need to
backtrack. We then decide to stop the allocation loop and
wait until the execution process gives account of more pre-
cise values that will reduce the dimension OvP: each exe-
cuted action brings some real duration value that is
propagated to the following expected actions, thanks to a
directed arc-consistency algorithm that runs in O(m.r) in
worst case, where m is the number of time-points in the
graph managed by the execution process, and r the number
of robots.

The question is now: how will we fix the dimension T ? Ob-
viously, if we have a lot of imprecision, we cannot require a
tight discrimination criteria between two robots (formally a
short overlapping ratio), because we may not be able to
make choices and the robots could remain unallocated.
Then the global system would stop. So, we need to build a
function that computes the correct threshold T depending
upon the imprecision of the temporal numerical constraints
given in input, such that each robot is given at each time an
horizon of one up to two missions.

FIGURE 6 . Global architecture

1624

As we only allocate within a short-term horizon, the total
number of mission-graphs corresponding to the missions
being already allocated, but not yet executed (the dimen-
sion k in part 3), is strictly bounded, which leads to nearly
constant time propagation process. The describeld approach
leads to the global architecture of our system, represented
in Figure 6.

6 . Complexity and Experimental Results

Our method was implemented in CommonLisp in a Sun-
Spark environment. We have first tested on a huge set of
problem instances involving 10 robots and about 50 con-
tainers, with variations upon the amount of imprecision,
and thus upon the threshold T.

Theoretical study of the complexity shows that the alloca-
tion process runtime is stricly bounded, and does only de-
pend upon the mount of imprecision and the number of
robots. Experimental results give account of running times
between 1 to 10 seconds for the allocation steps, and in the
order of a millisecond for the temporal propagations during
execution, which has to be compared to durations of ac-
tions in the order of a minute at the less. So it appexs to be
negligible, as far as a sufficient time-lag is maintained be-
tween allocation and execution, especially thanks to the
tuning of dimension T.

Afterwards, we have experimented with more robots and
containers, up to 50 robots. It has been observe:d that the
initial off-line process of expanding the graph, with initial
propagations became really costly: in the order of a minute
as far as the number of containers exceeds 80, and about 10
minutes for 200 containers. The use of dynamic memory to
store this graph structure became also quickly overwhelm-
ing. But the global in-line allocatiodexecution process be-
haves with nearly the same experimental complexity, in the
order of a few seconds, thus paying off for the initial pre-
processing.

7 e Conclusion

The approach presented throughout this paper describes
techniques for allocating predefined missions to a large
team of robots. The imprecise nature of temporal informa-
tion led us to adopt an interleaved allocationhexecution
process, which gave birth to the necessity of finding highly
efficient temporal management techniques. This was made
possible thanks to an application-dependent graph decom-
position technique, allowing to take into account complex
temporal constraints.

We finally built a robust complete system, with the quality
of the solution produced depending upon the amount of

imprecision characterising the instance of the application.
However, this technique is incomplete in the sense that in
complex situations, it may not find a solution when there is
one. Nevertheless, thanks to our temporal propagation tech-
nique, failing to reach a solution can be discovered early in
the global process, and thus constraint relaxation tech-
niques (like for example requesting a delayed departure of
a boat) can be activated in advance. Moreover, thanks to
our modular architecture, we can improve our heuristic
functions in order to be able to take into account those more
complex situations.

These encouraging results made it possible to consider the
integration of this process into a real application, mixing
the high-level global allocation system together with the
low-level distributed route‘ planning and execution archi-
tecture (such as in [lo] for example).

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

R. Alami, F. Robert, F.F. Ingrand, S . Suzuki - Multi-
Robot Cooperation through Incremental Plan-Mer-
ging. E E E Int. Conf. on Robotics and Automation, Na-
goya (Japan), 1995.
P. M.Beny, B. Y.Ch0ueh-y & L. Friha - Multi-Agent

Architecture for a Dstributed Approach to Resource AI-
location using Temporal Abstractions. Technical Re-
port, EPFL, n. TR-92/18, 1992.
M. Boddy - Temporal Reasonning for Planning and
Scheduling. SIGART Bulletin, 4(3), 1993.
A. Collinot & C. Le Pape - Controlling Constraint
Propagation. Roc. 10th IJCAI, Milan (Italy) 1987.
A. Collinot, C. LePape, G. Pinoteau - SONIA: A
Knowledge-Based Approach to Industrial Job-Shop
Scheduling. International Journal for Artificial Intelli-
gence in Engineering, 3(2), 1988.
T. Dean - Intractability and Eme-Dependent Planning.
Proc. aReasonning About Actions and Plansw, 1986.
J. Erschler, P. Lopez & C. Thuriot - Temporal Reaso-
ning under Resource Constraints and Schedueing Pro-
blems. Revue d’Intelligence Artificielle, 5(3), 1991 [in
french].
S. French - Sequencing and Scheduling: an Introduc-
tion to the Mathematics of Job-Shop. Whiley, 1982.
M. Ghallab & T. Vidal- Focusing on a Sub-Graph for
Managing Eficiently Numerical Temporal Constraints.
Technical Report, LAAS-CNRS, 1994.

10. C. Le Pape - A Combination of Centralized and Distri-
buted Methods for Multi-Agent Planning and Schedu-
ling. Proc. IEEE Robotics and Automation, 1990.

11. C. Le Pape - Implementation of Resource Constraints
in ILOG SCHEDULE: A Library for the Development
of Constraint-Based Scheduling Systems. In dntelli-
gent Systems Engineeringu, 1994.

1625

