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Abstract

This paper reports on our recent efforts to extend
the Plan-Merging Paradigm, in order to improve
its ability to adapt to various execution contexts.
They concern the algorithmic as well as the archi-
tectural issues.

The scheme can now be parameterized, allowing
to choose and even to update on-line robot prior-
ities, and to take into account various constraints
imposed by the application. This leads to different
coordination policies.

The architectural improvements allowed a bet-
ter distribution of the computation load, leading
to more complex applications as, for instance, the
coordination of multiple mobile manipulators.

The result is a more flexible scheme that should
widen its application fields. We describe the main
ingredients of this new scheme and illustrate its im-
plementation through two examples.

1 Introduction

In the multi-agent cooperation field, we claim that
agents must be able to plan/refine their respective
missions, taking into account other agents plans as
constraints, and thus to produce plans with coor-
dinated action to ensure their proper execution.

This is particularly true for autonomous multi-
robot applications and, more generally, when the
allocated goals cannot be directly “executed” but
require further refinement, because the robots act
in the same physical environment.

While several generic approaches have been pro-
posed in the literature concerning goal decompo-
sition and allocation (Contract Nets [16], Partial
Global Planning [8], distributed search [9], ne-
gotiation [4, 11, 15], motivational behaviors [13,

10]), cooperation for achieving independent goals
have been mostly treated using task-specific or
application-specific techniques [5, 7, 6].

We argue that there is also a need for generic
approaches to perform plan coordination. We
have proposed, several years ago, a coordination
scheme called “Plan-Merging Paradigm” (PMP).
PMP proved to be quite efficient and allowed us
to exhibit several examples where robots were op-
erated with very limited central activity, while pre-
serving essential properties like global coherence,
detection of dead-lock situations,. . .

We present, in the following, a number of im-
portant extensions to the “basic PMP”. They have
been developed in order to improve its ability to
adapt to various execution contexts, and concern
the algorithmic as well as the architectural issues.

The scheme can now be parameterized, allowing
to choose and even to update on-line robot prior-
ities, and to take into account various constraints
imposed by the application.

The new architecture allows the use of hetero-
geneous robots as well as a better distribution of
the computation load. The result is a more flexible
scheme that should widen its application fields.

In the next section, we briefly remind the main
features of the basic PMP. Then, we present a new
plan-merging algorithm which integrates priorities
(section 3), and progressive plan-merging through
a hierarchical resource description and the use of
colored tokens (section 4). Section 5 presents the
new architecture. Finally, these new features are
illustrated through implemented examples involv-
ing intricate plan coordinations for heterogeneous
robots (section 6).



2 The Plan Merging Protocol

Let us assume that we have a set of autonomous
robots and a central station which sends goals to
robots. Whenever a robot receives a new goal, it
elaborates an Indiwvidual Plan which takes as initial
state the final state of the current plan.

However, before executing this plan, a robot
must ensure that it is valid in the multi-robot con-
text, i.e. all potential conflicts with the other
robots plans are considered. We call this operation
Plan Merging Operation (PMO) and the resulting
plan a Coordinated plan. Such a Coordinated Plan
(CP;) consists of a sequence of actions and ezecu-
tion events to be signaled to other robots as well as
execution events that are planned to be signaled by
the other robots. Such ezxecution events correspond
to temporal constraints between actions involved in
the different coordinated plans.

At any moment, the temporal constraints be-
tween all the actions included in the union of all
the coordinated plans constitute a directed acyclic
graph [3] which is a snapshot of the current situa-
tion and its already planned evolution (Fig. 1).

When R; receives its j-th goal G7, it elaborates
a plan IP] which achieves it; then it performs a
PMO (fig. 2 state 2) under mutual exclusion (fig. 2
state 1): it collects the coordinated plans C'Py of
the robots which may interfere with 7P}, and builds
their union GP = J, CP. Then, it tries to insert
IP} in GP. If it succeeds, it adds temporal order
constraints to actions in 1 Pij and transforms it into
a coordinated plan C'P;. The resulting C'P; is fea-
sible in the current context, and does not introduce
any cycle in the resulting GP.
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However a PM O performed by R; may fail be-
cause the final state of at least another robot Ry, (as
specified in GP) forbids R; to insert its own plan
IP! in GP. R; defers its PMO and waits (fig. 2
state 3) until at least one of the “blocking” robots
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Figure 2: The Plan Merging Protocol.

PMO deferred PMO success

has performed a new successful PMO. Hence, we in-
troduce, when necessary, temporal order relations
between the different plan-merging activities. This
data structure allows to detect dead-lock situations.
Depending on the context, the coordination pro-
cesses allow a progressive transition to more global
schemes which may even “degrade” to a unique and
centralized planning activity[14].

PMP proved to be quite efficient and allowed
us to exhibit several examples where a number of
robots (up to 30, in simulation) were operated with
very limited central activity, while preserving es-
sential properties like global coherence, detection
of dead-lock situations,. ..

However, PMP suffered from several limitations.
For example, all robots were assumed to be identi-
cal and were considered at the same level of priority.
This somehow limits the coordination to an inser-
tion of new actions after the existing plans which
are considered as contingent events. As a conse-
quence, the robots were limited to short terms plan
insertion. The next sections describe and illustrate
the improvements that solve these limitations.

3 Dealing with Priorities

The main improvement over the “basic PMP” is the
introduction of priorities. They are given to each
resource needed by the robot. They can change dy-
namically during the merging operation or during
the plan execution. To ensure coherence along the
plans we use three priority evolution rules.

3.1

The first one (r 1) is the rule of priority decrease
along a plan:
YU, UQ,A(Ul) < .A(UQ) =U.p>Us.p

Where U represents the use of a resource, U.p its
associated priority, and A(U) its allocation event.

Priority evolution rules



The earlier resources have higher priority.

The two other rules are applied during the merg-
ing operation. When two robots have the same pri-
ority, we decide to give the advantage to the robot
which is subjected to the merging operation.

The second rule is the priority inheritance:

We assume to have two robots R; and R in conflict
for the use of resources Ug, (i) and Ug, (j).
er 2.1: If Ur,(1)p > Ur,(j)-p and R, is
the robot doing the merging operation then
VZ/{R (k) . A(uRl (k)) = f(ulh (2))
! = Z/{Rl (k)p > UR2 (J)p + Dinc
er 2.2: If Ugr,(i).p > Ugr,(j).p and R; is not
the robot doing the merging operation then
. AlUg, (k) < F(Ur, (i)

VUR KD T U (6)-p > Uny ()

Where F(U) represents the release event of U, and
Pine the minimal increment. This rule allows the
robot which has the priority on a resource i to have
a higher priority on resources needed to be able to
free U than other robots which want to take U.

The third rule is for “strong links” use. Such
links correspond to external constraints on the
merging operation: conservative insertion, incre-
mental constraints, hierarchical constraints, other
planner constraints... However, these links should
not create a cycle in the graph of events.

If we have a strong link from Ug, (j) to Ug, (7):

e r 3.1: If R, is not the robot doing the merging

operation then Ug, ().p > Ugr,(4)-p + Pinc

e r 3.2: If R, is the robot doing the merging

operation then Ug, (i).p > Ur,(j).p

Those constraints can be dynamically added or re-
moved to modify the robots behavior. For example,
the conservative insertion allows to forbid a robot
R> with a higher priority to break the plan of Rj,
when it performs a PMO. We create links to not
freed resources of R; from resources of Ry which
are in conflict. If we don’t use this conservative
insertion, R; would be stopped to let Ry go, and
need another PMO to go on.

The incremental constraints are links created
during the last merging operation. To avoid any
change in a previously negociated synchronization,
we represent them by strong links.

3.2 Priority evolution procedure

To comply with the previous rules, the algorithm
increases resources priorities which don’t satisfy

these rules. We also choose to do minimal incre-

ment. So, the priorities are not going to dramati-
cally change unless it is necessary.
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Figure 3: Examples of evolution of priority rules.

(a) Coordination of R; and R». (b), (c), (d), (e),

(f) show different steps in the merging of R, plan

when it has the highest priority. (g), (h) show PMO

steps of R; plan when it has the highest priority.

We introduce a special (very high) priority to
protect a part of plan that we do not want to be
temporally constrained and that we call the “rigid
part” of the plan. The robots are allowed to execute
the rigid parts of their plans during the insertion
protocol.

We have two possible failures for this merging
operation: creation of a wait event from the rigid
part of a plan, or creation of a wait event associated
to a not freed resource. In this case we create a
dependency which is solved by the third state of
the “Plan Merging Protocol” (fig. 2 state 3).

Figure 3) shows an example where the three rules
are used. Note that resource uses are partially or-
dered: a robot allocates the next resources before it



leaves the ones it occupies. Hence, boxes partially
overlap.

First (fig. 3 (b),(c),(d),(e),(f)), we assume that
R, has already merged its plan, and R, wants to
do a PMO. R, has priority on R; (its resources
have higher priority). Figure 3(b) shows the effect
of the first rule with the decrease of priority along
plans. It also indicates conflicts between resources
(U(2),U(3) and U(6)), and a strong link, due to the
conservative insertion. If R, allocates U(2) before
R;, Ry will not be able to achieve its plan. So, the
conservative insertion creates this strong link.

Figure 3(c) shows the evolution of priorities in
Ry’s plan (uRl (1)7 uR1 (2)7 uRl (3) and uR1 (5))

Rule r 3.2: R; is performing the PMO and there
is a strong link from Ug, (2) to Ug, (2), so the pri-
ority of Ug, (2) changes to Ug,(2).p.

Then ruler 1 is applied to Ug, (3) and Ug, (5): we
have Ug, (5)-p = Ug, (3)-p = Ug, (2).-p = Ur,(2)-p

And finally rule r 2.2: Ug, (2).p > Ug,(2).p, and
R; is doing the PMO, so Ug, (1).p = Ug,(2).p.

Figure 3(d) shows the evolution of priority in R
plan (Ug,(2)) due to the rulesr 2.1. Then with fig-
ure 3 (e), we have a similar evolution in R; plan to
fig.3(c). After that, all the rules are satisfied, so we
can establish a synchronization between the robots
(fig. 3(f)). R» goes before Ry for U(6), but waits
for R; releasing resources U(2) and U(3), allowing
R, to achieve its own plan.

In figure 3(g),(h), we assume that R has al-
ready merged its plan, and that R; wants to do
a PMO. Figure 3(g) shows the initial state, which
satisfies the three rules, hence, the synchronization
(fig- 3(h)) where R; goes always before R,.

Thanks to these rules, one can decide to set prior-
ities which decrease along the plan proportionally
to a forecast time of resource allocation. This is
a way to introduce a treatment of time in plans
that could decrease waiting delays. One can also
introduce robots with greater priority on all their
resources to have ambulance robots.

This capacity of robots to pass before or after
other robots during the PMO allows not only to
have robots for emergency tasks, but also to merge
plans much longer than before.

4 Hierarchical plan merging

We introduce the possibility to add information to
the environment description such as a hierarchical
description, or a limited access to resources through

colored tokens. With these two notions we have
added more flexibility to plan refinement. Besides,
this hierarchical description allows to decrease the
resource intersection computation time.

4.1 Hierarchical resources

Hierarchical plan description allows to deal with
partially structured environments and to reduce
computation time. For each resource used, we can
associate a sub-plan. For example, we are able
to describe a navigation plan in terms of corridors
and rooms, then give a geometrical description of
robot movements inside each room. This allows
to limit the computation burden; when there is no
conflict between resources at a given level, there is
no need to compute possible intersection of their
sub-resources.

4.2 Colored tokens

We have also added colored tokens. A set of tokens
can be associated to each resource. The resource
usage is then defined as the allocation by a robot
of a given number of tokens of a specific color. With
this mechanism we can limit the number of robots
which could access to a resource. The color token
is used to add information on sub-resources. For
example, in an area with several parking places, we
can associate to each one a color. When the robot
wants to enter the area, it can know what are the
free parking places and then create a sub-plan with
less conflicts.

5 The new architecture

While the previous version only used a two-
dimensional planner and one fixed robot type (rect-
angular), we have increased the capacity of the new
implementation by allowing a 3D geometrical de-
scription for environment or robots with any robots
type (holonomic mobile robot, nonholonomic mo-
bile manipulator...). The underlying planner is
Move3D [12]. One consequence, is the increase of
time required to compute plan intersections. To
reduce this problem, we have chosen to distribute
this calculation.

Figure 4 shows the changes in the global architec-
ture. The merging procedure and the 3D plan inter-
section computation are now distributed. However,
we still need a “central” stage to deal with prob-
lems that occur with more than two robots. To
do this we collect all synchronizations, and inverse



links which cause deadlock. Note also that there is
only one broadcast: the plan to merge. Hence, we
also decrease substantially the amount of transmit-
ted data.

asic Plan Merging Protocol ew Plan Merging Protoco
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Figure 4: Plan-Merging protocol architecture. The
new implementation allows a distributed computa-
tion of resources intersection. The amount of trans-
mitted data is represented by the width of arrows.

With this implementation we drastically reduce
the merging computing latency time. In fact, this
latency time tends to be independent of the number
of robots (the longest stage is the distributed one).
But, even if we reduce the communication time, it
is still linear in the number of robots. For a great
number of robots, this will be the limitation.

6 Implementation

We describe two illustrative examples: the first one
(fig. 5) shows the ability to deal with a 3D environ-
ment with several kinds of robots. The second one
(fig. 6) is an application of long plans insertion.
The first example involves several robots of vari-
ous types in an indoor 3D environment. There are
three types of mobile robots as used in our labo-
ratory: Hilare, a nonholonomic robot with a a 6
degrees of freedom manipulator, Diligent (XR400
Nomadic), a holonomic robot, Scout (Nomadic),
a nonhomolomic robot. One can observe how the
robots can insert their plans before or after other
robots. For instance Diligent has to wait for the
Scout (fig 5(c)) although it has inserted its plan
first. The Scout has the highest priority and goes
before Diligent, but after both Hilare robots be-
cause their initial positions are in the rigid part of

plan. We also, observe the great number of syn-
chronizations between the two Hilare because they
follow each other. Scout, which is smaller than
Diligent, is able to go under Hilare arms (fig 5(c))
before Diligent which has to wait (fig 5(d)) until
the two Hilare robots have almost completely raised
their arms. ..

(€) Hilare bis 1

Diligent

® Hilare bis 1 \( \(

Diligent

Hilare bis 2 >\ >\
(9) Hilare bis 1{?—;% :

Diligent

Hilare bis 2 :
Scout —CO

©) © (d)

Figure 5: 3D Plan-Merging. (a) Initial and goal
positions. There are four robots: from left to right,
Hilare 2, Scout, Diligent, Hilare 1. Scout has the
highest priority. (b), (c), (d) represent synchro-
nized positions. (e), (f), (g) show a simplified global
plan evolution. The dashed lines in the global plan
correspond to the situations (b), (c), (d).

The second example in an airport environment
with 7 “robots”: 2 trucks, 2 buses, 2 planes and
1 car. It shows the benefit of decreasing priority
along plans, when a bus goes before other vehicles
in the beginning of its plan, and after at the end
(fig- 6(a)). It also shows the use of robots with high
priority. For instance, we have given the highest



priority to planes: consequently, a plane is able to
forbid other vehicles to go through its way, even if
it does a PMO after the others (fig. 6 (b),(c)).

Figure 6: Coordination of two planes, two buses,
two trucks and one car in an airport environment.
Both planes have the highest priority. Curves on
the ground represent the merged plans.

7 Conclusion

We have presented and illustrated some key exten-
sions to the Plan-Merging Paradigm. They concern
algorithmic as well as architectural issues.

The new version is more flexible and more gen-
eral. It allows to implement various coordination
schemes. For instance, with a constant priority for
all resources, the system behaves like the “basic
PMP”. With a decreasing priority along plans we
have a merging policy which favours short terms
actions. With different priority levels by robots we
have the notion of emergency robots and tasks. Be-
sides, the protocol deals with priorities that change
during plan execution, allowing robots to merge

again their plans when they need or want to change
their coordinations. Besides, the new implementa-
tion accepts heterogeneous mobile manipulators in
a 3D environment.
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