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Plan-based multi-robot cooperation

Rachid ALAMI*,
Silvia Silva da Costa BOTELHO**

LAAS/CNRS, Toulouse (France)
FURG, Rio Grande, RS (Brazil)

Abstract. Several issues arise if one wants to operate a team of au-
tonomous robots to achieve complex missions. The problems range from
mission planning taking into account the different robots capabilities to
conflict free execution.

This paper presents a general architecture for multi-robot cooperation
whose interest stems from its ability to provide a framework for cooper-
ative decisional processes at different levels: mission decomposition and
high level plan synthesis, task allocation and task achievement.

This architecture serves as a framework for two cooperative schemes that
we have developed: M+NTA for Negotiation for Task Allocation, and
M+CTA for Cooperative Task Achievement.

The overall system has been completely implemented and run on var-
ious realistic examples. It showed effective ability to endow the robots
with adaptative auto-organization at different levels. A number of per-
formance measures have been performed on simulation runs to quantify
the relevance of the different cooperative skills that have been proposed.

1 Introduction

Starting from the Plan-Merging Paradigm [3] for coordinated re-
source utilization - and the M+ Negotiation for Task Allocation
Protocol [8, 7] for distributed task allocation, we have developed a
generic architecture for multi-robot cooperation [9, 6].

This architecture is based on a combination of local individual
planning and coordinated decision for incremental plan adaptation
to the multi-robot context. It has been designed to cover issues rang-
ing from mission planning for several robots, to effective conflict free
execution in a dynamic environment. It is aimed not only to inte-
grate our past contributions but also to allow to investigate new
cooperation and coordination schemes.

*R. Alami is with LAAS-CNRS, 7, Avenue du Colonel Roche, 31077 Toulouse
Cedex 4,France. E-mail: Rachid.Alami@QIlaas.fr

** S.C. Botelho is with FURG, Av. Italia Km8, 96201-000 Rio Grande/RS, Brazil.
E-mail: silviacb@ee.furg.br



The goal of this paper, after a brief analysis of related work, is
to present an overview of the architecture and to discuss our current
instantiation. We will successively address (1) a distributed task allo-
cation protocol and (2) a cooperative task achievement scheme that
detects and treats resource conflict situations as well as sources of
inefficiency. Finally, we present an implemented system which illus-
trates, in simulation, the key aspects of our contribution.

The overall system allows a set of autonomous robots not only
to perform their tasks in a coherent and non-conflict manner but
also to cooperatively enhance their task achievement performance
taking into account the robots capabilities as well as their execution
context.

2 Related work

The field of multi-robot systems covers today a large spectrum of top-

ics[18, 13, 28]. We here restrict our analysis to contributions propos-

ing cooperative schemes at the architectural and/or decisional level.

In such stream, behavior-based and similar approaches [26, 25|, pro-

pose to build sophisticated multi-robot cooperation through the com-

bination of simple (but robust) interaction behaviors. ALLIANCE [27]
is a distributed behavior based architecture, which uses mathemat-

ically modeled motivations that enable/inhibit behaviors, resulting

in tasks (re)allocation and (re)decomposition.

Al-based cooperative systems have proposed domain indepen-
dent models for agents interaction. For example, [11] and [20] enrich
the STRIPS formalism, aiming to build centralized/decentralized
conflict-free plans, while [14] develops specialized agents which are
responsible for individual plans coordination.

Several generic approaches have been proposed concerning goal
decomposition, task allocation and negotiation [4, 16]. PGP [19] (and
later GPGP [15]) is a specialized mission representation that allows
exchanges of plans among the agents. DIPART [29] is a scheme for
task (re)allocation based on load balancing. Cooperation has also
been treated through negotiation strategies [31] like CNP-based pro-
tocols [33], or BDI approaches where agents interaction is based on
their commitment to achieve individual/collective goals [22, 34]. An-
other perspective is based on the elaboration of conventions and/or



rules. For instance, “social behaviors” [32] have been proposed as a
way to program multi-agent systems. In STEAM [35], coordination
rules are designed in order to facilitate the cohesion of the group.

Cooperation for achieving independent goals has been mostly
addressed in the framework of application-specific techniques such
as multi-robot cooperative navigation [36, 12, 5].

3 A multi-robot architecture for incremental
plan enhancement

The generic architecture that we propose covers issues ranging from
mission planning for several autonomous robots, to effective conflict
free execution in a dynamic environment.

This architecture is based on a combination of local individual
planning and coordinated decision for incremental plan adaptation
to the multi-robot context. It is built on the assumption that, in a
complex system composed of several autonomous robots equipped
with their own sensors and effectors, the ability of a given robot, to
achieve a given task in a given situation can be best computed using a
planner. Indeed, we claim that the robots must be able to plan/refine
their respective tasks, taking into account the other robots’ plans as
planning/refinement constraints, and thus producing plans contain-
ing coordinated and cooperative actions that ensure their proper
execution and will serve as a basis for negotiation.

It remains to determine what are the relevant decisional problems
that should be addressed. The architecture we propose is precisely
an answer to this question. It provides a framework where multi-
robot decisional issues can be treated at three different levels: the
decomposition of a mission into tasks (mission planning), the alloca-
tion of tasks among the available robots and the tasks achievement
in a multi-robot context (Figure 1).

Indeed, we claim that it is often possible (and useful) to treat
these three issues separately. As we will see, this levels deal with
problems of different nature, leading to specific representations, al-
gorithms and protocols.
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Fig. 1. Our architecture for multi-robot cooperation

This architecture is directly derived from the LAAS! architec-
ture [1]. It involves a hierarchy of three decisional levels having dif-
ferent temporal constraints and manipulating different data repre-
sentations. Each level has a reactive (supervisor) and a deliberative
component (planner, plan-merger. .. ).

Communication between robots can take place at a different lev-
els. For a given level, both components communicate with their cor-
responding component. The reactive components exchange signals
and run protocols; the deliberative components exchange plans, goals
and data.

Let us examine the three levels with more detail.

3.1 Mission Decomposition: planning and supervision

This is a pure plan synthesis problem. It consists in decomposing a
mission, expressed at a very high level, into a set of partially ordered
tasks that can be performed by a given team of robots. One can con-

1 LAAS: LAAS’ Architecture for Autonomous Systems.



sider that this plan elaboration process is finished when the obtained
tasks have a sufficient range and are sufficiently independent to allow
a substantial “selfish” robot activity.

We assume that there is no need at this level to know precisely
the current robots states. It should be enough to know the types of
available robots, their number, their high level features.

An example of such a mission could be transporting and assem-
bling a superstructure in a construction site. It may require to syn-
thesize a sophisticated plan composed of numerous partially ordered
tasks to be performed by various robot types with different capabil-
ities: transport of heavy loads, maneuvers in cluttered environment,
manipulation. . .

Mission decomposition is a purely deliberative. It is at this level
that there are less needs of context dependent information. It can
be done in a central way. It is essentially a one thread process.

Of course it can benefit from several CPUs but this is a distribu-
tion of computing load, which is different in nature from problems
calling for cooperative decision-making based on independent goals,
on various robot capabilities and contexts.

In our current implementation, mission planning is produced by
a central high level planner, for instance IxTeT [24], or the mission
is provided directly by the user as a set of partially ordered tasks.

3.2 Task allocation among the robots

A mission is a set of partially ordered tasks, where each task (7;) is
defined as a set of goals to be achieved. The tasks are allocated to
the robots based on their capabilities and on their execution context.

This level is not necessarily distributed. However, its distribu-
tion is clearly preferred since task allocation is essentially based on
proper or local information. Indeed, the tasks may be allocated (and
re-allocated when necessary) incrementally through a negotiation
process between robot candidates. This negotiation is combined with
a task planning and cost estimation activity which allows each robot
to decide its future actions taking into account its current context
and task, its own capacities as well as the capacities of the other
robots.



We have implemented this level through M+NTAZ. This sys-
tem has all necessary protocols and algorithms for cooperative task
allocations (see §4).

3.3 Task achievement in a multi-robot context

The allocated tasks, and this is a key aspect in robotics, cannot
be directly “executed” but require further refinement taking into
account the execution context [1].

Since each robot synthesizes its own detailed plan, we identify two
classes of problems related to the distributed nature of the system:
(1) coordination to avoid and/or solve conflicts and (2) cooperation
to enhance the efficiency of the system. The first class has been
often treated in the literature. The second class is newer and raises
some interesting cooperative issues linked to the improvement of the
global performance by detecting sources of inefficiency and proposing
possible enhancements.

Coordination to avoid conflicts Each robot, while seeking to
achieve its goal will have to compete for resources, to comply with
other robots activities. Indeed, the higher levels, even if they produce
valid mission decomposition, do not consider all possible conflicts
that may appear at task execution level. We have already treated
resource conflict situations as well as coordinated navigation [2, 21].
We will see, in the sequel, that the Plan-Merging Paradigm can be
extended to more general conflicts.

Cooperation to enhance the system performance We have
identified several cooperative issues based on local interactions:

1. opportunistic action re-allocation: one robot can opportunis-
tically detect that it will be beneficial for the global performance
if it could perform an action that was originally planned by an-
other robot;

2. detection and suppression of redundancy: it may happen
that various robots have planned actions which lead to the same

2 NTA: NEGOTIATION FOR TASK ACHIEVEMENT



world state. There should be some reasoning capabilities to allow
them to decide when and which robot will perform actions that
lead to the desired state while avoiding redundant executions;

3. incremental/additive actions: the robots detect that an ac-
tion originally planned by one robot can be incrementally achieved
by several robots with a “cumulative” effect and that this could
be beneficial to the global performance.

In our current instantiation of the architecture, M+CTA3? im-
plements this incremental task achievement level.

3.4 Cooperative reaction to contingencies

The architecture provides hierarchical reaction to contingencies. When
a failure (or an unexpected event) occurs at a level, it is first treated
at this level and if no solution is found, the higher level is invoked. In
the framework of our multi-robot cooperative architecture, this pro-
cess allows to re-consider the previous allocation or decomposition
choices. This should allow a multi-robot team to adapt to its execu-
tion context and to auto-organize itself in order to perform complex
missions in presence of uncertainty.

3.5 Discussion

In the following we discuss some design issues relative to our archi-
tecture. Architectural choices may often be considered somehow as
arbitrary. Our design is partially intuitive and partially based on our
own observations and on the main domains in the literature where
multi-robot cooperation has been applied.

For instance, in the great majority of multi-robot systems de-
scribed in the literature, only one aspect or the other is addressed.
But this is only possible if the other aspects are simplified. At the
highest level, the mission is often given already decomposed or with
a small number of (trivial) decompositions. For example: transfer-
ring a bunch of n objects is trivially decomposed in n transfer tasks
of individual objects. Numerous other possibilities (perhaps more
efficient) may exist depending on the types of objects, the robot
capabilities and their current state. ..

3 CTA: COOPERATIVE TASK ACHIEVEMENT



In numerous multi-mobile robot systems, elaborated motion co-
ordination - which clearly belongs to the the task achievement level
- is neglected or ignored. Such simplification is acceptable only for
non constrained environments where local non-coordinated obstacle
avoidance schemes are sufficient.

One, two or three levels It may happen that for some appli-
cations, it is impossible to separate the mission decomposition and
the task allocation aspects because they are too tightly linked. This
is the case when the mission decomposition depends heavily not
only on the types of robots available in the environment but also on
their number and their current situation. In such case, the two levels
should be merged in a one step planning process.

The frontier between levels that corresponds to a real qualita-
tive change is between the task allocation and the task achievement
levels. But, of course, it is still possible to devise intricate examples
that challenge any architectural decomposition.

Cooperative skills Not all levels are activated or even present on
all robots in a given application. For instance, one can imagine, in
a hospital environment, the operation of several teams of mobile
robots: a cleaning robots team, a meals and linen delivery team, and
a set autonomous wheel-chairs (some of them do not even belong to
the hospital)

The cleaning team may cooperate at mission level. The meals
and linen delivery team may cooperate at task allocation level. All
robots need to cooperate at resource conflict level.

Global coherence and efficiency While the architecture may be
considered as satisfactory in terms of identification of the relevant
levels of abstractions and their articulation, this is not a guarantee
of global coherence nor of efficient operation of the robots.

Indeed, such properties depend primarily on the cooperative sche-
mes and the algorithms that are implemented inside each level. For
example, the Plan-Merging Paradigm has been devised to provide
quite efficient local solutions to most resource conflicts while main-
taining two key features [30]:



— the coherence of the global scheme and the ability to detect the
situations where it is not applicable

— a localized management of the planning and coordination pro-
cesses with, in particularly intricate situations, a progressive tran-
sition to more global schemes which may “degrade” to a unique
and centralized planning activity.

The following sections present successively M+NTA and M+ CTA.

4 M+NTA: Negotiation for Task Allocation

Each robot receives the same mission description, i.e. the same set of
partially ordered tasks. At any moment a task is said to be ezxecutable
if all its antecedent tasks are already achieved or under execution.
Robots are informed whenever a task is started or finished.

The M+NTA task allocation process allows the robots to incre-
mentally choose a task among the current executable tasks. We use
an adapted version of the Contract Net Protocol [33] for the negotia-
tion. We limit the negotiation and planning to the set of executable
tasks because, in general, a plan to perform a task may depend on
the state of the world resulting form the previous tasks. The choice
criterion will be the costs of the plans elaborated by different robots
depending on their capabilities and situations.

Figure 2 shows M+NTA task allocation state diagram. There
are 5 possible states: planning, eval-cost, candidate, best-candidate
and idle.

A robot R, enters the eval-cost state whenever there is an update
in the set of executable tasks and it is ready to negotiate a new task
(1). It invokes its planner (2) in order to synthesize plans for the
executable tasks and to estimate their costs (3). Then, R, selects the
task for which it can propose a better cost than the cost announced
by other robots, if any.

If there is no such task, R, enters the idle state (8).

If a task Ty is selected, R, enters the candidate state (4). R,
sends its offer to current best candidate for this task and waits for
an answer. If the answer is positive, meaning that the current best
candidate accepts to transfer Ty to R,. R, enters the best-candidate
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Fig. 2. State diagram for the task allocation protocol

state (6). However, the answer can be negative, meaning that the
cost of R, is not better than the cost of the current best candidate.
R, then abandons 7T}, and enters the eval-cost state in order to select
a new task (5).

When a robot R, enters the best-candidate state for a given task
T}, it holds in this state until either it begins 7} execution or until
it receives a better offer from another robot, or until it abandons 7}
due to a failure or to a cooperative reaction (7). It then enters the
eval-cost state in order to select a new task.

M+ Cooperative Reaction

The M+NTA scheme also provides a treatment for cooperative robot
behavior in case of execution failure. When a problem occurs that
prevents a robot R, from achieving a task Ty, it first tries to re-plan
in order to find another set of actions to achieve T} starting from
the new state resulting from the failure. But if R, does not find a
new plan, it sends relevant information with a request for help to
the other robots and waits. If several robots propose their help, R,
selects the best offer. R, abandons T}, only if it receives no help offer.

5 M+ Cooperative task achievement (M+CTA)
and the mechanism concept

In M+CTA. the task achievement level is based on an incremental plan
validation process. Starting from a task that has been allocated to it,



a robot R, plans its own sequence of actions, called individual plan.
This plan is produced without taking into account the other robots’
plan. After this planning step, R, negotiates with the other robots
in order to incrementally adapt its plan in the multi-robot context.

A number of conflict /cooperative situation problems are raised
when a group of agents share the common use of some entities or
devices in the environment.

The mechanisms provide a suitable framework for robot cooper-
ation. Indeed, there are numerous applications and particularly for
servicing tasks, where the robots often need to operate or to interact
with automatic machines or passive devices in order to reach their
goals or to satisfy some intermediate sub-goals that allow them to fi-
nally reach their main goals. For example, a robot has to open a door
in order to enter a room, or heat the oven to a given temperature
before cooking a cake, etc..

The mechanism can be seen as an extension of the concept of
resource: a robot not only allocates and frees a mechanism, it not
only consumes or produces it, it can also explicitly manipulate it or
act on it, directly or through requests to a controller attached to the
mechanism.

The simplest entity that will be dealt with through a mechanism
is a spatial resource that can be used by only one robot at a time:
a place where to park. A door is a little more sophisticated. It may
have several states, it may been open or closed, or open to a certain
extent. A door can be automatic or manual. Besides, depending on
the context, a door should be maintained closed as much as possible
or not. Note also that there often exist procedures to operate some
machines with several steps and rules to share their utilization. An
interesting example is the elevator.

The mechanisms allow: (1) to identify the entities of common
use, (2) to fix rules to guarantee correct and coherent cooperative
utilization of such entities and (3) to negotiate their common use
among the agents.

5.1 A scenario of cooperation

A mechanism is a data structure that defines how to use a device or
a machine. It defines, somehow, the instructions (or directions) for



use: the possible sequences of operations, in what conditions it can
be shared or used simultaneously by several users, etc.

In the current version of our system, this knowledge is represented
by (see figure 3):

— known initial and final states,

— a set of alternative paths; each path is partially instantiated and
represents a valid sequence of actions and state changes of the
associated entity.

— a set of social rules.

name-mechanism(?entity)

Path;,
* List—EventlI =
- {Event, |Eveni =Event(AJT (?object):?value,?new-vglue, ,?e )}

Begin—state= )
{att, |att, =ATT(?object):?value
Path,

\l/ .
[] (] List—EventIn =

{Event |Evenf =Event(ATT (?object):?new_value ,?new-valye ,?

End-State=
{att, |att, =ATT, (?object):?value }

Rules-list={Ev-rule; |Ev-rulg ={rulg, |
rule, =Rule(?type,state—violation,u,proposed-state)}}

Fig. 3. A generic mechanism M

Social Rules impose constraints that must be taken into account
during the mechanisms use. They have been introduced in order to
allow the robots produce easily merge-able plans. Social rules specify
forbidden or undesirable states and propose some desired states. This
information is used by the planner in order to avoid the violation of
the rule. Thus, social rules have the following generic description:

RULE(type, violation_state, s, proposed_state)



Social rules are domain dependent; the current version of our
system deals with three types of constraints:

1. amount: where violation_state = (att(?object) : v) represents a
resource that should limited to a maximum number of s agents.
Note that such rules allow to describe the resource constraints of
the system. For instance a limitation of 2 robots at desk D1 can be
represented by RULE(amount, (pos_robot(?r) : D1),2, 0OPEN_AREA),
where it is proposed to send the robot to an OPEN_AREA, in order
to satisfy the rule.

2. end: where proposed_state must be satisfied at the end of each
utilization of the resource. This class guarantees a known final
state, allowing the planner to predict the state of an attribute
(initial state for the next plan).

3. time: where violation_state can be maintained true only during
a given amount of time s.

The use of social rules in the planning phase: We associate to
social rules a scalar value called obligation level. Whenever a robot
plans, it considers the proposed states of the rules as mandatory goals
that will be added to its current list of goals. However, depending on
the obligation level, goals will be posted (1) as a conjunction with the
current robot goals or (2) as additional goals that the robot will try
to satisfy in subsequent planning steps. In such case, the planner will
produce additional plans that will achieve each low-level obligation
social rule.

During the execution of a plan, the robot may or may not exe-
cute these additional plans, thus neglecting temporarily the proposed
state. Note that if another agent asks the robot to fulfill the rule
proposed state, it will then (and only then) perform the associated
additional plan. The obligation level may also change depending on
the context?.

4 Note that this notion of social rules is different, or even complementary, from the
social behaviors proposed by [32]. While social behaviors are explicitly coded in
its reactive task execution, the social rules are used at the robot decision level as
constraints in its planning, negotiation and execution activities.



5.2 Mechanisms and Jobs

Whenever a robot R, detects that its plan uses an entity associ-
ated with a mechanism M, it builds a job Mf . A job is a dynamic
structure, which results from the instantiation of a path of a given
mechanism in the current robot plan. A job is composed of steps.
Each step has a set of information associated with it: for instance,
the agent that effectively executes the action, the other plan actions
that depend on it (successors), etc. Jobs are used as structure
and language of negotiation allowing R, and other agents to decide
about the common utilization of an entity. Figure 4 shows a plan pro-
duced by robot R, that uses a furnace. R, builds a job M ]1'-’ that may
be negotiated. This job ends when the final state of the associated
mechanism is reached.

Rp plan
ell el2 el3 el4d el5 el6 el7 el8 el
() (] [0 () = [0
Use-furnace(S1-FURNACE,?2) 9 § 8¢ = 5 2 8 3]
o O 8 T & c© 2 I
S o @ £ o 2 £ @9 c
= [=] 5 2 5 o 5
o
o 5 T 2 8 & 3 o+
] c o Q
door-state:DOOR-FS1,CLOSED ° o S o E 5 & 5 °
funace-state(S1-FURNACE):OFF o g o © g
2 2

Event (door-state(DOOR-FS1):(Closed,Opened),e12),Rp,Suc={e13}

[door—state(DOOR—FSl):OPENED }

Event (furnace-state(S1-FURNACE):(OFF,ON),e14),Rp,Suc={e18}

[ furnace-state(S1-FURNACE):ON }

Event (door-state(DOOR-FS1):(opened,closed),e19),Rp,Suc={}
\ 4

[ furnace-state(DOOR-FS1):CLOSED }

executor agent

Event (furnace—state(Sl—FURNACE):(ON,OFF),ezoﬁép,;iucz{}

transitions which — successor
} utilize this step actions

door-state(DOOR-FS1):CLOSED
furnace-state(S1-FURNACE):OFF

Fig. 4. A job corresponding to the use of a furnace by Rp



6 Cooperation based on Mechanisms

The M+CTA level involves three activities that correspond to different
temporal horizons and may run in parallel: (1) task planning which
produces an individual robot plan; (2) the plan negotiation activ-
ity which adapts the plan to the multi-robot context; and (3) the
effective plan execution.

From time to time, depending on higher level requirements, the
robot invokes its own planner and it incrementally appends new
sequences of actions to its current individual plan. This is a standard
task planning activity; however, the obtained plan satisfies the social
rules and is consequently easily merge-able.

6.1 Incremental plan negotiation

Let us assume that R, has an individual plan composed of a set
of actions A? which manipulate mechanisms. It performs an incre-
mental negotiation process in order to introduce each action A? in
the multi-robots context. This operation is “protected” by a mutual
exclusion mechanism®. The result is a coherent plan which includes
all the necessary coordinations and some cooperative actions. It is
default free and can be directly executed. However, it remains “ne-
gotiable” (other robots can propose a plan modification) until it is
incrementally “frozen” in order to be executed. We analyze in the
following the different steps involved in this negotiation process.

6.2 The negotiation steps:

The negotiation process consists of two steps: the announcement
and the deliberation. During this process, a robot negotiates a set
of jobs of its current plan®.

Step 1: the announcement. Whenever a robot,R, needs to
validate an action A} (belonging to job M?. R, corresponding to the
use of a mechanism M), in the multi-robot context, it announces its
will to negotiate a job involving M. It obtains the current list of jobs
involving M.

® We assume that the robots are equipped with a reliable inter-robot communication

device.
5 We treat together, in one step, all “interleaved” jobs to avoid deadlock situations.



Step 2: R, deliberates. Having the current job list, 12, has two
alternatives associated with its job M]p and each member list MJ'-] ,
see figure 5:

Negotiation
Original plans: ———— New plan of Rp and Rq

Fusion

Init cooperative step:

non-redondant
1 single transition

312%l i e22 shared step

action

1

©2
‘ End
Detailed job

Fig. 5. Job treatment possibilities: fusion or coordination.

saniiqissod juawieal qor

Detailed job

Fusion: since our robots are cooperative, the aim is to enhance
as much as possible the overall performance. Thus, the robot always
try to merge his job with the current (already negotiated) jobs qu .
This is done by trying to detect and treat redundant and shared
transitions. The result is a new job qu/ whose actions may be dis-
tributed between the different robots.

However, the constraints imposed by social rules may prevent a
fusion between two jobs. The only remaining solution is to coordinate
them in order to avoid conflicts.

Coordination: in this situation R, can use a mechanism M only
after its release by the agents involved in M]‘-] . In other words, Mf
has to be coordinated with M} by adding temporal constraints to
the jobs.

After each deliberation process, the robots adapt their plans to
the jobs modification. We have defined the following operations:



insert_message_wait that introduces a temporal order constraint
between two actions belonging to two robots, and insert/delete,
when an action is re-assigned to another robot.

Note that such a negotiation process involves only communica-
tion and computation and concerns future (short term) robot ac-
tions. It can run in parallel with execution of the current coordina-
tion plan.

Job execution process: Before executing an action A?, the robot
validates the transition associated to A?. Indeed, a transition re-
mains “negotiable” until its validation. Once validated, it is “frozen”
and the other robots can only perform insertions after a validated
transition. Action execution causes the evolution of the system, re-
sulting in events that will entail new planning, negotiation and exe-
cution steps for the robot itself and for the other robots.

7 Illustration

M+ is a complete multi-robot decisional system. It is an instance
of the general architecture described in §3. In this implementation,
we use PROPICE-PLAN [17] together with a STRIPS-like planner
called IPP[23] and a motion planner. Each robot control system runs
on an independent workstation which communicates with the other
workstations through TCP/IP. For a given application, the environ-
ment topology, the robot features, the list of mechanisms and the
set of STRIPS actions are input parameters for M+.

We have implemented a first version of the overall system and run
it on the realistic simulation platform that was initially developed
for the Martha project [2]. Below we describe some of the obtained
results.

Our objective here is to measure and compare gains that are
obtained when the robots are equipped with the cooperative and
coordinations skills that we propose. The interested reader may refer
to [10] for a set of documented runs where we examine the different
negotiation and cooperation steps.

The application domain that we have chosen is a set of mobile
robots in a hospital environment. Servicing tasks are items delivery



to beds as well as bed cleaning and room preparation. Figures 6 and
7 show the simulated environment and 14 partially ordered tasks:
TO, . ..T13 and the initial world state description”.

= GDHE

Meals: M1, M2, M3
Containers: C3, C4
Stations: S0, S1, S3, S4, S8, S9
Robots: RO, R1, R2, R3, R4

Fig. 6. Example 1: Transfer objects and clean beds in a hospital area

state-room(S1):DIRFY---. TO: state—room(S1):CLEAN-{----+
state-room(S8):DIRTY.-- T1: state—room(S8):CLEAN-{-
state-exame(S3):NO-|-.| T2: state-exame(S3): 04~ --r---
state—exame(S4):NQ_|___| T3: state—exame(S4): G~~~
pos(C3):S4 -1 T8: pos(C3):S0 T10: pos(C3):S3
pos(C4):S3 T T9: pos(C4):S9 T11: pos(C4):S4
pos(M1):S3 - --A\NLT12: pos(M1):50---- - —==—==—-——-—- -
pos(M2):S8 1 Ea | T13: pos(M2); S8 ----f ———==—==—=——-] -
pos(M3):S1 - ~ 1 T5: pos(M3):S8------------| | -

State0 =~ - Statel- = - State2. == - State3 - State4

TO, T1,T2,T3,T4,T5 T6,T7 T8,T9, T12, T13 T10, T11

Fig. 7. Example 1: The decomposed mission: 14 individual partially ordered tasks.

The robots must negotiate the use of the following mechanisms:
(1) clean-room that allows cleaning actions with cumulative ef-
fects when executed several times or by several robots; (2) door-
manipulation with open/close actions, which can be potentially

" Due to the lack of space, we exhibit here a simplified world state representation.



redundant; and (3) a mechanism that controls the use of the dock
station by the robots. This mechanism has an amount rule (with low
obligation level) that limits the number of robots near a station to
one.

The set of tasks is transmitted to five robots. After a first phase
(described in [8]), they plan and incrementally allocate the tasks us-
ing M+ Cooperative Task Allocation. Figure 8 shows the individual
plans after a number of negotiation processes. Note that r0 has allo-
cated T6 in a first step. However it has lost it because r1 has found a
better cost to achieve it. Indeed, r1l is achieving T6. It has elaborated
a plan with six actions in order to achieve its main goal pos(C3) :S1
and to satisfy the social rule requiring state-door (D0) : CLOSED with
a high obligation level. Besides, it has also produced an additional
plan that satisfies rule 1 (with a low obligation level) by introducing
a go-to (OPEN-AREA) action. After several jobs negotiation processes,
r1 deletes its open action, which is accomplished by r3. This robot
opens a first time the door and all robots take advantage of this
event. Afterwards, r1 will close the door for everybody. We can see
also the incremental allocation process: while the robots are achiev-
ing their current tasks, they try to allocate their future tasks. For
instance: r1-T6 and r2-T9.

The overall process continues; the tasks are incrementally planned,
negotiated and executed. Figure 9 shows the final result of this run.
One can notice, that the robots have satisfied the soctal rule asso-
ciated to the robot position near the stations. Indeed, some robots
detected and deleted redundant actions (open/close door) accom-
plished opportunistically by others. Besides, some robots also helped
the others to clean rooms.

Figure 10 shows the time sharing among execution and delib-
eration activities. Deliberation activities are decomposed into task
allocation and mechanisms negotiation. All activities run in parallel.
Note that execution activities are more expensive, however r0O has
a high task allocation activity due to the mission nature and to its
proper context: the tasks order limits their execution in parallel and
r0 spends a lot of time searching for a task to perform.

We have run the system several times with different parameter
values. These parameters are associated with two aspects: the type
of cooperation and the number of robots. We have run the system
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Fig. 8. M+ task achievement process: 5 execution streams corresponding to 5 robots
that plan, negotiate and coordinate incrementally their activities. The arrows between
robot plans illustrate the temporal constraints induced by the coordination between
jobs.

with three different cooperation strategies: (1) COOP-TOTAL: treating
redundancy and opportunistic incremental help between jobs; (2)
NO-INC: only treating redundant cases with no incremental help;
and (3) NO-COQP: the system allows only coordination between jobs.

On the whole, COOP-TOTAL enhances the system performance
with better costs and less actions (see Figures 11).

When we change the number of robots, we observe (Figure 12)
that the number of achieved actions with 5 and 3 robots is smaller
than with 2 robots. Note that there is no difference between 3 and 5
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Fig. 9. The final result of the run. All streams are now finished. The top part of the
figures shows the partial order between tasks

robots tests; this is due to the nature of mission. The partial order
of tasks prevents an optimum deployment of more than 3 robots.

Concerning the the workload, we can see that when we have 5
robots, one of them (r0) is almost idle (Figure 12). This fact explains
the similar results between 3 or 5 robots tests. However, note that
our system has found a very good balance when only three robots
are involved.

8 Conclusion

We have proposed a generic architecture for multi-robot cooperation.
Its interest stems from its ability to provide a framework for cooper-
ative decisional processes at different levels: mission decomposition
and high level plan synthesis, task allocation and task achievement.

We have built an instance of this architecture with negotiation for
task allocation and cooperative plan coordination and enhancement
at the task achievement level.



Wr4 Wr3 Or2 Or1 W10

Allocation Negociation Exec-total

Fig. 10. Time spent in decisional (allocation, negotiation) and execution activities by
the different robots.

We have also discussed a scheme for cooperative multi-robot task
achievement, called mechanism. This scheme is a key component of
our general architecture for multi-robot cooperation. Its main origi-
nality comes from its ability to allow the robots to detect and treat -
in a distributed and cooperative manner - resource conflict situations
as well as sources of inefficiency among the robots.

This architecture has been completely implemented and run on
various realistic examples. It showed effective ability to endow the
robots with adaptative auto-organization at different levels. We have

M Total actions @ Accomplished actions

.

COOP-TOTAL NO-INC NO-COOP COOP-TOTAL NO-INC NO-COOP

Fig. 11. Relevance of the proposed cooperative schemes. When the robots use all the
proposed schemes (COOP-TOTAL), they perform less actions and the global cost is
lower.
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Fig. 12. Illustration of the influence of the number of robots for the same mission.
Left:Number of robots vs. planned and achieved actions. Right:Workload for each robot

made some preliminary measures that allow to verify and to quan-
tify the relevance of the different cooperative skills that have been
proposed.

It remains to validate this approach through a number of signifi-
cant different application domains. Besides, we would like to extend
and further formalize the overall system and its representational and
algorithmic ingredients, taking into account cost and time issues to
help planning and negotiation activities.

Besides, it is interesting to observe that this study has raised sev-
eral issues that deserve further investigations: 1) the opportunistic
help for global performance improvement, 2) a class of cooperative
issues that can be translated into operations on plans, 3) the inte-
gration of a behavior model like the social rules at the planning level
in order to synthesize easily merge-able plans.
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