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A Scheme for Coordinating Multi-robot Planning
Activities and Plans Execution

Rachid Alami and Félix Ingrand and Samer Qutub !

Abstract. We present and discuss a generic scheme for
multi-robot cooperation based on an incremental and dis-
tributed plan-merging process. Each robot, autonomously and
incrementally builds and executes its own plans taking into
account the multi-robot context. The robots are assumed to
be able to collect the other robots plans and to coordinate
their own plans with the other robots plans to produce “co-
ordinated plans” that ensure their proper execution.

We discuss the properties of this cooperative paradigm (co-
herence, detection of dead-lock situations, ...) , how it “fills
the gap” between centralized and distributed planning and
the class of applications for which it is well suited.

We finally illustrate this scheme through an implemented
system which allows a fleet of autonomous mobile robots to
perform load transfer tasks in a route network environment
with a very limited centralized activity and important gains in
system flexibility and robustness to execution contingencies.

1 Introduction

In the field of multi-agent cooperation, we claim that agents
must be able to plan/refine their respective missions, taking
into account the other agents plans as planning/refinement
constraints, and thus producing plans containing coordinated
action that ensure their proper execution.

This is particularly true for autonomous multi-robot appli-
cations and, more generally, when the allocated goals cannot
be directly “executed” but require further refinement, because
the robots act in the same physical environment and because
of the multiplicity of uncertainties.

Let us assume a set of autonomous robots, which have been
given a set of partially ordered goals. This could be the output
of a central planner, or the result of a collaborative planning
process. One can consider this plan elaboration process fin-
ished when the obtained goals have a sufficient range and
are sufficiently independent to cause a substantial “selfish”
robot activity. However, each robot, while seeking to achieve
its goal will have to compete for resources, to comply with
other robots activities. Hence, several robots may find them-
selves in situations where they need to solve a new goal inter-
action leading to a new goal/task allocation scheme.

In such context, planning and plan coordination can be
classified along different strategies.

Global versus local. When one plans actions for a fleet
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of mobile robots, one can consider the whole fleet or limit the
planning scope to the robots “involved” in the considered re-
sources. Indeed, it seems to be rather inefficient to take into
account all the robots present on the field for any local de-
cision which involves only a subset of robots. However, this
global versus local tradeoff is only possible when dealing with
a “properly sized” environment. If the number of exclusive re-
sources (such as spatial resource) is more or less equal to the
number of robots, conflict resolution will, by propagation, in-
volve the whole fleet. On the other hand, if the environment is
“properly sized”, conflicts remain local, and the solutions are
negotiated locally without disturbing the unconcerned robots.

Complete versus incremental. Similarly, one can limit
the scope of the planning and the plan coordination in time.
When a mission (i.e. a set of goals) is sent to a robot, it can
plan and coordinate the whole mission. But considering the
execution hazards, and the inaccuracies with which one can
forecast at what time such and such contingent actions will
end, it seems to be inefficient (not to say a waste of time
and resources) to plan too far ahead. The plan coordination
process should be performed incrementally to avoid over con-
straining the other robots plans and to minimize the execution
failures of the already coordinated plans.

Centralized versus distributed. This last aspect of the
planning and plan coordination problem is where the planning
and plan coordination should take place, on a central station
or on board the robots. Centralized versus distributed does
not change the computing complexity of the treatment. How-
ever, in a centralized approach, all the data (which are mostly
local) need to be sent to the central station, and therefore
require a more reliable communication channel with higher
bandwidth between the robots and this central station.

The approach we have chosen may be classified as local,
incremental and distributed [3]. However, when the situation
imposes it, our paradigm may “evolve” dynamically towards
a more centralized and global form of planning [13].

After this introduction which makes a general presentation
of our approach, and situates it in the general multi-robot
planning debate, we present the related work in section 2.
We shall introduce a more formal presentation of the Plan
Merging Paradigm (PMP) and its operators in section 3. Sec-
tion 4 briefly presents the multi-robot application on which

we tested and validated the PMP.



2 Related work

While several generic approaches have been proposed in the
literature concerning goal decomposition and allocation (Con-
tract Nets [16], Partial Global Planning [4], distributed search
[5], negotiation [10, 7, 14], motivational behaviors [12, 6]), co-
operation for achieving independent goals have been mostly
treated using task-specific or application-specific techniques
[11, 17]

We argue that there is also a need for generic approaches
to perform plan coordination. One may introduce the notion
of traffic rules or more generally the “social behaviors” [15]
to avoid as much as possible conflicts and to provide pre-
defined solutions to various well known situations. However,
this cannot be considered as a general and applicable answer
to the various multi-agent problems.

Our scheme provides and guarantees a coherent behavior
of the robots in all situations (including the avalanche of sit-
uations which may occur after an execution failure) and a
reliable detection of situations which call for a new task dis-
tribution process.

3 Presentation of the PMP

Let us assume that we have a set of autonomous robots and a
central station which, from time to time, sends goals to robots
individually. Whenever a robot R; receives a new goal G?,
it elaborates an Individual Plan (I P{) which takes as initial
state the final state of the current plan. Each robot processes
sequentially the received goals. Doing so, it incrementally ap-
pends new actions to its current plan.

However, before executing any plan step, a robot must en-
sure that it is valid in the multi-robot context, i.e. all potential
conflicts with the other robots plans are considered. We call
this operation Plan Merging Operation (PMO) and the re-
sulting plan a Coordinated plan (i.e. plan valid in the current
multi-robot context). Such a Coordinated Plan (CP;) consists
of a sequence of actions and ezecution events to be signaled
to other robots as well as execution events that are planned
to be signaled by the other robots. Such ezecution events cor-
respond to temporal constraints between actions involved in
the different coordinated plans.

At any moment, the temporal constraints between all the
actions included in the union of all the coordinated plans
(GP =, CPx) constitute a directed acyclic graph [3] which
is a snapshot knowledge of the current situation and its al-
ready planned evolution (Fig. 1).

3.1 The PMO and its results

When R; receives its j-th goal G?, it elaborates a plan P/
which achieves it; then it performs a PMO under mutual
exclusion, in order to prevent simultaneous modification of
G P: it collects the coordinated plans C Py of the robots which

may interfere with 7P/, and builds their union GP = Uk CPy.

The insertion of 7P/ in the global plan G P, if it succeeds, adds
temporal order constraints to actions in P} and transforms it
into a coordinated plan CP;. The out-coming CP; is feasible
in the current context, and does not introduce any cycle in

the resulting GP.
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Figure 1. Robot 2 performs a Plan-Merging Operation.

However a PM O performed by R; may fail because the fi-
nal state of at least another robot Rj (as specified in GP)
forbids R; to insert its own plan ]Pij in GP. Let us call
Pred; = {..Ry..} the set of all such robots. In this case, R;
defers its PMO and waits until at least one of the robots in
Pred; has performed a new successful PMO which may pos-
sibly change the world attributes preventing the insertion of
IP}. Hence, we introduce, when necessary, temporal order
relations between the different plan-merging activities.

In addition to execution events, events elaborated by the
PMOs and which allow the robots to synchronize their plans,
we define planning events, events which occur whenever a
robot performs a new successful PMO. The temporal rela-
tions between robots plan-merging activities are maintained
by each robot R; in a data structure called Planning Depen-
dency Graph PDG,;.

The Planning Dependency Graph serves to manage PMOs
order (when necessary) as well as to detect waiting cycles cor-
responding to “Planning Deadlock Situations”. The detection
of deadlocks during the coordination phase allows execution
deadlocks to be anticipated and avoided where “backtracks”
are not always possible or induce inefficient maneuvers.

3.2 Dependency Graph Construction

This section focuses on the incremental distributed construc-
tion of the Planning Dependency Graph PDG; and its con-
straints propagation mechanism.

When R; starts a new PMO, Pred,; is set to the empty list.
If the insertion of /P! in GP succeeds, R; signals a planning
event to all robots in Succ; ° and clears its current graph
PDG;.

If the insertion has failed, R; determines Pred; and checks
if it induces planning dependencies which produce cycles in

PDG;.

2 We call Suce; the set of robots that are directly blocked by R;.



o In such case, a planning deadlock situationis detected which
means that the given goals are interdependent and cannot
be treated simply by insertion, but need to be handled in
a single planning step.

o [f the newly established planning dependencies do not in-
troduce any cycle in PDG;, R; transmits PDG; to Pred;.

When the robot Ry receives PDG,; from R;, Ry adds it
to its own Dependency Graph PDG and propagates this
new information to all robots in Predr. Ry is sure that the
received PDG; can be merged with PDGy without creating
any cycle®.

3.3 Deadlock Resolution Strategy

The deadlock resolution strategy that we present is based on
a cooperative scheme. We assume that all robots are equipped
with a multi-robot planner? which can be used, when neces-
sary, for an arbitrary number of robots.

Let us call DL? the set of robots involved in a cycle detected
by R;. When detecting a cycle, R; has the necessary informa-
tion in PDG; to elaborate and validate a plan for all blocked
robots in L. Note that the blocked robots are unable to
add any new executable action to their current coordinated
plans C'Py. Therefore, if nothing is done, they will come to a
complete stop when their plans C'Py has been completed.

To solve the deadlock, R; becomes the local coordinator
(noted RF€) for all robots in DL!. To do so, it makes use of
its Local Multi-robot Planner that will take explicitly, in one
planning operation, the conjunction of goals of the blocked
robots. This fact will be represented in the Dependency Graph
PDG; as a Meta-Node that includes all robots in DL?.

The local coordinator R*“ must find a multi-robot solution
(Soll), if it exists, to the conjunction of goals. This solution
is represented by a lattice whose nodes are high level actions
to be performed to break the cycle and whose arcs are “syn-
chronization events” between these actions. Once the solution
found, RF€ tries to insert Sol! imn GP = CP°.

o If the insertion of Sol! succeeds, RLC sends to the robots in

k2
DL? their plans and each robot in DL recovers its initial
planning and plan-merging autonomy.

o [f the insertion fails, this means that the final state of at
least one robot (not included in DL?) forbids REC to vali-
date Sol]. RI'C determines Pred® and verifies that these
newly established constraints do not introduce any cycle
in PDG;. In such case, RFC defers its PMO, transmits
PDd,; to all robots in PrediLC and waits until one of them
has performed a new PMO.

If a new cycle DL?+1 is detected, RFC generates a new
Meta-Node containing the union of DL! and DL{‘I'1 and

3 If such cycle existed, R; would have discovered it.

4 Note that it is not strictly necessary to have a multi-robot planner
on each robot. A unique multi-robot planner, installed somewhere
on the network (at the central station for instance), is sufficient
to ensure a correct behavior of the system. The main point, here,
is that our scheme is able to determine, in a conservative and
incremental way, the set of robots involved in a deadlock and to
invoke the multi-robot planner on the set of concerned robots
without systematically taking into account all the robots.

GP is the set of current coordinated plans C Py of the robots

&
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Figure 2. Progressive transition to a more global scheme

recursively restarts the same process , acting as a coordi-
nator of a greater set of robots.

Note that we may imagine many parallel deadlocks which
do not interfere and which are solved independently. At the
same time, we may have some complicated situations where
the Meta-Node grows up until the inclusion of the whole sys-
tem transforming momentarily our distributed system to a
completely centralized one (fig. 2).

3.4 Deadlock Resolution Example

To illustrate our deadlock resolution strategy, we treat a rel-
atively complex situation where four robots evolve in a con-
strained space.

o Ry (respectively Rs) is blocked by R (respectively Rz) and
thus waits for planning event from R (Rg) to start a new
PMO (Figure 4A) (Figure 3A).

¢ while performing a new PMO, R (respectively Rz) detects
a cycle DL? (DLS) in its PDG, (PDG>) involving Ry and
Ry (Rs and R»). So, Ry (R2) becomes the local coordinator
RIY (REC) of DLY (DLY) and tries to find a Multi-Robot
plan Sol? (Sol) for the missions of Ry and Ro (R» and
R;) (Figure 4B, 4C)(Figure 3B,3C).

e Sol} and Sold are dependent and thus cannot be inserted
in GP without introducing a cycle. RS becomes the local
coordinator of both Rs and RC and thus by transitivity
it becomes also the coordinator of Ry. R2LC generates and
validates Soly in GP® (Figure 4D)(Figure 3D).

o Sol) is distributed to the concerned robots for execution
(Figure 4E).

After solving the deadlock situation, each robot finds its
initial planning/coordination autonomy.

6 Sol} is Multi-Robot plan that achieves all the given missions
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Figure 4.

An Example of deadlock resolution strategy by Meta Node expansion involving four robots. The robots in gray are the local

coordinators of the local deadlocks.
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Figure 3. The evolution of PMO states in time.

4 Application to a Fleet of Autonomous
Mobile Robots

We have applied the Plan-Merging Paradigm in the frame-
work of a project which deals with the control of a large fleet
of autonomous mobile robots for the transportation of con-
tainers in harbors, airports and railway environments [2].

In such context, the dynamics of the environment, the im-
possibility to correctly estimating the duration of actions (the
robots may be slowed down due to obstacle avoidance, and
delays in load and un-load operations, etc..) prevent a central
system from elaborating efficient and reliable detailed robot
plans.

The use of the Plan-Merging paradigm allowed us to deal
with several types of conflicts in a general and systematic way,
and to limit the role of the central system to the assignment
of tasks and routes to the robots (without specifying any tra-
jectory or any synchronization between robots) taking only
into account global traffic constraints.

The robots are fully autonomous; they only receive high
level goals from time to time. They elaborate their own mo-
tion plans. Plan Merging is performed at two levels: the first
level deals with spatial resource use (cells) while the second
level deals with trajectory synchronizations. This hierarchy
authorizes a “light” cooperation, when possible, and a more
detailed one, when the situation is more intricate.

The overall system has been implemented, using the ar-
chitecture and tools presented in [1, 9, 8] and has been run

Figure 5. Simulation with 27 autonomous mobile robots.

Figure 6.

The 3 Hilare robots executing their coordinated
plans.

in “close to real world” simulations (fig. 5) involving a large
number of robots (up to 30) as well as on real lab robots in a
constrained environment (fig. 6).

We have conducted several experiments on different envi-
ronment topologies. The system proved to be really efficient,
with reasonable communication bandwidth requirements and
effective ability to deal with non-trivial situations[3, 2].

The whole process showed effective incremental behavior. A
robot may “enter” into coordination process concerning sev-
eral robots, and “leave” it after a while, without the need



to maintain a unique representation of the global plan. Its
construction as well as its execution are performed in a dis-
tributed and synchronized manner.

We discuss here below some aspects that we have drawn
from our experience in the effective use of the Plan-merging
paradigm.

Planning before or during a PMO: The choice between
this two possibilities depends mainly on the application and
on the extent of plans which have to be merged.

Note also that merging plans consisting in long sequences
of actions may induce a great number of constraints for the
future PMOs. This is again application dependent. For exam-
ple, in traffic applications, it is certainly better to limit the
range of the inserted plan in order to allow a smooth traffic.
Satisfying real-time constraints: Note that the paradigm
we propose does not impose any constraints on the time neces-
sary for planning, performing a PMO or executing an action.

Indeed, in the general case, planning time cannot be
bounded. In any case, the execution may continue, until the
coordinated plan is completely executed, while planning or
PMO is performed.

This is why robots synchronization is based on events as
perceived and produced by robots along their execution and
not on a numerical estimation of the duration of actions of
other operations performed by robots.

Accounting for execution failures: The Plan-Merging
paradigm is also robust to execution failures. Indeed, as exe-
cution is synchronized through event produced by the robots,
when a robot fails in the execution of one of its actions, it is
able to inform robots which ask for the occurrence of events
it is supposed to produce, that such events will never occur.

This information may cause other robot plans to fail. All
robots which have a “broken” coordination plan will rebuilt
their state and try a PMO again.

Depending on the constraints imposed by an event which
will not occur, a cascade of plan failures may occur. This
may cause a brutal increase of PMO activities with several
robots trying to perform a PMO at almost the same time, but
the system will be maintained safe thanks to the properties
discussed earlier (guarantee of always having a valid global
plan and of detecting deadlocks or situations where a PMO
should be deferred).

5 Conclusion

The effectiveness of the Plan-merging paradigm has already
been discussed and illustrated through the implementation of
a system involving up to 30 simulated mobile robots. It has
also been implemented on a set of 3 real robots in a laboratory
environment[2].

The Plan-merging paradigm is a well suited paradigm to
multi-robot applications with loosely-coupled tasks. However,
even if an application is designed to ease robots interaction,
one cannot guarantee in the general case that tightly-coupled
tasks will never happen. For example, the robots may find
themselves in intricate situations simply because of an un-
known obstacle placed in a critical place. This is why the
plan-merging paradigm has been extended such that the sys-
tem is able to efficiently exploit the tasks decoupling, but is
also able to detect and solve transient “puzzle-like” situations.

We have presented here a set of extended operators and as-

sociated mechanisms which allow not only to detect but also
to solve situations where the robots goals are tightly cou-
pled. This extension is done for the sake of completeness. The
operators permit a coherent management of the distributed
planning and coordination processes as well as a progressive
transition to more global schemes which may even “degrade”
to a unique and centralized planning activity.
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