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Abstract

Our motivation in proposing the Plan-Merging
Paradigm as a cooperation scheme was to allow an
efficient distribution of the decisions for a better re-
activity to contingencies for multi-robot applications
with loosely coupled tasks.

The paradigm proved to be quite efficient because it
exploits the fact that most conflicts can be solved lo-
cally and because it allows a finer overlapping between
plan refinement, plan coordination and execution.

However, we would like to have a scheme which dis-
tributes as much as possible the decision processes for
planning and coordination while maintaining two key
features:

e the coherence of the global system and the ability
to detect the situations where it is not applicable

e a localized management of the planning and coor-
dination processes with, in particularly intricate
situations, a progressive transition to more global
schemes which may “degrade” to a unique and
centralized planning activity.

We develop in this paper the ingredients which guar-
antee such features as well as their consequences in
terms of requirements for the task planners involved.

1 Introduction

We have already presented and discussed the Plan-
Merging Paradigm (PMP), a generic scheme for multi-
robot cooperation [3, 4, 1]. It is based on an incremen-
tal and distributed plan-merging process.

We have applied the PMP to multi-robot applica-
tions [2] with loosely coupled tasks, where each robot
has a local view and a partial knowledge of the other
robots activities. We showed that the PMP is quite
efficient because it exploits the fact that most conflicts
can be solved locally and because 1t allows a finer over-
lapping between plan refinement, plan coordination
and execution.

We have also discussed the key features of this dis-
tributed cooperative scheme related to the coherence

*This paper has been published in the proceedings of IEEE
TROS 97, Grenoble, France.

of the global system and its ability to detect situations
where it is not applicable i.e. situations where it is nec-
essary to take into account a conjunction of goals. We
call such situations “Planning deadlock situations”.

We present here a set of extended operators and
complementary mechanisms which permit a localized
management of the planning and coordination pro-
cesses as well as a progressive transition to more global
schemes which may even “degrade” to a unique and
centralized planning activity. The result is a generic
multi-robot cooperative scheme which is well suited
for loosely coupled tasks but is able to treat any con-
flicting situation.

In section 2, we present a short discussion of related
work. Section 3 describes briefly the PMP and ex-
plains how tasks dependencies are detected and prop-
agated (through communication) in order to maintain
the global system coherence and to detect planning
deadlock situations. Section 4 introduces the notion
of Local Multi-robot Planning that allows us to modify
dynamically the distributed nature of the system in
order to deal with the deadlock situations. Section b
describes an implemented system which illustrates our
approach and describes the behavior of a set of mobile
robots in a very constrained environment.

2 Related Work

We limit our discussion here to multi-robot issues
which involve the simultaneous operation of several
autonomous agents, each one seeking to achieve its
own task or goal. The conflicts proceed from the fact
that the robots intend to use common resources simul-
taneously (narrow passages, crossings, devices, etc).

Many approaches have been proposed to deal with
this problem especially centralized approaches where
a central system determines a set of non-conflicting
plans that solves the conflicts[11]. These approaches
suffer from deficiencies in realistic applications when
the number of robots becomes important. Other ap-
proaches are based on predefined traffic rules, which
are only applicable to “route networks” modeled en-
vironment. In such cases, it is very difficult to find
a set of free-deadlock rules for all the possible situa-
tions [7, 9]. Some reactive systems have been proposed



where the robots actions are the direct consequences of
the information collected by the robots sensors [6] or
through communication [8]. While the results of such
approaches may be inefficient due to the local decision
making based on sensory information, the main lim-
itation here is that there is no guarantee of a global
coherence of the system. In [5] the authors propose
an idea mixing sensory information with a world dis-
crete model to solve conflicts for a small number of
robots. Finally, a master-slave approaches have been
proposed where a robot becomes the master of the
blocked robots during the conflict, resolves the con-
flicts and distributes the solutions [12]. In this pa-
per, we refine this master-slave approach by mixing it
with the Plan-Merging Paradigm to generate, during
a deadlock situation, a set of plans that will be vali-
dated in the global context (through a Plan-Merging
Operation) before the execution phase.

3 The Plan-Merging Paradigm

Due to space limitations, we give a short presenta-
tion of the Plan-Merging Paradigm and we insist only
on the situations where it does not apply. The inter-
ested reader may refer to previous papers [3, 4, 1] for a
more detailed presentation of this cooperation scheme
and its applications.

Let us assume that we have a set of autonomous
robots and a central station which, from time to time,
sends goals to robots individually. Whenever a robot

R; receives a new goal Gg, it elaborates an Indiwvidual

Plan (IP/) which achieves it. Each robot processes
sequentially the received goals. Doing so, it incremen-
tally appends new actions to its current plan.

However, before executing any plan step, a robot
must ensure that it is valid in the multi-robot con-
text, i.e. that there exists no other plan of another
robot which may conflict with it. We call this opera-
tion Plan Merging Operation (PMOQO) and the resulting
plan a Coordinated plan (i.e. plan valid in the current
multi-robot context). Such a Coordinated Plan (C'P;)
consists of a sequence of actions and execution events
to be signaled to other robots as well as execution
events that are planned to be signaled by the other
robots. Such execution events correspond to temporal
constraints between actions involved in different coor-
dinated plans.

At any moment, the temporal constraints between
all the actions included in the union of all the coor-
dinated plans (GP = J, C'Px) must constitute a di-
rected acyclic graph [3,4]. G P is a snapshot knowledge
of the current global situation and its already planned
evolution.

3.1 The PMO and its results
When R; receives its j-th goal GY, it elaborates a

plan [Pij which achieves it; then it performs a PM O in
a critical section: it collects the coordinated plans C' Py
of the robots which may interfere with I P/ and builds
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Figure 1: R; Planning Dependency Graph PDG; and
Pred;.

their union GP = |J, CP;. The insertion of IPZ»] n
the global plan G'P, if it succeeds, adds temporal order
constraints to actions in IPZ-] and transforms 1t into a
coordinated plan C'P;. The out-coming C'F; is feasible
in the current context, and does not introduce any
cycle in the resulting GP.

The PM O is protected by a critical section in order
to prevent other robots to perform simultaneously a
modification of GP.

However a PM O may fail because the final state of
at least another robot (as specified in GP) forbids R;
to insert its own plan. Let us call Pred; (predeces-
sors) the set of all such robots. In this case, R; defers
its PMO and waits until one of the robots in Pred;
has performed a new successful PMO which may pos-
sibly change the states preventing R; to insert its plan.
Hence, we introduce temporal order relations between
robots plan-merging activities.

In addition to execution events — i.e. events elabo-
rated by the PMO and which allow agents to synchro-
nize their execution —, we define planning events —
i.e. events which occur whenever a robot performs a
new successful PMO. The planning events can also be
awaited for. The temporal relations between robots
plan-merging activities are maintained by each robot
in an additional data structure called Planning Depen-
dency Graph PDG,; (Figure 1).

The Planning Dependency Graph serves to manage
PMOs order (when necessary) as well as to detect
and prevent any robot to enter a waiting cycle, where
it would wait for itself by transitivity. We call such a
situation a “Planning Deadlock Problem”. The detec-
tion of deadlocks at the planning/coordinating phase
permits to anticipate and avoid deadlocks during the
execution phase where “backtracks” are not always
possible or induce inefficient maneuvers.

The “planning deadlock problem” emphasizes the
fact that the PMO is unable to take into account a set
of goals, sent to different robots, with strong interde-
pendencies. This limitation leads us to elaborate an
extension to the PMP that allows the use of planning
from a distributed to a more centralized scheme and
from a local to a more global resolution.




3.2 Dependency Graph Construction

This section focuses on the incremental construc-
tion of the Planning Dependency Graph PDG; and
its constraints propagation mechanism.

Each robot R; maintains a list Pred; and a graph
PDG;. Pred; is the list of all of robots that block
its plan-merging activity. PDG; specifies ' all the
robots that depends on R;, directly or by transitivity,
for their plan-merging activities.

We call Suce; (successors) the set of robots that are
directly waiting for a planning event from R; (Fig-
ure 1).

P DG is maintained through the following proce-
dure:
¢ When a robot R; starts a PM O, Pred; is set to the
empty list. After the PMO:

e if the PM O has succeeded: R; signals a planning
event to all robots in Suce; and clears its current
graph PDG;.

e if the PMO has failed: R; determines Pred; and
checks if it induces planning dependencies which
produce a cycle in PDG;:

— in such a case, a deadlock situation is de-
tected which means that the given goals are
interdependent, they cannot be treated sim-
ply by insertion, but need to be handled by
a planner that takes into account the con-
junction of goals of all the robots involved in
the cycle (see §4).

If the newly established planning dependen-
ctes do not introduce any cycle in PDG;, R;
transmits PDG; to all robots in Pred;.

o When a robot Ry receives PD(; from a robot R;,
Ry adds it to its own Dependency Graph P DG and
propagates this information to all robots in Predy. Ry
1s sure that the received P DG, can be added to PDGy,

without creating any cycle?.

4 Deadlock Resolution Strategy

The deadlock resolution strategy that we present is
based on cooperative (not competitive) robots behav-
ior. We assume that all robots are equipped with a
multi-robot planner which can be used, when neces-
sary, for an arbitrary number of robots.
4.1 General presentation

Let us call DL; the set of robots involved in a cycle
detected by R;. When detecting such a cycle, R; has
the necessary information in PDG; to elaborate and
validate a plan for all the robots in D7;. Note that the
blocked robots are unable to add any new executable
action to their current coordinated plans C'Py. There-
fore, if nothing is done, they will come to a complete
stop when their plans C'P; have completed.

LA node in PDG; represents a set of robots, their current
states and their goals.
21f such cycle existed, R; would have discovered it.

Node
Composition

SN

Meta Node
DLi = {R0,R1,R6}

Figure 2: Node Composition in Ry Dependency Graph
(PDGy).
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Figure 3: Forming a new Meta-Node in PDGq by uni-
fying the current Meta-Node and the newly detected
deadlock.

To solve the deadlock, the robot R; becomes (tem-
porarily) the local coordinator (noted RFC) for all
robots in DIL;. To do so, it makes use of its Lo-
cal Multi-robot Planner that will take explicitly, in
one planning operation, the conjunction of goals of all
robots in DL;. This fact will be represented in its De-
pendency Graph PDGEFC as a Meta-Node (Figure 2)
which includes all robots in DL;.

R; becomes a local coordinator R whose respon-
sibility 1is to:

1. Find a multi-robot solution (Solf“), if it exists,
to the conjunction of goals. This solution is rep-
resented by a lattice whose nodes are high level
actions to be performed to break the cycle and
whose arcs are “deadlock synchronization events”
between these actions.

2. Try to insert SolF® in the current multi-robot
context, i.e. the set of current plans C' Py of the
robots which are not involved in DL;:

2.1. If the insertion succeeds, RF“ sends to each
robot in DL; its plan and waits for an acknowl-
edgment. If all the blocked robots accept these
plans, the coordinator RF gives the permission
to start the execution. The deadlock cycle is bro-
ken. Each robot in DL; recovers its “planning
and plan-merging” autonomy.

2.2. If the insertion fails, this means that the fi-
nal state of at least one robot (not included in




DL;) forbids RFC to insert Solf¢. REC deter-
mines the set of such robots Pred?“. It then ver-

ifies that Pred*“ does not create a cycle when
inserted PDGFC:

2.2.1 if no cycle is created, RFC defers its PMO,
transmits PDGEC to all robots in Predt©
and waits until one of them has performed a
new successful PMO;

2.2.2 if a new deadlock DLF¢ is detected, RFC
generates a new Meta-Node containing the
union of DIL; and DLZLC. It then restarts
the same process (Figure 3), acting as a co-
ordinator of a greater set of robots.

4.2 Deadlock Automata

We describe here the finite state automata (Fig-
ure 4, ) that defines the behavior of the robots during
a deadlock situation.

Figure 4 describes the behavior of a robot3 R;
when 1t detects a deadlock DL;. R; sends a message
(Deadlock-give-info R;) to all robots in DL; (state 0)
and waits for replies. If it receives(Cycle(DLy )) from
Ry, € DL; (state 3), this means that Ry is the coor-
dinator of another deadlock DLj; a new Meta-node is
created containing the union of DL; <= DL; U DLy.
When all the expected replies are received, R; becomes
the local coordinator RF“ of all robots in DL;. Tt in-
vokes its Local Multi-robot Planner in order to find a
plan SollF“ for the conjunction of goals of DL; (state
2); then it distributes SolF“ to the robots in DL; and
waits for an acknowledgment (state 4).

Figure 5 describes the behavior of a R;, involved
in a cycle DL; when it receives a message (Deadlock-
give-info R; ) from a coordinator R;. There are three
possible cases:

1. R; is the coordinator of another deadlock DL;
(state 4) : it transmits the message (Cycle(DL;))
to R;; This message contains all the necessary
information concerning DL;. DL; will be merged
with DL; (see also state 3 in Figure 4).

2. R; participates in another cycle DLy whose co-
ordinator is Ry (R; # Ry)(state 3) : it transmits
the message (Deadlock-give-info R;) to Ry.

3. R; does not participate to any cycle (state 2) : it
sends its current state and goal to R; and waits
for a plan from it.

4.3 Discussion

The problem discussed in this paper is a typical
problem in distributed multi-robot applications where
each robot does not have a global view of the world.
To solve it, we have accepted to reduce momentarily
the “distribution level” of a part of the system at some
very particular instants to increase its ability to treat

3 R; acts here for itself or as a local coordinator for a set of
robots determined in a former step
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—
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Send(DLi, .
Deadlock-give-info) o
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/ Cycle(DLk)
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Multi-robot

Planner
Send(DLi, Wait(DLi, Ok or NOK)__ Ok
plans) 4 - ——»(6

Send(DLi,
NOk Go-on)

Send(DLi,
Actions Stop) \ 7

— Events

Figure 4: The coordinator finite state automate.

intricate situations. When a subset of robots enters
in a deadlock cycle, the robot that detects the cycle
becomes the cycle coordinator whose responsibility is
to find a solution to the problem. If the coordinator
finds a solution, it tries to validate it in the global
plan G P, constructed from the coordinated plans of
the non-blocked robots, by a PMO. If the insertion
succeeds, the coordinator distributes the solution to
the concerned robots and the system returns to its
initial distributed state (Figure 6).

If the insertion fails and produces a new cycle, the
coordinator recursively applies the same algorithm
to the current Meta-Node and to the detected cy-
cle to create a new Meta-Node. So, we may imag-
ine some very complicated situations where the Meta-
Node starts to grow up and does not stop until the
inclusion of the whole system (all robots). In such sit-
uation, our completely distributed system tends to a
completely centralized system (Figure 6).

Note also that we may have, in parallel, many dead-
locks which do not interfere and which are solved in-
dependently. At the same time, we may have other
cycles that group and un-group dynamically depend-
ing on the context.

5 Examples

In order to illustrate our approach, we have imple-
mented a generalized PMP that takes into account
a conjunction of goals characterizing a deadlock sit-
uation. The application involves a large fleet of au-
tonomous mobile robots [4, 1]. While the overall sys-
tem allows to operate a large number of robots in
a route-network environment, we will limit ourselves
here to intricate situations that may happen from time
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Figure 6: The evolution of the global system to a more
or less distributed system s function of the situations
complexity.

to time.

Each robot R; is equipped with a multi-robot plan-
ner which can be used for an arbitrary number of
robots. Such a planner allows to plan and synchro-
nize paths in an environment described as a graph of
spatial entities (cells & stations) using an A* algo-
rithm.

Note that we could have used also a multi-robot
motion planner. However, even though it would allow
to solve intricate situations without a pre-structuring
of the environment into a discrete set of places, such
planners can hardly be used when the number of
robots is greater than 3[10].

5.1 A Simple Deadlock Situation

This example treats a simple deadlock DLz involv-
ing two robots (Rs, Rg) where the goal of each robot
is the initial position of the other one (Figure 7).

Robot Initial-State Goal-State

Figure 7: A part of the testbed environment: an area
with 5 stations.

Rs Stationq
Rs Stationg

Stationg
Station,

Rg fails in its PMO and decides to wait for a plan-
ning event from Preds = {Rs}. It propagates this in-
formation to R3 which adds Rg to PD(G3. Rs performs
a PMO, detects a cycle and becomes the coordinator
for DLs = {Rs, Re¢}. Rs invokes its local multi-robot
planner and finds a solution to the given conflict. The
solution (trivially) uses station, as a buffer. finally, Rs
performs a PMO in order to insert such a plan. No
other robot is present in the area; the PMO succeeds.
5.2 Two Independent Deadlock Cycles

To increase the complexity of the situation, let us
create a second deadlock DL, = {R1, Ry} and assume
that the coordinator Ry elaborates a plan for R; and
Ry which uses the same station (Stations) as a buffer.
(Figure 7).

Robot Initial-State Goal-State
Ry Stations Stations
Ry Stations Stationg

Two independent cycles DLs = {Rs, Rg} and
DLi = {R1, Ro} are created and use the same buffer
station (Stations)*, two coordinators work these two
deadlocks and two independent “lattice solutions” are
found. The resultant lattices are coordinated with
each other and with the other robots’ coordinated
plans by a PMO.

The validation of these two lattices in the global con-
text imposes a new synchronization event between R;
and Rg concerning the occupation of Stations (Fig-
ure 8).

5.3 Two Incompatible Deadlock Cycles

This example treats the case where the system
switches to a centralized system when many deadlocks
emerge requiring one global centralized planning activ-
ity.

The initial and final states are given below (Fig-
ure 7) :

4This station minimizes the distance criteria given to the
planner.
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Figure 8: The set of the totally ordered actions that
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Figure 9: The set of synchronized actions that solves
the conflict after the aggregation of two deadlocks
DL1 = {Rl, RG} and DL3 = {Rg, RQ}

Robot Initial-State Goal-State

R Stations Stationg
R3 Stationg Station,
Ry Station, Stationy
Ry Stationg Stationg

Two coordinators Rz and Rj try to break indepen-
dently two detected deadlocks (DL; = {R1,R¢} &
DLs = {Rs, Ro}). Each coordinator produces a solu-
tion Solf“ that resolves locally the given deadlock.
However, Solk® and Solf® cannot be merged to-
gether without introducing a cycle in GP. Therefore,
RLC takes the “control” of the situation, informs the
blocked robots (Rg, R1, Re) that it became the new co-
ordinator for this new deadlock (DLs <= DL3UDLq).
The two Meta-nodes are unified to produce one Meta-
node representing the four conflicting robots. Finally,
RLC produces a solution plan for the overall task (Fig-
ure 9).

Note that, in this example, the whole distributed
system switched to a totally centralized one where the
generated solution is thus valid in the multi-robot con-
text without a PMO.

6 Conclusion

The effectiveness of the Plan-merging paradigm has
already been discussed and illustrated through the im-
plementation of a system involving up to 30 simulated
mobile robots. It has also been implemented on a set
of 3 real robots in a laboratory environment.

The Plan-merging paradigm is a well suited
paradigm to multi-robot applications with loosely-
coupled tasks. However, even if an application is de-
signed to ease robots interaction, one cannot guaran-
tee in the general case that tightly-coupled tasks will
never happen. For example, the robots may find them-
selves in intricate situations simply because of an un-
known obstacle placed in a critical place. This is why
it 1s important to design a system which is able to
efficiently exploit the tasks decoupling, but which is
also able to detect and solve transient “puzzle-like”
situations.

We have presented here a set of extended operators
and associated mechanisms which allow not only to
detect but also to solve situations where the robots
goals are tightly coupled. This extension is done for
the sake of completeness. The operators permit a co-
herent management of the distributed planning and
coordination processes as well as a progressive transi-
tion to more global schemes which may even “degrade”
to a unique and centralized planning activity.
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