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Planning Coordination and Execution in Multi-robots Environment

We present and discuss a generic cooperative s c heme for multi-robot cooperation based on an incremental and distributed plan-merging process. Each robot, autonomously and incrementally builds and executes its own plans taking into account t h e m ulti-robot context. The robots are assumed to be able to collect the other robots current plans and goals and to produce plans which satisfy a set of constraints that will be discussed. We discuss the properties of this cooperative s c heme (coherence, detection of dead-lock situations) as well as the class of applications for which i t i s w ell suited. We show h o w this paradigm can be used in a hierarchical manner, and in contexts where planning is performed in parallel with plan execution. We also discuss the possibility to negotiate goals within this framework and how this paradigm \ lls the gap" between centralised planning and distributed execution. We nally illustrate this scheme through an implemented system which allows a eet of autonomous mobile robots to perform load transfer tasks in a route network environment with a very limited centralised activity and important gains in system exibility and robustness to execution contingencies.

Introduction

In the eld of multi-robot cooperation, we claim that it is useful to make a distinction between two main issues: C1: the rst issue involves goal/task decomposition and allocation to various robots C2: the second issue involves the simultaneous operation of several autonomous robots, each one seeking to achieve i t s own task or goal.

While several contributions have concentrated more particularly on one issue or the other, we claim that in numerous multi-robot applications, both issues appear and even \invoke" one another \recursively". This is particularly true for autonomous m ulti-robot applications and, more generally, when the allocated tasks or goals cannot be directly \executed" but require further re nement, because the robots act in a same physical environment a n d because of the multiplicity of uncertainties.

Let us assume a set of autonomous robots, which h a ve been given a set of (partially ordered) tasks or goals. This could be the output of a central planner, or the result of a collaborative planning process. One can consider this plan elaboration process nished when the obtained tasks or goals have a su cient range and are su ciently independent to cause a substantial \sel sh" robot activity. H o wever, each robot, while seeking to achieve its task will have to compete for resources, to comply with other robots activities. Hence, several robots may nd themselves in situations where they need to solve a n e w goal/task interaction leading to a new goal/task allocation scheme.

In such c o n text, planning and plans coordination can be classi ed along di erent strategies or choices.

Global versus local. When one plans actions and motions

for a number of robots, such as a eet of mobile robots, one can consider the whole eet or limit the scope of planning to the robots \involved" in the considered resources. Indeed, it seems to be rather ine cient t o t a k e i n to account all the robots present on the eld for any decision which only involves a subset of them. However, this global versus local tradeo is only possible when dealing with a properly sized environment. If the number of critical exclusive resources (such as spatial resource: lane cells or crossing cells) is more or less equal to the number of robots, con ict resolution will, by propagation, involve the whole eet. On the other hand, if the environment is properly sized, con icts remain local, and the solutions are negotiated locally without disturbing the unconcerned robots.

Complete versus incremental. Similarly, one can limit the scope of the planning and plan coordination in time. When a mission (i.e. a number of goals) is sent to a robot, it can plan (or try to plan) and coordinate the whole mission. But considering the execution hazards, and the inaccuracies with which one can forecast at what time such and such c o ntingent actions will end, it seems to be ine cient ( n o t t o s a y a w aste of time and resource) to plan too far ahead. The plan coordination should be done continuously, to guarantee a uid operation, and slightly ahead, to avoid to over constrain the others robot plans and to break the coordinated plans too often.

Centralised versus distributed. This last aspect of the planning and plan coordination problem is where the planning and plan coordination should take place, on a centralised com-puter or on board the robots. Centralised versus distributed does not change the computing complexity of the treatment. However, in a centralised approach, all the data (which are mostly local) need to be sent to the central station, and therefore require a more reliable communication link with a higher bandwidth between the robot and the central station. Moreover, we will see that the proposed protocol can be implemented with a local communication (i.e. only with the robots in the vicinity).

The approach w e h a ve c hosen can be classi ed as local, incremental and distributed Alami et al., 1994[START_REF] Alami | Multi-robot cooperation through incremental planmerging[END_REF]. H o wever, when the situation imposes it, our paradigm may \ e v olve" dynamically toward a more centralised, global form of planning [START_REF] Qutub | How t o Solve Deadlock Situations within the Plan-Merging Paradigm for Multi-robot Cooperation[END_REF].

After this introduction which makes a general presentation of our approach, and situates it in the general multi-robot planning debate, we present the related work in section 2. We shall introduce a more formal presentation of the Plan Merging Paradigm (PMP) and its operators in section 3. Section 4 brie y presents the multi-robot application on which w e tested and validated the PMP.

Related work

While several generic approaches have been proposed in the literature concerning task or goal decomposition and allocation (Contract Nets Smith, 1994], P artial Global Planning [START_REF] Durfee | [END_REF], distributed search [START_REF] Durfee | Coordination as distributed search in a hierarchical behavior spac[END_REF], negotiation Jennings, 1995[START_REF] Ferguson | [END_REF][START_REF] Rosenschein | [END_REF], motivational behaviours Parker, 1994 Ephrati et al., 1 9 9 4 ]), cooperation for achieving independent goals have been mostly treated using task-speci c or application-speci c techniques Le Pape, 1990 Yuta andS.Premvuti, 1992] We argue that there is also a need for generic approaches to C2. One can of course make the robots respect a set of rules (e.g. tra c rules), or more generally \social behaviours" Shoham and Tennenholtz, 1995], which are specially devised to avoid as much as possible con icts and to provide prede ned solutions to various situations. However, this cannot be a general answer applicable to various domains.

Our scheme provides and guarantees a coherent b e h a viour of the robots in all situations (including the avalanche of situations which m a y occur after an execution failure) and a reliable detection of situations which call for a new task distribution process.

3 Presentation of the PMP An robot which w ants to elaborate a coordinated plan need by some means to get some of the other robots plans. This is performed through request broadcasted by the planning robot and responses (plans or goal) sent b y the other robots. Some communication means are thus required and should provide reliable messages and broadcasts delivery and should guarantee messages reception order.

Part of the robot computation need to be made in mutual exclusion over some resources. In our case, the resource in mutual exclusion is the physical resource \planning/coordination" operation and not the use of the physical resource itself. For this we use a distributed mutual exclusion (DMEX) protocol based on path reversal Naimi et al., 1 9 9 6 ].

World Model using State attributes

We use a formalism borrowed from the IxTeT temporal planner Laborie and Ghallab, 1995]. Time is explicitly dealt with on the basis of time-points. The usual symbolic constraints of time-points algebra (i.e before, simultaneous, after) are handled.

The world state is described through a set of multi-valued state attributes. Each state attribute describes a particular feature of the world it is a k-ary mapping from some nite domains into a nite range called the value of the attribute.

We rely on a rei ed logic formalism Shoham and Tennenholtz, 1995] where state attributes are temporally quali ed by the predicates hold and event: hold(att(x 1 :::) : v (t 1 t 2 )) asserts the persistence of the value of attribute att(x 1 :::) t o v for each t: t 1 < t < t 2 . This function sets a unique value at a given time point to each possible instance of each attribute. event(att(x 1 : : : ) : ( v 1 v 2 ) t ) states that an instantaneous change of value of att(x 1 :::) from v1 t o v2 occurred (or will occur) at time t. The predicate event can be de ned by: event(att(x 1 : : : x n ) : ( V before V after t ) ()

9t 1 9t 2 =(t 1 < t < t 2 ) ^hold(att(x 1 : : : x n ) : V before (t 1 t )) ^hold(att(x 1 : : : x n ) : V after (t t 2 ))
In order to exhibit more clearly the possible con icts which may arise between robots, we p r o vide an explicit description of resource uses. A resource can be a single item with a unit capacity (an unsharable resource), or an aggregate resource that can be shared simultaneously between di erent actions seeing that its maximal capacity is not exceeded.

The resource availability pro les and their uses by di erent operators are described by means of three predicates Laborie and Ghallab, 1995]. The PMP only requires the operator use(r : q (t 1 t 2 )) which asserts that an integer quantity q of resource r is used between time-points t 1 and t 2 . Such a formalism is well suited to describe a \scenario" in a dynamic domain. At a given instant, the current scenario is represented b y the initial values of the state attributes and the expected changes. A scenario S = ( A E U T L) where: A is a set of assertions E is a set of events U is a set of resource availability pro les and their uses T is the set of of all the time-points referenced in A , U and E L is a lattice composed of time-points linked by temporal precedence relations (t i < t j ). Such a description is maintained by each robot and serves as an input to planning operations. It must be always consistent, i.e. events on the same domain attribute should be totally ordered with values compatible with this order.

Tasks models

Robot actions are represented by \tasks" which will be used as plan operators. A task Ts kis described by: A set of time-points including at least start(Ts k ) and end(Ts k ) corresponding to the beginning and to the end of the task execution A set of events describing the changes of the world induced by the task A set of resources uses, A set of assertions on state attributes to express the conditions required to allow the use of the task (insertion conditions) and the persistence of some facts between two task events, A set of temporal constraints specifying a partial order between the time points of the task.

Each robot planner will be equipped with a set of tasks 1 which correspond to its own functional capabilities. Whenever, the planner will be invoked, it will be given an initial scenario and a goal. If it succeeds to produce a plan, its output will be a new scenario where new tasks are inserted.

Plan Merging Operators

Mono-robot context. In order to establish our notations, let us assume that we h a ve only one robot R i . It processes sequentially the goals it receives, taking as initial state the nal state of its current plan. Doing so, it incrementally appends new sequences of actions to its current plan.

Assume that an robot R i has already a plan under execu-

tion S k i = ( A k i E k i U k i T k i L k i ).
When it receives a new goal G k+1 i , it tries to produce a new plan to achieve it. As S k i corresponds to a plan which is under execution, it is considered as contingent and thus cannot be modi ed by the planner.

Let S k+1 i = ( A k+1 i E k+1 i U k+1 i T k+1 i L k+1 i ) be the obtained plan: S k+1 i = Plan(S k i G k+1 i ). Besides all elements contained in S k i , S k+1 i contains new actions, events, used resources as well new temporal relations:

A k i A k+1 i .. L k i L k+1 i .
However, because the planner is not allowed to modify S k i , the set of new temporal relations L k+1 i =L k i ( 2 ) do not contain any temporal relations which adds a new constraint to timepoints referenced in T k i .

L k+1 i =L k i = f(t m < t n )jt m 2 T k+1 i t n 2 T k+1 i =T k i g
Multi-robot context. The scenario for R i is slightly different. It has to avoid resource con icts with the other robots. This is done by synchronising its plan with other robots plans. The global process is the following. We h a ve n robots performing tasks in parallel in the environment. A t a n y moment each robot R i has a current plan CP i under execution which is valid in the multi-robot context. It contains all the necessary synchronisations with other robots current plans which prevent a n y con ict to occur. A current coordinated plan for an robot R i can then be speci ed as a scenario CP i = ( A i E i U i T i L i W i ) W i is a set of temporal relations (t m < t n ) where t m belong to a scenario of another robot ((t m 2 T j ) w h i l e t n 2 T i ) 3 .

The system is dynamic the robots execute their current coordinated plans and update them the temporal constraints 1 We assume that all tasks e ects are given without rami cations. expressed in the di erent W i result in message-based synchronisation between robots.

The global system is assumed to be coherent, i.e. the union of all CP i i 2 1::n], is such that the union of all the lattices L i and W i (i 2 1::n]) is a lattice 4 .

We are interested in operators and mechanisms which allow any of these robots to add a new actions to its own plans while maintaining this property.

Plan then Insert

For the rst operator, we separate plan generation and plan coordination as two phases. Whenever, an robot R i receives a new goal G k+1 i , it rst elaborates a plan S k+1 i = Plan(CP i G k+1 i ) w h e r e CP i is the result of the previous planmerging step updated by the execution.

Then, it has to ensure that S k+1 i is valid in the multi-robot context. This is done: by obtaining, through communication, all the current plans, under execution, CP j which m a y i n terfere with S k+1 i (i.e. not all the robots plans, but only those which make use of resources referenced in U k+1 i =U k i ). it then builds the union of the obtained current p l a n s MP i = S j CP j . and nally, it tries to insert S k+1 i into MP i this is done by s c heduling the new tasks contained in S k+1 i . Because, MP i is currently under execution, the only latitude is to add new constraints5 W k+1 i .

If it succeeds, it updates its current plan CP i (A k+1 i E k+1 i U k+1 i T k+1 i L k+1 i W k+1 i ). Such operation, called Plan-merging Operation results in the modi cation of CP i based on the latest state of the current plans that may be concerned by this modi cation ( g 1). In order to guaranteea coherent update, it is su cient to perform it in a critical section which l o c ks any update of MP i = S CP j for the set of resources de ned by U k+1 i =U k i . Note however, that the planning operation itself is not performed under a critical section.

Note also that several Plan-merging Operations may b e p e rformed in parallel if they involves disjunctive resource sets.

Searching for an Insertable Plan

This alternative operator is more powerful. Indeed, it takes into account all the other robot current plans in the planning operation itself.

CP k+1 i = PlanMerge(MP i G k+1 i )

where MP i is the union of all current p l a n s w h i c h m a y interact with CP k+1 i . The di culty h e r e i s t o c o m p u t e t h e s e t MP i . This in general impossible (unless, we t a k e i n to account all the robots in the environment). However, it can be possible in some situations. For example if the environment is hierarchical, and the MP i only involves robots in a speci c part of this environment. 

Situations where PMO is deferred or

where a \deadlock" is detected When a robot R i tries to perform a PMO, it may f a i l t o p r oduce a plan which can be inserted into MP i . This means that the nal state of at least another robot R j (as it is speci ed in its current plan CP j ) forbids R i to insert its own plan. In such situation, R i can simply abandon its PMO and decide to wait until the robots, that it has identi ed, have p e rformed a new PMO which m a y possibly make them change the states preventing it to insert its plan. Hence, besides execution events | i.e. events speci ed in W i and which allow robots to synchronise their execution |, we i n troduce planning events | i.e. events which occur whenever a robot performs a new PMO. These events can also be awaited for. They establish a temporal order relation between robots plan-merging activities, noted Wait for PMO(R i R j ).

When a R i concludes that it has to wait for R j to perform a successful PMO, it informs R j . Robots maintain and propagate a graph of robots waiting for them (directly or by transitivity) to perform a PMO.

When a robot R i succeeds in performing a PMO, it informs its immediate successors (if any) and discards its graph. But if it fails, it has to determine the set of robots from which i t has to wait planning event. A \deadlock" occur if one of these robots is already waiting (directly or by transitivity) for R i to perform a PMO. When a deadlock occurs, it is necessary to take explicitly into account, in a unique planning operation, the conjunction of goals of all the robots involved in the cycle. One can decide to allow the robot which detected the deadlock, to plan for all the concerned robots. The Plan-Merging paradigm remains then applicable: the inserted plan will then concern several robots at a time. Again a PMO for several robots at a time, instead of one, may fail leading, in very intricate situations, to more and more aggregation until one reaches a completely centralised system (see [START_REF] Qutub | How t o Solve Deadlock Situations within the Plan-Merging Paradigm for Multi-robot Cooperation[END_REF] for a detailed discussion). At this point, if the last planning robot cannot nd a solution, it means that the problem is infeasible.

Here we m ust recall that we do not claim that the Plan-Merging paradigm can solve or help to solve m ulti-robot planning problems. The main point here is that the Plan-Merging paradigm is safe as it includes the detection of the deadlocks i.e. situations where a cooperation scheme of type C1 should take place.

Application to a eet of mobile robots

For the case of a number of mobile robots in a route network environment, we h a ve devised a speci c Plan-Merging Protocol based on spatial resource allocation (see [START_REF] Alami | Multi-robot cooperation through incremental planmerging[END_REF]). It is an instance of the general protocol described above, but in this context, Plan-Merging Operation is done for a limited list of required spatial resources: a set of cells. The robot broadcasts the set of required cells and receives back only the set of coordinated plans from other robots which h a ve already planned to use some of the mentioned cells.

One of the most interesting property of this protocol is that it allows several PMOs to be performed simultaneously if they involve disjunctive resource sets. This is particularly useful when there are several local con icts at the same time as it is often the case in a route network like e n vironment.

Plan-Merging for cell occupation: In most situations, robot navigation and the associated Plan-merging procedure are performed by trying to maintain each cell of the environment occupied by at most one robot. This allows the robots to plan their trajectories independently, to compute the set of cells they will cross and to perform Plan-Merging at cell allocation level.

In order to optimise cells resource allocation and to minimise crossing obstruction, the allocation strategy is to allocate one cell ahead when the robot moves along lanes, while it allocates all the cells necessary to traverse and leave the crossing.

When reasoning about cells is not su cient: While, most of the time, the robots may restrict their cooperation to cells allocation, there are situations where this is not enough. This happens when they have to cross large (non-structured) areas or when an unexpected obstacle, encountered in a lane or in a crossing, forces a set of robots to manoeuvre simultaneously in a set of cells. In such situations, a more detailed cooperation (using the same protocol but a di erent planner: the motion planner) takes place allowing robots to coordinate their actions at trajectory level. Thus, we h a ve a hierarchy o f PMOs: rst, at the cell level. Then, depending on the context, at trajectory level: motion planning in a set of common cells determined by the rst level. This hierarchy authorises a \light" cooperation, when possible, and a more detailed one, when needed.

Examples of Plan Merging Operation

We s h a l l n o w present t wo examples to illustrate the use of the Plan-merging paradigm. The rst one is a sequence of PMOs at Cell Level.

Step 1

Step 2

Step 3

Figure 2: Plan-merging at the cell level.

Example 1: Coordination at cell level (Figure 2).

Step 1: This snapshot shows the involved cells of the environment.

The robot destinations are the followings:

{ Robots 0 and 1 on the right g o t o c e l l C8 a b o ve t h e crossing using cell C4.

{ Robots 2 and 3 at the bottom right t r a verse the crossing to reach the left cell C0 using cells C5 C 4 and C2.

{ Robot 6 goes from left to the right c e l l C7 using cells C3 and C5.

{ Robot 4 goes from up to the lower cell C10 using cells C2 a n d C3.

The PMOs have occurred in the following order: robot-0 then robot-2 and then robot-6 in parallel with robot-1 (because robot-6 and robot-1 have disjunctive lists of resources) and nally robot-4.

Step 2: The following synchronisations have been planned: robot-2 on robot-0 (which f r e e s C4), robot-6 on robot-2 (which frees C5) and robot-1 on robot-2 (which frees C4), robot-4 on robot-2 (which frees c2) and robot-6 (which frees C3)

Step 3: One should note that at this stage, robot-3 PMO fails because robot-2 has not yet planned an action to free the cell C0.

Example 2: Trajectory level (Figure 3) The second example illustrates PMO at trajectories level in a large open area with two obstacles in the middle, and 10 docking/undocking stations. In such a n e n vironment, there are no cell allocations (the robots are all in the same cell), all synchronisations are made at trajectory level.

Figure 3 shows a situation where all the robots have planned and coordinated a complete trajectory. The trajectories displayed on the gure are the one which h a ve been sent b y t h e robots for execution display.

The robot destinations are: r0 goes to station 9, r4 t o s t ation 5, r1 to station 1, r28 to station 7, r27 to station 0, r20 to station 4.

PMOs were done in the following order: r1, r4, r27, r20, r28 and r0.

One can see that synchronization hold for the following robots: r4 o n r1, r27 on r1 a n d r4, r20 on r1 r27 and r4, r28 on r27 r20 and r1, r0 o n r1 r4 r28 and r27. 

Conclusion

We h a ve argued that, in the eld of multi-robot cooperation, it is useful to make a distinction between two main issues: C1 goal/task decomposition and allocation, and C2 cooperation while seeking to achieve loosely coupled goals. We h a ve even claimed that in numerous multi-robot applications, both issues appear and even \invoke" one another \recursively".

We h a ve then proposed a generic approach called Plan-Merging Paradigm which deals with C2 issues and clearly establishes a link with C1 issues.

The proposed scheme may be considered a priori to be too restricted(limited): it is clearly insu cient i n i n tricate puzzlelike situations where it is necessary to take i n to account t h e conjunction of goals explicitly in one planning step.

However, it appears to be well suited and su cient i n n umerous applications, particularly when the number of robots becomes important.

Besides, we use such a s c heme in a framework of a paradigm which:

guarantees the global coherence the entire system (i.e. the set of robots)

detects the situation where it it not applicable (we c a l l t h eses situations \Planning Deadlock situations") provides the mechanisms which a l l o w to build up a coopera-tive s c heme which starts from a completely decentralised system and which allows robots to progressively aggregate when then face situations that need so.
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  A=B denotes the set di erence A ; B. 3 tn clearly corresponds to the starting time-point o f a Ri task.

Figure 1 :

 1 Figure 1: Robot 2 performs a Plan-Merging Operation.

Figure 3 :

 3 Figure 3: Plan-merging at the trajectory level.

  

However, no robot stores nor manages is as a whole.

This will have as a consequence, a synchronisation of the start events of the new tasks contained in S k+1 i with execution events produced by other robots.
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