Silvia Silva Da Costa Botelho

Rachid Alami

Silvia Botelho

Robots that cooperatively enhance their plans

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

In previous contributions, we have treated a number of problems related to multi-robot operation and cooperation. Starting from the Plan-Merging

Paradigm 1] -and its implementation for coordinated resource utilizationand the M+ protocol [START_REF] Botelho | M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement[END_REF][START_REF] Botelho | A distributed scheme for task planning and negotiation in multi-robot systems[END_REF] for distributed task allocation, we have developed a generic architecture for multi-robot cooperation. This architecture involves a task achievement scheme which is essentially based on on-line combination of local individual planning and coordinated decision for incremental plan adaptation to the multi-robot context.

We present and discuss here a set of cooperation issues which allow a set of autonomous robots not only to perform their tasks in a coherent and noncon ict manner but also to cooperatively enhance their task performance.

We begin with a brief analysis of related work. Section 3 discusses brie y our general architecture for multi-robot cooperation and de nes informally our cooperative task achievement scheme. Section 4 describes the main ingredients that we use in order to perform cooperative plan enhancements. In section 5, we describe the task achievement process and focus on its negotiation component. Finally, section 6 describes an implemented system which illustrates, in simulation, the key aspects of our contribution.

Related work

In the last decade, several studies have been done concerning the eld of multi-robot systems 6]. We restrict our analysis here to contributions proposing cooperative schemes at the architectural and/or decisional level.

We can cite the behavior-based and similar approaches 17], 16], that propose to build sophisticated multi-robot cooperation through the combination of simple (but robust) interaction behaviors. ALLIANCE 18] is a distributed behavior based architecture, which uses mathematically modelled motivations that enable/inhibit behaviors, resulting in tasks (re)allocation and (re)decomposition.

AI-based cooperative systems have proposed to provide models for the agents interaction which are domain independent. For example, Brafman 4]/ Ephrati 12] enrich the STRIPS formalism,aiming to build centralized/decentralized con ict-free plans. Clement 7] develops specialized agents which are responsible for HTN individual plans coordination.

Several generic approaches have been proposed concerning goal decomposition, task allocation and negotiation 9]. PGP 11] (and later GPGP 8]) is a specialized mission representation that allows exchanges of plans among the agents. DIPART 19] is a scheme for task (re)allocation based on load balancing. Cooperation has also been treated through negotiation strategies 21] like CNP-based protocols 23], or BDI approaches where agents compromise to achieve the individual/collective goals [START_REF] Fukuda | A study on dynamically recon gurable robotic systems[END_REF], 14], 24]).

Another perspective is based on the elaboration of conventions and/or rules. Shoham 22] proposed \social behaviors" as a way to program multiagent systems. In STEAM 25], coordination rules are designed in order to facilitate the cohesion of the group.

Cooperation for achieving independent goals has been mostly addressed in the framework of application-speci c techniques such as multi-robot cooperative navigation 27,5].

Cooperation for Plan Enhancement

In the context of autonomous multi-robot systems, we identify three main steps that can often be treated separately: the decomposition of a mission into tasks (mission planning), the allocation of the obtained tasks among the available robots and the tasks achievement in a multi-robot context (Figure 1).

In this paper, we limit ourselves to this last aspect i.e. the concurrent achievement of a set of tasks by a number of robots. Indeed, we will assume a set of autonomous robots which have been given a set of partially ordered tasks. This could be the output of a central planner 26], or the result of a collaborative planning and task allocation process 3]. One can consider this plan elaboration process nishes when the obtained tasks have a su cient range and are su ciently independent to cause a substantial \sel sh" robot activity.

However, and this is a key aspect in robotics, the allocated tasks cannot be directly \executed" but require further re nement, because the robots act in the same physical environment and because of the multiplicity of uncertainties. Since each robot synthesizes its own detailed plan for achieving its allocated task, we identify two classes of problems related to the distributed nature of the system: 1. coordination to avoid and/or solve con icts and 2. cooperation to enhance the e ciency of the system.

The rst class has been often treated in the literature. The second class is newer and raises some interesting cooperative issues linked to the improvement of the global performance by detecting possible enhancements. We have developed a scheme, called M+ cooperative task achievement, which partially answers these questions by considering three features: opportunistic action re-allocation:during its own task execution, one robot can opportunistically detect that it will be bene cial for the global performance if it could perform an action that was originally planned by another robot; suppression of redundancy: it may happen that various robots have planned actions which achieve the same world state. This feature provides the reasoning capabilities that allow the robots to decide when and which robot will achieve them, avoiding redundant executions; incremental/additive actions: this feature allows the robots to detect that an action originally planned by one robot can be incrementally achieved by several robots and that this could be bene cial to the global performance.

In the next section, we describe its main ingredients: a world description, a set of social rules, and their use in a cooperative decisional process based on incremental planning as well as on a set of mechanisms for plan adaptation.

Mechanisms for Plan Enhancement

The world model we use has been specially devised to allow reasoning on the cooperative issues mentioned above while maintaining a STRIPS-like representation in order to allow the robots to invoke e cient practical planners (in our implementation, we use PROPICE- PLAN 10] with a STRIPS-like IPP 15] planner).

A state description

The world state is described through a set of predicates. We have two kinds of predicates: 1) stable predicates which represent constant environment features (e.g. CONNECTED(A1):A2, CONNECTED(A1):A3) and 2) evolutive predicates which represent features that can be changed and whose modi cation can be planned (e.g. GRIPPER(R1): EMPTY). Besides, for a given robot, there is a subset of evolutive predicates -called exclusive predicates -that can only be changed by the robot itself (e.g. POSITION-ROBOT).

The incremental validation process

The M+ task achievement scheme is based on independent planning capabilities together with a set of cooperative mechanisms. Starting from the task that have been allocated to it, a robot produces its own plans called individual plans. It must then negotiate with the other robots in order to incrementally adapt its actions in the multi-robot context.

Social Rules

This cooperative activity is based on the common satisfaction of a set of constraints expressed in terms of what we have called social rules. Social rules have been introduced in order to produce easily merge-able plans. Besides, they allow to enrich the features description of the environment. They impose constraints that must be taken into account during the planning and also during the validation process 1 .

We de ne three classes of rules 2 :

time: (T IME?RULE pred; u; s), where pred predicate can be maintained true only during a given amount of time time u. The s eld is a proposed state which can be used by the planner in order to avoid the violation of the rule. For instance the rule: Machine M1 must be ON at most 10 minutes can be represented as (T IME?RULE (ST ATE(M1;ON));10;(STATE(M1;OFF))), where it is proposed to turn o M1 to avoid the rule violation. amount: (AM OUNT?RULE (a : v); u; (s a : s v)) where the \resource" (a : v) represented by an attribute a and a value v is limited to a maximum of u entities. As in the previous class, the s eld (attribute and value) is the proposed state to avoid the rule violation. Note that such rules allow to describe the resource constraints of the system. For instance a limitation of 2 robots at desk D1 can be represented by (AM OUNT?RULE (P OS? ROBOT:D1);2;(POS?ROBOT:OPEN?AREA), where it is proposed to send the robot to an OPEN?AREA, in order to satisfy the rule. end: (EN D?RULE pred), where pred predicate must be satis ed at the end of each robot activity. This class guarantees a known end state, allowing the planner to predict the nal state of an attribute (initial state of the next planning). For example, the social rule: D1 door must be closed can be represented as (EN D?RULE (ST ATE?DOOR(D1;CLOSED)))

The use of social rules in the planning phase: We associate to the social rules a scalar called obligation level. This parameter helps to distinguish between rules that must be systematically respected in order to obtain merge-able plans while the satisfaction of some other rules can be deferred i.e planned but not necessarily executed. Whenever a robot plans, it considers all the proposed nal states of the rules as mandatory goals that will be added to its list of current goals. However, depending on the rules obligation level, their proposed state can be posted 1. as a conjunction with the current robot goals or 2. as additional goals that the robot will try to satisfy in a subsequent planning steps. In such case, the planner will produce additional plans that will achieve each low-level obligation social rule.

During the execution of a plan, the robot may or may not remove these additional plans, thus neglecting the proposed state and \violating" a social rule. Note that if another agent asks the robot to ful ll the rule proposed state, it will then (an only then) perform the associated additional plan. The obligation level may change depending on the context.

Operations on plans

Let P p k be the plan which was the result of the last validation process of robot R p . P p k consists of a set of partially ordered actions A p k . This plan will be modi ed whenever R p wants to add new actions (obtained after a call to its own planner) or whenever R p receives cooperation requests from another robot R q .

We have de ned the following mechanisms for plan modi cation: insert message wait: this mechanism introduces a new temporal order constraint between two actions belonging two robots insert: inserts a new action As in the current plan. delete: deletes an action, A d 2 A p k , of P p k plan. We use this mechanism when an action is re-assigned to another robot or when an action execution is neglected, due to a low obligation level of a rule; replan: from state W and a goal G, it calls its planner and nds a new plan.

Moreover, we introduce new notions that are used by the robots in their cooperative activities. We de ne: 1. interference predicates as being all the predicates whose modi cations can interfere with the other robots plans. Interference predicates are composed of non-exclusive predicates and of all predicates that belong to social rules. 2. Block of actions as a sub-plan which begins with an action that changes an interference predicate and which nishes with an action that changes again the value of the same predicate.

By considering these concepts and mechanisms, the robots are able to change their plans, taking into account cooperative issues, and validating their actions in a multi-robot context.

The task achievement process

The M+ task achievement process involves three activities (Figure 2): 1. the task planning which produces a mono robot \merge-able" plan; 2. the plan negotiation activity which adapts the plan to the multi-robot context; and 3. the e ective plan execution.

These three activities correspond to di erent temporal horizons and may run in parallel (Figure 3). While task planning is a purely internal activity, the other activities are performed in a critical section in order to ensure a coherent distributed multi-robot plan management and execution.

The task planning activity

This is a standard task planning activity. The robot invokes its own planner. It takes as initial state the nal state of its current plan. By doing so, it incrementally appends new sequences of actions to its current plan. This new plan does not consider explicitly the other robots' plans. We call it a monoplan. However, the obtained plan satis es the social rules (see x4.3) and is consequently easily merge-able.

The plan negotiation

The negotiation process allows the robots to coordinate their plans in order to avoid resource con ict situations and also to cooperate in order to enhance the

Allocated task

Multi-context plan Mono-margeable plan Fig. 2. The M+ task achievement process global system performance. Figure 4 shows an instantaneous state of three robots plans. Let us assume that R 1 begins a negotiation process in order to introduce its action A i in the multi-robot context. This operation is \protected" by a mutual exclusion mechanism 3 . The result is a new set of negotiated actions. It is a coherent plan which includes all the necessary coordinations and some cooperative actions. Such a plan is default free and can be directly executed. However, it remains \negotiable" (other robots can perform a negotiation and propose a plan modi cation) until it is incrementally \frozen" in order to be sent to the plan execution activity.

The negotiation steps

The negotiation process comprises three steps: the announcement, the offers analysis and the deliberation.

During this process, a robot nds and negotiates all the blocks of actions of its current plan which are not yet announced. A block can be classi ed in cooperative or coordinated. A block is cooperative when its begin and end action have only non-exclusive e ects. Therefore these actions can be used/passed by/to other robots. The blocks must be coordinated when they are incompatible. Two blocks are incompatible in two cases: 1. when they involve the same attribute and the same entities, or 2. when they may violate a social rule.

Step 1: the announcement. Whenever a robot (e.g R p) wants to negotiate an action A p i in the multi-robot context, it announces it by providing the block of actions that is associated with A p i .

After having received an action announcement, the other robots search for possible coordinated and cooperative blocks in their announced/validated plans, and send back their o ers to R p .

Step 2: R p analyzes the o ers. R p brings together all received coordination and cooperation o ers.

Coordinated blocks: this analysis is directly derived from the Plan-merging paradigm 1]. Block insertion is performed incrementally by adding temporal constraints to the robots plans 4 .

Cooperative blocks: in a cooperative scenario, R p veri es which candidates are able to execute the cooperative blocks (composed of Abc begin, Aec end and Acl causal link actions). The robot builds a cooperative nal block, choosing the agent(s) that will achieve Abc and Aec, and which Acl causal link actions will participate in the cooperation. Due to the need of respecting the social rules, it may occur that some robots can not participate in the cooperative nal block.

Step 3: Deliberation. R p informs the other about the result of the announcement process. The robots use the plan modi cation mechanisms to adapt their plans to the deliberation result. For block coordination, the robots use only insert message wait. Concerning the cooperative interaction, the robots have two possibilities: 1. when R q has an accepted o er, it uses the insert message wait,delete and insert mechanisms to adapt its plan to the cooperation, otherwise, 2. the robot has a rejected o er, so it must use insert message wait to coordinate its block with the cooperative nal block. Note that such a negotiation process involves only communication and computation and concerns future (short term) robot actions. It can run in parallel with execution of the current coordination plan.

Execution process

Before executing an action, the robot validates the blocks pf actions associated with it. Indeed, a block is \negotiable" until its validation. Once validated, the block is \frozen", its modi cations are forbidden and the robot is ready to execute the action. The other robots can only perform insertions after a validated block. Action execution causes the evolution of the system, resulting in events that will entail new planning, negotiation and execution steps for the robot itself and for the other robots.

Example

A rst version of the scheme has been implemented. We describe here below an illustrative example of its use. The robots are in a hospital environment composed of open areas connected by doors. Servicing tasks are items delivery to beds as well as bed cleaning. There are three mobile manipulator robots r0, r1 and r25 .

Example 1.

Figure 6 shows the tasks goals (there are 5 partially ordered tasks:T0,...T4) and the initial world state description 6 .

The robots must respect the following social rules: 1. an amount rule (with low obligation level) that limits the number of robots near a bed to one, (AM OUNT?RULE (P OS?ROBOT:BED1);1;(POS?ROBOT:OPEN?AREA) and 2. an end rule (with high obligation level) (EN D?RULE (ST ATE?DOOR(D1;CLOSED))) that requires to close the door. Besides, there are potentially the following coordination and cooperation issues: 1. coordination for resource con ict near the beds (rule 1) 2. open/close door is a cooperative (with potentially redundant e ects) action (with only non-exclusive e ects: STATE-DOOR(<door>): OPEN/CLOSE) and 3. clean bed is a cooperative incremental action (only non-exclusive/incremental e ects: STATE-CLEAN(<bed>):OK) that allows cumulative e ects when executed several times or by several robots.

The set of tasks is transmitted to the three robots. After a rst phase (not described here), the robots plan and incrementally allocate each tasks using M+ protocol 3]. The allocation is incremental; in a rst step, r0 allocates T2 (i.e. POS-OBJECT(OB3): BED1), r1 allocates the cleaning task T1 as its current task, and it also allocates T3 as its next task. r2 is in charge of T0. Since there is a temporal order which imposes T4 to executed after the end of T3, T4 has not been allocated yet.

POS-ROBOT(R2

Figures 7 shows the individual plans before any negotiated task achievement while Figure 8 shows their state after a number of negotiation processes. Note that r1 has elaborated a plan with six actions in order to achieve its main goal STATE-CLEAN(BED):OK and to satisfy the social rule requiring (STATE-DOOR(D1,CLOSED)) with a high obligation level. Besides, it has also produced an additional plan that satis es rule 1 (with a low obligation level) by introducing a go-to(OPEN-AREA) action.

The robots engage a negotiation process. They negotiate their open-door blocks. Indeed, the social rule 2 imposes to close the door at the end of any plan which opens it. Thus, open(D1) and close(D1) compose a block that must be negotiated. After a number of negotiation processes where each robot announces its blocks and the other robots formulate their cooperative o ers 7 . Finally, there will be only one open-close sequence instead of three. The robots will decide who will open (r0) and who will close (r1) the door and how this will constrain temporally their plans. Figures 8 shows the result of this negotiation with the deleted actions: open of r1 and r2, and close for r0 and r2, represented as circles.

One can also notice, that the robots have satis ed social rule associated to the robot position near the beds. Indeed, they negotiated the go-to(<bed>) actions and inserted synchronization constraints to avoid con icts (insert message wait represented by arrows in Figure 8). Continuing the incremental negotiation, it is time for r1 to negotiate its clean action. Like open, clean is a cooperative action. Moreover it is an incremental action. r1 announces this action, but no robot is a priori concerned by it (no e ect in the current plans). However, as r0 and r2 have planned to be next to BED1 in a near future, they use the insert mechanism, and add a clean action after their arrival near to BED1 (for delivering an object). r0 and r2 send their opportunistic o ers to r1. r1 analyzes the o ers, taking into account that it is an incremental action. It decides that each robot will execute part of the action. The added clean actions to r0 and r2 plans are represented by a di erent lling pattern in Figure 8.

The overall process continues; the tasks are incrementally planned, negotiated and executed. Figure 9 shows the nal result of this run. One can observe that the tasks have been achieved without con icts and that the robots have coordinated their actions: r0 and r2 wait until r1 leaves BED1 (1), r0 waits until r2 leaves BED3 (2) and BED1 [START_REF] Botelho | M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement[END_REF]. Moreover, they have also exhibited several cooperative interactions. Indeed, r0 opens the door (4) and opportunistically r1 and r2 take advantage of this, deleting their open action from their current plans [START_REF] Brumitt | Dynamic mission planning for multiple mobile robots[END_REF]. Besides, r0 and r2 also help r1 to clean a bed [START_REF] Cao | Cooperative mobile robotics: Antecedents and directions[END_REF]. Finally, r1 closes the door for all (7) (r0 and r2 delete their close action (8)). Note also that r0 (9) and r1 [START_REF] Despouys | Propice-plan:toward a uni ed framework for planning and execution[END_REF] have neglected the execute their additional plans that make them go to an OPEN-AREA because no robot has requested them to leave the beds. This was not the case for r2 because r0 has requested it to free BED1 [START_REF] Durfee | Using partial global plans to coordinate distributed problem solvers[END_REF].

We can see that r1 has achieved tasks T3 [START_REF] Ephrati | Plan execution motivation in multi-agent systems[END_REF] and T4 [START_REF] Fukuda | A study on dynamically recon gurable robotic systems[END_REF]. Note also, that r1 has been able to avoid to execute its rst additional plan which appeared at the end of T1 (which included a go-to(OPEN-AREA) action) and to directly switch to the achievement of T3 [START_REF] Jennings | Controlling cooperative problem solving in industrial multi-agent systems using joint intentions[END_REF] which included a go-to(BED3) action.

Example 2 Due to lack of space we do not give details here on another run of the same example but with di erent time conditions. In this second example r0 and r2 are slower. They decide not to help (see Figure 10) r1 to clean BED1. Thus r1 achieves its clean action alone.

Conclusion

We have proposed and discusses a scheme for cooperative multi-robot task achievement. This scheme is a key component of a general architecture for multi-robot cooperation. Its main originality comes from its ability to allow the robots to detect and treat -in a distributed and cooperative mannerresource con ict situations as well as sources of ine ciency among the robots.

We have presented its main ingredients and mechanisms, and illustrated its use through a simulated system. Our future work is twofold. First, We envisage to validate our approach through a number of signi cant application domains and to implement it on real laboratory robots. Besides, we would like to extend and further formalize the overall system and its representational and algorithmic ingredients.

Another interesting aspect is the fact that such multi-robot architectures, raise new complementary issues and constraints which are not correctly treated by the existing task planners.

Fig. 1 .

 1 Fig.1. An Architecture for multi-robot cooperation

Fig. 3 .Fig. 4 .

 34 Fig.3. The task achievement process and its protected activities

Fig. 5 .

 5 Fig.5. Plan Modi cation mechanisms

Fig. 6 .

 6 Fig.6. Example 1: Transfer object and clean beds in a hospital area

Fig. 7 .

 7 Fig.7. M+ Allocation result: Individual plans before negotiation process

Fig. 9 .

 9 Fig.9. Example 1: Final result of M+ task achievement

Fig. 10 .

 10 Fig.10. Example 2: Final result of M+ task achievement

Fig. 11 .

 11 Fig.11. Example 3: Final result of M+ task achievement

Note that this notion is di erent, or even complementary, from the social behaviors proposed

by 22]. While social behaviors are explicitly coded in its reactive task execution, the social rules are used at the robot decision level as constraints in its planning and negotiation activity.[START_REF] Botelho | A distributed scheme for task planning and negotiation in multi-robot systems[END_REF] It is possible to have other classes of rules related to the application domain.

Let us assume that we have a set of autonomous robots equipped with a reliable inter-robot communication device.

We use the mechanisms described in 20] for detecting and treating in a distributed way the deadlocks that may occur

Each robot control system runs on an independent Sun workstation which communicates with the other workstations through TCP/IP.

[START_REF] Cao | Cooperative mobile robotics: Antecedents and directions[END_REF] Due to the lack of space, we exhibit here a simpli ed world state representation.

Note that a robot elaborates its o ers only on the basis of its already negotiated and/or validated blocks